• Non ci sono risultati.

Measurement of the pseudorapidity and centrality dependence of the transverse energy density in pb-pb collisions at √s NN=2.76TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the pseudorapidity and centrality dependence of the transverse energy density in pb-pb collisions at √s NN=2.76TeV"

Copied!
16
0
0

Testo completo

(1)

Measurement of the Pseudorapidity and Centrality Dependence of the Transverse Energy

Density in Pb-Pb Collisions at

p

ffiffiffiffiffiffiffiffi

s

NN

¼ 2:76 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 12 May 2012; published 8 October 2012)

The transverse energy (ET) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (pffiffiffiffiffiffiffiffisNN) has been measured over a broad range of pseudorapidity () and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dET=d) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudor-apidity in peripheral to central collisions varies significantly as the pseudorpseudor-apidity increases from  ¼ 0 tojj ¼ 5:0. For the 5% most central collisions, the energy density per unit volume is estimated to be about14 GeV=fm3 at a time of1 fm=c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported atpffiffiffiffiffiffiffiffisNN¼ 200 GeV at the Relativistic Heavy Ion Collider.

DOI:10.1103/PhysRevLett.109.152303 PACS numbers: 25.75.Gz

The goal of relativistic heavy-ion collisions is to study the behavior of quarks and gluons under extreme condi-tions of pressure, density, and temperature, such as those that existed shortly after the big bang. Similar conditions can be reproduced in the laboratory by colliding heavy nuclei at the highest possible energies. Experiments at the Relativistic Heavy Ion Collider (RHIC) have shown that at a nucleon-nucleon center-of-mass energy of pffiffiffiffiffiffiffiffisNN¼ 200 GeV a strongly interacting medium is produced. This system behaves as an almost perfect quantum fluid [1–4]. There are also indications from the RHIC experi-ments that at these energies the initial state of the colliding nuclei may be a color glass condensate [1,5,6]. The pres-ence of such a state may affect the spatial distribution of partons within the nucleus, particularly at high pseudora-pidity [7,8]. Measuring the distribution of transverse en-ergy over a wide pseudorapidity range sheds light also on the longitudinal expansion of the system. In 2010, the Large Hadron Collider (LHC) accelerated heavy ions to energies 14 times higher than RHIC in order to produce matter at energy densities never achieved before. One of the basic measurements in this new regime is that of the energy distribution of all the produced particles, which is connected to the initial energy and entropy densities of the produced matter. At lower energies, the measured rapidity distributions of particles are generally well described by Gaussians. The widths of these distributions are consistent

with the predictions of Landau hydrodynamics, i.e., yffiffiffiffiffiffiffiffi ¼ ln

p

, where  is the Lorentz factor of the colliding beams [9–13]. The rapidity variable y  tanh1ðvz=cÞ, where vz is the velocity of the particle along the beam direction z, provides a way to describe the longitudinal distribution of matter created in these collisions. Calorimeters measure only the energy deposited at various angles, and therefore the data are presented in terms of the distribution of energy in pseudorapidity, . Pseudorapidity is defined as    ln½tanð=2Þ, with  the polar angle with respect to the z axis. When the momentum of a particle is larger than its mass, its   y.

The Compact Muon Solenoid (CMS) experiment is a general-purpose detector designed to study hadron colli-sions at the TeV scale [14]. In particular, it has almost hermetic calorimetry that is sensitive to the distribution of energy over nearly the complete angular range. The trans-verse energy is defined by ET¼PiEisini, where Eiis the energy seen by the calorimeter for the ith particle, iis the polar angle of particle i, and the sum is over all particles emitted into a fixed solid angle in an event. The quantity dET=d is an approximately Lorentz invariant measure of the energy distribution. The transverse energy is studied as a function of the geometry of the collision, i.e., the central-ity, of the heavy-ion interaction. Finally, comparisons are made with lower-energy data and theoretical models.

The central feature of the CMS apparatus is a super-conducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the central field volume are the silicon pixel and strip trackers, lead-tungstate crystal electromagnetic calorimeter and the brass-scintillator had-ron calorimeter. These calorimeters are physically divided into the barrel and end cap regions covering together the region of jj < 3:0. The hadronic forward (HF)

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

calorimeters coverjj from 2.9 to 5.2. The HF calorimeters use quartz fibers embedded within a steel absorber. The CMS tracking system, located inside the calorimeter, con-sists of pixel and silicon-strip layers coveringjj < 2:5. A set of scintillator tiles, the beam scintillator counters, are mounted on the inner side of the HF calorimeters to trigger on heavy-ion collisions and reject beam-halo interactions. In addition, two zero degree calorimeters are used for systematic checks. For more details on CMS, see [14].

In 2010, CMS recorded Pb-Pb collision data correspond-ing to an integrated luminosity of 7:36 b1, of which 0:31 b1were included in this analysis. This luminosity selection provided a data sample with negligible statistical uncertainties. Minimum bias inelastic Pb-Pb collisions were selected by requiring that either the HF or beam scintillator counters detected a signal on both sides of the interaction point. In the analysis at least two reconstructed tracks were required to form a vertex within25 cm of the nominal interaction point along the beam line and within a radius of 2 cm measured perpendicular to the beam relative to the average vertex position. Large-multiplicity beam-background events were removed by requiring the com-patibility of the observed pixel-cluster lengths with the hypothesis of a Pb-Pb interaction at the estimated vertex. Finally, events containing beam-halo muons were elimi-nated by a timing requirement on the beam scintillator counters on opposite sides of the interaction point. The total event selection efficiency of the minimum bias trigger for hadronic Pb-Pb interactions was found to be ð97  3Þ% [15].

Events were sorted into different centrality classes. The centrality of heavy-ion interactions is related to the number of participating nucleons and hence to the energy released in the collisions. In CMS, the centrality is defined as per-centiles of the energy deposited in the HF. The most central (peripheral) event class, i.e., ð0–2:5Þ%=ð70–80Þ% in this analysis, has a large (small) number of participants and a large (small) energy deposit in HF. In order to estimate the mean number of participating nucleons (hNparti) and its systematic uncertainty for each centrality class, a Glauber model of the nuclear collision was used [16–18].

The data were corrected for detector acceptance and inefficiencies using correction factors CðjjÞ estimated from theHYDJET 1.8 [19] Monte Carlo (MC) event gen-erator coupled to aGEANT4[20] CMS detector simulation. These correction factors were calculated as the ratio of MC predictions at the particle level and the detector level for each centrality class. The correction factor CðjjÞ  1:6 forjj < 2 falls to 1:1 by jj ¼ 4 and then rises to 2 at jj  5. The nonlinearity of the calorimeter response and the effect of the magnetic field cause the CðjjÞ to depend upon the pT spectra, the ratio of charged and neutral particles, and the mixture of mesons and baryons. The value of CðjjÞ increases if the assumed spectra shift to lower pT or if the ratio of charged to neutral particles is

larger. To estimate the systematic uncertainties in CðjjÞ, two tunes ofHYDJET(1.6 and 1.8) were used.HYDJET1.8, hpTich ¼ 0:66 GeV=c, was tuned to LHC spectra and par-ticle yields as measured by the ALICE Collaboration [21] and successfully tested against a wide range of RHIC data. HYDJET 1.6, hpTich¼ 0:57 GeV=c, was tuned only to RHIC data [19]. At central pseudorapidity, the fraction of ET carried by charged pions, kaons, protons, and anti-protons is 0.60 forHYDJET1.6 and 0.62 forHYDJET1.8. The results were cross-checked by using data taken with no magnetic field, and in addition, for B ¼ 3:8 T, data from tracks with pT> 900 MeV=c were combined with energy clusters in the calorimeters to identify different types of particles and measure their energy. Since muons and neu-trinos carry a negligible fraction of the total transverse energy and deposit almost no signal in the calorimeters, they are not considered in this analysis and no correction factors are applied to account for them. The corrected transverse energy for N analyzed events is obtained as

dET

d ðjjÞ ¼ CðjjÞ P

jET;jðjjÞ

N  ð2  Þ; (1)

where the sum over j covers all calorimeters cells located within the  range  and ET;j is the transverse energy measured in a particular cell j. Note that for this summa-tion no threshold is applied to the individual calorimeters cells. Several sources of systematic uncertainties were studied, and their effects are summarized in Table I and described below. Energy scale: All of the calorimeters were initially calibrated with test beam data and radioac-tive sources. For the barrel and inner end cap calorimeters, these calibrations were refined by using isolated charged hadrons whose momentum was reconstructed in the tracker. For the HF calorimeter the energy scale was cross-checked by reconstructing Z ! eþe in pp colli-sions where either the positron or the electron was recorded in the electromagnetic calorimeter and tracker. Symmetry about : For Pb-Pb collisions the corrected dET=d should be symmetric about  ¼ 0. The values of

TABLE I. Systematic uncertainties for two jj regions in percent for the most central (0–2.5)% (hNpart¼ 394i) and most peripheral (70–80)% (hNparti ¼ 16) collisions.

jj  2:65 2:65 < jj  5:2 hNparti 16 394 16 394 Energy scale 2 2 10 10 MC model 1.2–12 1.2–4.9 1–6.8 1–2.3 Vertex 2 2 2 2  symmetry 0.5 0.5 0.3 0.3 Autocorrel. 1.5 1.5 1.0 1.0 Calo. noise 14–18 0.3 4–7.3 0.1–0.2 HF MC       1.5–9 1.5–9 Centrality 6.7 0.5 6.7 0.5 Total 14–22 3.5–5.9 11–17 10–14

(3)

dET=d for positive and negative  were found to differ by at most 0.5%. This close agreement implies that one can use the average of the two results as a best estimate of dET=d. Vertex distribution: The z distribution of the vertices is Gaussian with z 6:1 cm. To test the sensi-tivity of ETto the position of the interaction vertex along the beam line, z, the data set was divided into two samples withjzj < 10 cm and 10 cm < jzj < 25 cm, respectively. The ETdistributions of the two samples differ by less than 2%. Autocorrelations: Since HF is used both to calculate centrality and to measure ETfor each centrality class, there is an autocorrelation in the measurement. This effect was estimated to be less than 1.5% by using a combination of the zero degree calorimeters and pixel detectors to measure centrality. Calorimeter noise: The GEANT4 simulation of the calorimeters included electronic noise. This noise was measured by studying a sample of events where the trigger required only the presence of clockwise and anticlockwise bunches of lead ions simultaneously in CMS. The simula-tion of the noise was checked by comparing the data to the simulated signal from a GEANT4 simulation of the most peripheral events in the data set. Any discrepancy in the simulation of the noise corresponds to a corrected average ET per event of less than 5.8 GeV for jj  2:65 and 1.2 GeV for 2:65 < jj  5:2. This is significant only compared to the signal for hNparti  30. The HF MC description takes into account different ways of describing the dead areas of the HF detector. Centrality determination: The systematic uncertainty related to the centrality deter-mination is applied only to the results that are normalized byhNparti.

Figure 1 shows the jj dependence of the transverse energy density for four selected ranges of centrality. For the most central collisions (hNparti ¼ 394), dET=d reaches 2.1 TeV at  ¼ 0. This is much larger than the value of 0.61 TeV measured atpffiffiffiffiffiffiffiffisNN¼ 200 GeV [22]. At lower center-of-mass energies, the pion multiplicity distri-butions are reasonably well described by Gaussians in rapidity with widths that are consistent with Landau-Carruthers hydrodynamics [23,24]. Since the mean pT of all particle species depends only weakly on rapidity, this implies that dET=dy is roughly Gaussian in rapidity atffiffiffiffiffiffiffiffi

sNN

p ¼ 200 GeV. Recently, Wong has improved the for-mulation of Landau hydrodynamics [25]. This new formu-lation gives a better description of the 200 GeV RHIC data. At pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV and for jj < 5:2, the dET=d is consistent with a Gaussian (black solid line) with ¼ 3:4  0:1 for the most central collisions. The Gaussian and Landau curves in Fig.1are normalized to the CMS data at  ¼ 0. Both the Landau-Carruthers (blue dashed line) and Landau-Wong (green dotted line) formulations have dis-tributions that are narrower than the data. Therefore, the longitudinal expansion of the system is stronger than that predicted from either model. HYDJET 1.8, shown by the purple dashed line, has been tuned to LHC data in the small

jj region. It gives a good description of dET=d at small jj but overestimates the data at large jj for central collisions. The AMPT (a multiphase transport) model [26,27] (orange dashed line) overestimates dET=d for central collisions but is in rough agreement with the shape of dET=d. Integrating ðdET=dÞ=ðhNparti=2Þ over  be-tween5:2 and 5.2 gives a total measured ETper partici-pant pair of80  4 GeV for the most central events. This serves as a lower limit for the total transverse energy per nucleon pair. Extrapolating to the full phase space gives a total transverse energy per pair of participating nucleons of 91  5 GeV for the most central events. It is clear from Fig.1that the magnitude of dET=d increases rapidly with the number of nucleons participating in the collision.

Figure 2 shows the evolution ofðdET=dÞ=ðhNparti=2Þ with hNparti for several jj regions. At all jj values ðdET=dÞ=ðhNparti=2Þ increases with hNparti. This figure shows that the hNparti dependence of transverse energy density changes as a function of pseudorapidity. This effect can be quantified by comparing peripheral (60–70)% (hNparti ¼ 30) to central (0–2.5)% collisions (hNparti ¼ 394) at various pseudorapidities. The ratio of peripheral to central ðdET=Þ=ðhNparti=2Þ changes from 54  2% at  ¼ 0 to 68  2% at jj ¼ 5:0. The PHENIX Collaboration at RHIC has studied transverse energy den-sity in Au-Au collisions forjj < 0:35 over a wide range of centralities and for pffiffiffiffiffiffiffiffisNN from 19.6 to 200 GeV [22]. At pffiffiffiffiffiffiffiffisNN¼ 19:6 GeV, ðdET=dÞ=ðhNparti=2Þ at  ¼ 0 increases by a factor of 1:25  0:17 as hNparti increases

| η | 0 1 2 3 4 5 (GeV)η /dT dE 2 10 3 10 4 10 =394 〉 part N 〈 =187 〉 part N 〈 =53 〉 part N 〈 =16 〉 part N 〈 AMPT central HYDJET 1.8 Gaussian fit Landau-Carruthers Landau-Wong CMS =2.76 TeV NN s PbPb -1 b µ Ldt = 0.31

FIG. 1 (color online). Transverse energy density versus jj distribution for a range of centralities of (0–2.5)%, (20–30)%, (50–60)%, and (70–80)%. The boxes show the total systematic uncertainties. The statistical uncertainties are negligible. Also shown are a Gaussian fit and the predictions of various models (see the text). The AMPT events are for perfectly central collisions.

(4)

from 63.8 to 336. At pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV, this factor is found to be 1:47  0:13 for a similar range of hNparti. At pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV, the HYDJET 1.8 code gives a good description of the centrality dependence of dET=d at  ¼ 0.

Figure 3 shows the energy dependence of ðdET=dÞ=ðhNparti=2Þ for central collisions at  ¼ 0. For the top 5% most central events, ðdET=dÞ=ðhNparti=2Þ reaches 10:5  0:5 GeV at ffiffiffiffiffiffiffiffipsNN¼ 2:76 TeV. The ET rises more quickly with the center-of-mass energy than the logarithmic dependence used to describe data up toffiffiffiffiffiffiffiffi

sNN

p ¼ 200 GeV [

22]. For energies between 8.7 GeV and 2.76 TeV, dET=d at  ¼ 0 can be reproduced by a power-law dependence of the type sn

NN with n  0:2. A similar effect has been seen in the measurement of the pffiffiffiffiffiffiffiffisNN evolution of the charged particle multiplicity [18,28]. TheðdET=dÞ=ðhNparti=2Þ increases by a factor of 3:07  0:24 from ffiffiffiffiffiffiffiffipsNN¼ 200 GeV to 2.76 TeV. This is to be compared to a factor of2:17  0:15 for the pseudorapidity density, ðdNch=dÞ=ðhNparti=2Þ [18,21,22]. For the 5% most central collisions, CMS has measured dNch=d ¼ 2007  100 GeV and dNch=d ¼ 1612  55 [18]. Dividing the measured transverse energy by the observed charged particle multiplicity for the same centrality gives a transverse energy per charged particle of1:25  0:08 GeV atpffiffiffiffiffiffiffiffisNN¼ 2:76 TeV. This compares to 0:88  0:07 GeV atpffiffiffiffiffiffiffiffisNN¼ 200 GeV [22].

The sum of the transverse energies of all particles produced in the event depends upon both the entropy

and the temperature of the system. Using geometrical considerations, Bjorken [29] suggested that the energy density per unit volume in nuclear collisions could be estimated from the energy density per unit rapidity. A commonly used estimate of energy density is given by [22]

 ¼ 1

Ac0Jðy; Þ dET

d ; (2)

where A is the overlap area of the two nuclei and 0is the formation time of the produced system. The Jacobian Jðy; Þ depends on the momentum distributions of the produced particles. In the limit that the rest masses of the particles are much smaller than their momenta, Jðy; Þ ¼ 1. The average Jacobian was calculated by using HYDJET 1.8 for jj < 0:35. For central collisions at pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV, Jðy; Þ ¼ 1:09. This compares to 1.25 atffiffiffiffiffiffiffiffi

sNN

p ¼ 200 GeV [

22]. For the top 5% most central colli-sions, this formula gives  ¼ 14 GeV=fm3 at a time 0 ¼ 1 fm=c and for a transverse surface of A ¼   ð7 fmÞ2 [22]. This is a factor of 2.6 times larger than the energy density calculated atpffiffiffiffiffiffiffiffisNN¼ 200 GeV [22].

In summary, for the most central Pb-Pb collisions at ffiffiffiffiffiffiffiffi

sNN

p ¼ 2:76 TeV, the maximum of the transverse energy distribution has been found to be 2.1 TeV at  ¼ 0. Even at a very forward pseudorapidity of jj ¼ 5:0, dET=d and hence the energy density of the produced system at the LHC is larger than that measured for  ¼ 0 at RHIC. 〉 part N 〈 0 50 100 150 200 250 300 350 400 /2) (GeV)〉 part N〈 )/(η /d T (dE 0 2 4 6 8 10 12 14 16 |η| <0.35 | <2.17 η 1.74< | | <3.14 η 2.65< | | <3.84 η 3.49< | | <4.89 η 4.54< | | <0.35, HYDJET 1.8 η | | <0.35, 200 GeV η PHENIX, | | <0.35, 19.6 GeV η PHENIX, | CMS =2.76 TeV NN s PbPb -1 b µ Ldt = 0.31

FIG. 2 (color online). Transverse energy density normalized by (hNparti=2) versus hNparti for Pb-Pb collisions at ffiffiffiffiffiffiffiffipsNN¼ 2:76 TeV at several values of jj. The bands show the total systematic uncertainties. The statistical uncertainties are negli-gible. For  ¼ 0, lower-energy PHENIX data and results from theHYDJET1.8 model are also shown.

(GeV) NN s 1 10 2 10 103 /2) (GeV)〉 part N〈 )/(η /d T (dE 0 2 4 6 8 10 12 FOPI, 0-1% AuAu E802, 0-5% AuAu NA49, 0-7% PbPb WA98, 0-5% PbPb PHENIX, 0-5% AuAu CMS, 0-5% PbPb RHIC parametrization 8.7 GeV ≥ NN s , 0.2 NN 0.46 s

FIG. 3 (color online). Transverse energy density normalized by (hNparti=2) for central collisions at  ¼ 0 versus ffiffiffiffiffiffiffiffipsNN. The vertical bar on the CMS point is the full systematic uncertainty. The statistical uncertainty is negligible. The solid line is a parametrization of lower-energy data compiled by the PHENIX Collaboration; see [22,30–37]. The dashed line corre-sponds to a power-law fit sn

(5)

At 2.76 TeV, the shape of dET=d is consistent with a Gaussian function of width ¼ 3:4  0:1 for central collisions. This distribution is wider than the prediction of Landau hydrodynamics but narrower than that given by the HYDJET 1.8 simulation. The ðdET=dÞ=ðhNparti=2Þ increases with hNparti at all pseudorapidities. The ratio of transverse energy in peripheral compared to central collisions increases by a factor of 1:26  0:06 from  ¼ 0 to jj ¼ 5. The transverse energy density at  ¼ 0 grows more rapidly with the center-of-mass energy than the logarithmic scaling with pffiffiffiffiffiffiffiffisNN that describes lower-energy data. It also grows faster with energy than the multiplicity, implying a significant increase of the mean transverse energy per particle compared to lower-energy data.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge sup-port from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have re-ceived support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a` la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India.

[1] I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A757, 1 (2005).

[2] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A757, 184 (2005).

[3] B. B. Back et al. (PHOBOS Collaboration),Nucl. Phys. A757, 28 (2005).

[4] J. Adams et al. (STAR Collaboration),Nucl. Phys. A757, 102 (2005).

[5] E. Iancu, A. Leonidiv, and L. McLerran, Nucl. Phys. A692, 583 (2001).

[6] J. Adams et al. (STAR Collaboration),Phys. Rev. Lett. 97, 152302 (2006).

[7] A. Adil, H.-J. Drescher, A. Dumitru, A. Hayashigaki, and Y. Nara,Phys. Rev. C 74, 044905 (2006).

[8] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y. Nara,Phys. Lett. B 636, 299 (2006).

[9] L. D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953).

[10] I. G. Bearden et al. (BRAHMS Collaboration),Phys. Rev. Lett. 94, 162301 (2005).

[11] I. C. Arsene et al. (BRAHMS Collaboration),Phys. Lett. B 687, 36 (2010).

[12] I. G. Arsene et al. (BRAHMS Collaboration),Phys. Lett. B 684, 22 (2010).

[13] S. Z. Belen’kij and L. D. Landau,Nuovo Cimento Suppl. 3, Supp. 1, 15 (1956).

[14] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[15] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. C 84, 024906 (2011).

[16] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,

Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

[17] B. Alver, M. Baker, C. Loizides, and P. Steinberg,

arXiv:0805.4411.

[18] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 08 (2011) 141.

[19] I. P. Lokhtin and A. M. Snigirev,Eur. Phys. J. C 45, 211 (2006).

[20] S. Agostinelli et al. (GEANT4 Collaboration),

Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[21] K. Aamodt et al. (ALICE Collaboration),Phys. Rev. Lett. 106, 032301 (2011).

[22] S. S. Adler et al. (PHENIX Collaboration),Phys. Rev. C 71, 034908 (2005).

[23] P. Carruthers and M. Duong-Van, Phys. Lett. 41B, 597 (1972).

[24] P. Carruthers and M. Duong-Van, Phys. Rev. D 8, 859 (1973).

[25] C.-Y. Wong,Phys. Rev. C 78, 054902 (2008).

[26] B. Zhang, C. M. Ko, B.-A. Li, and Z. Lin,Phys. Rev. C 61, 067901 (2000).

[27] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal,Phys. Rev. C 72, 064901 (2005).

[28] K. Aamodt et al. (ALICE Collaboration),Phys. Rev. Lett. 105, 252301 (2010).

[29] J. D. Bjorken,Phys. Rev. D 27, 140 (1983).

[30] T. Abbott et al. (E-802 Collaboration),Phys. Rev. C 63, 064602 (2001).

[31] M. M. Aggarwal et al. (WA98 Collaboration),Eur. Phys. J. C 18, 651 (2001).

[32] J. Bachler et al. (NA49 Collaboration),Nucl. Phys. A661, 45 (1999).

[33] S. V. Afanasiev et al. (NA49 Collaboration),Nucl. Phys. A715, 161 (2003).

(6)

[34] S. V. Afanasiev et al. (NA49 Collaboration),Phys. Rev. C 66, 054902 (2002).

[35] W. Reisdorf (FOPI Collaboration),Nucl. Phys. A612, 493 (1997).

[36] D. Pelte et al. (FOPI Collaboration),Z. Phys. A 357, 215 (1997).

[37] B. Hong et al. (FOPI Collaboration), Phys. Rev. C 66, 034901 (2002).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,b W. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bD. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2

H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4T. Cornelis,4E. A. De Wolf,4 X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6 A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7

A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7

N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8 L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8

K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10

W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11

S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11 A. Santoro,11L. Soares Jorge,11A. Sznajder,11C. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12

E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12 V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13 R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14

J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15 X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16

Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16S. Wang,16B. Zhu,16W. Zou,16C. Avila,17 J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20 J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,i M. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24V. Azzolini,25

P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27 A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28 B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28

E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28 S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,nC. Broutin,29P. Busson,29C. Charlot,29 N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29

M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29 J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30 E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,oD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30 P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32 R. Chierici,32,fD. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32 T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32S. Viret,32

Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34 R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34

(7)

D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,qM. Ata,35J. Caudron,35E. Dietz-Laursonn,35M. Erdmann,35 A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35J. Lingemann,35

C. Magass,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Weber,35M. Bontenackels,36 V. Cherepanov,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36

Y. Kuessel,36A. Nowack,36L. Perchalla,36O. Pooth,36J. Rennefeld,36P. Sauerland,36A. Stahl,36 M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,rA. Bethani,37K. Borras,37

A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37F. Costanza,37D. Dammann,37 C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37S. Habib,37

J. Hauk,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37 D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37 I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37

A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37 J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37

C. Wissing,37C. Autermann,38V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38 T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38 B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38 A. Schmidt,38M. Schro¨der,38T. Schum,38V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38 C. Barth,39J. Berger,39T. Chwalek,39W. De Boer,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39

F. Hartmann,39M. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,qJ. R. Komaragiri,39 P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39

J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39A. Scheurer,39F.-P. Schilling,39 G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39J. Wagner-Kuhr,39T. Weiler,39M. Zeise,39

G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40 C. Markou,40C. Mavrommatis,40E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41 I. Evangelou,42C. Foudas,42,fP. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,f P. Hidas,43D. Horvath,43,sF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44 J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46 N. Dhingra,46R. Gupta,46M. Jindal,46M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46

S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47A. Kumar,47A. Kumar,47S. Malhotra,47M. Naimuddin,47 K. Ranjan,47V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48

Sh. Jain,48R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49 V. Kumar,49P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,u M. Maity,50,vG. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50

S. Banerjee,51S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52 H. Hesari,52A. Jafari,52,wM. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,y

M. Zeinali,52,xM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b G. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53b G. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,f P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

G. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,zF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58aR. Musenich,58aA. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,fS. Fiorendi,59a,59b

S. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59bA. Massironi,59a,59b,f D. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59a

(8)

T. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a,fN. Cavallo,60a,aaA. De Cosa,60a,60b,f O. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,bbM. Merola,60a,60bP. Paolucci,60a,f

P. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a,61b,fR. Carlin,61a,61bP. Checchia,61a T. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61aK. Kanishchev,61a,61c S. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61bM. Nespolo,61a,fP. Ronchese,61a,61b

F. Simonetto,61a,61bE. Torassa,61aS. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62b S. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63b

P. Lariccia,63a,63bA. Lucaroni,63a,63b,fG. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63b A. Saha,63aA. Santocchia,63a,63bS. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64c

R. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64a F. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64a,ccA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,dd

P. Spagnolo,64aP. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64a L. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b,fM. Diemoz,65aM. Grassi,65a,65b,fE. Longo,65a,65b P. Meridiani,65a,fF. Micheli,65a,65bS. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65b

M. Sigamani,65aL. Soffi,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66c C. Biino,66aN. Cartiglia,66aM. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66bC. Mariotti,66a,fS. Maselli,66a E. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a

A. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66a A. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67bF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67a M. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68

S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70 Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71 S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73 J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74

M. Janulis,74A. Juodagalvis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75 R. Lopez-Fernandez,75R. Magan˜a Villalba,75J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75 L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76F. Vazquez Valencia,76H. A. Salazar Ibarguen,77 E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78D. Krofcheck,79A. J. Bell,80P. H. Butler,80

R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81M. I. Asghar,81H. R. Hoorani,81S. Khalid,81 W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82 R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82

P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83 M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84

M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85 I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85

V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86 Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86

S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87A. Dermenev,87S. Gninenko,87N. Golubev,87 M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87D. Tlisov,87A. Toropin,87V. Epshteyn,88 M. Erofeeva,88V. Gavrilov,88M. Kossov,88,fN. Lychkovskaya,88V. Popov,88G. Safronov,88S. Semenov,88 V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89A. Ershov,89A. Gribushin,89V. Klyukhin,89 O. Kodolova,89V. Korotkikh,89I. Lokhtin,89A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89 A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89I. Vardanyan,89V. Andreev,90M. Azarkin,90I. Dremin,90

M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91I. Bayshev,91 S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91V. Petrov,91 R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,ee M. Djordjevic,92M. Ekmedzic,92D. Krpic,92,eeJ. Milosevic,92M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93 C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93 D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93

P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93 J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93

(9)

C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95 S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96 I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ffM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96F. Matorras,96

F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97 A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97

H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97

W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Giunta,97F. Glege,97 R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97

B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97 Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97 F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97 T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97

M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97 G. Rolandi,97,ggT. Rommerskirchen,97C. Rovelli,97,hhM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97 C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,iiD. Spiga,97

M. Spiropulu,97,eA. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,jjW. D. Zeuner,97 W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98

D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,kkL. Ba¨ni,99P. Bortignon,99 M. A. Buchmann,99B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Du¨nser,99J. Eugster,99 K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99P. Martinez Ruiz del Arbol,99N. Mohr,99

F. Moortgat,99C. Na¨geli,99,llP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99 F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,mmB. Stieger,99M. Takahashi,99 L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99 E. Aguilo,100C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100

P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101 C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101R. Volpe,101 S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102 U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102 X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,nnS. Cerci,103,oo C. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103E. E. Kangal,103 G. Karapinar,103,ppA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103S. Ozturk,103,qqA. Polatoz,103K. Sogut,103,rr

D. Sunar Cerci,103,ooB. Tali,103,ooH. Topakli,103,nnL. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104 B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104 R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,ssM. Kaya,105,tt O. Kaya,105,ttS. Ozkorucuklu,105,uuN. Sonmez,105,vvK. Cankocak,106L. Levchuk,107F. Bostock,108J. J. Brooke,108

E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108G. P. Heath,108 H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,jjK. Nirunpong,108A. Poll,108S. Senkin,108 V. J. Smith,108T. Williams,108L. Basso,109,wwK. W. Bell,109A. Belyaev,109,wwC. Brew,109R. M. Brown,109 D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109

D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109 R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110

P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110 A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110 L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,mm A. Papageorgiou,110J. Pela,110,fM. Pesaresi,110K. Petridis,110M. Pioppi,110,xxD. M. Raymond,110S. Rogerson,110 A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110

T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111 A. Khan,111P. Kyberd,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111M. Turner,111

(10)

K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113P. Rumerio,113A. Avetisyan,114 T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114

L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115U. Heintz,115S. Jabeen,115 G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115 T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon De La Barca Sanchez,116 S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116 R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116D. Pellett,116B. Rutherford,116M. Searle,116

J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116V. Andreev,117D. Cline,117R. Cousins,117 J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Plager,117G. Rakness,117

P. Schlein,117,aJ. Tucker,117V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118 J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118,yyH. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118

S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119 J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119 M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119

M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119 S. Wasserbaech,119,zzF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120C. Campagnari,120 M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120P. Kalavase,120 S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120F. Rebassoo,120 J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121A. Bornheim,121 Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121C. Rogan,121 V. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121R. Y. Zhu,121B. Akgun,122R. Carroll,122 T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123 B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123 K. Stenson,123K. A. Ulmer,123S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124

B. Heltsley,124A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124 A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Vaughan,124Y. Weng,124 L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126

A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126 H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126

J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126 B. Kilminster,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126D. Lincoln,126R. Lipton,126 J. Lykken,126K. Maeshima,126J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126 S. Mrenna,126Y. Musienko,126,aaaC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126 S. Sharma,126W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126 E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127

P. Avery,127D. Bourilkov,127M. Chen,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127 A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127

J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127 P. Milenovic,127,bbbG. Mitselmakher,127L. Muniz,127R. Remington,127A. Rinkevicius,127P. Sellers,127 N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128L. M. Lebolo,128S. Linn,128 P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129 B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129

H. Prosper,129V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130 H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131 V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131

L. Gauthier,131C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131 C. Silkworth,131D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132,cccW. Clarida,132 F. Duru,132S. Griffiths,132J.-P. Merlo,132H. Mermerkaya,132,dddA. Mestvirishvili,132A. Moeller,132J. Nachtman,132 C. R. Newsom,132E. Norbeck,132Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132 B. A. Barnett,133B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133

(11)

G. Benelli,134O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134 G. Tinti,134J. S. Wood,134V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135

M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136 A. Baden,137M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137

M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137G. Bauer,138J. Bendavid,138W. Busza,138E. Butz,138

I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138Y. Kim,138 M. Klute,138K. Krajczar,138,eeeW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138 C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138

M. Zanetti,138S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139 K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139 N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140 E. Avdeeva,141K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141 I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142

I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143 E. Barberis,143D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143

A. Anastassov,144A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144 M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145 M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145 D. M. Morse,145T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146C. Vuosalo,146 G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147P. Hebda,147

J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147T. Medvedeva,147 M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147D. Stickland,147 C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148A. Lopez,148 H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149 D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149 M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149 I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149

S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,fff V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158C. Maguire,158 A. Melo,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159

B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159C. Neu,159J. Wood,159 R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160P. Lamichhane,160

A. Sakharov,160M. Anderson,161M. Bachtis,161D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161 S. Dasu,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161

J. Klukas,161A. Lanaro,161C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161 F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161

(12)

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50

Tata Institute of Fundamental Research - EHEP, Mumbai, India 51Tata Institute of Fundamental Research - HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

(13)

53bUniversita` di Bari, Politecnico di Bari, Bari, Italy 53cPolitecnico di Bari, Politecnico di Bari, Bari, Italy

54aINFN Sezione di Bologna, Bologna, Italy 54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy 57

INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64c

Scuola Normale Superiore di Pisa, Pisa, Italy 65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P. N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

94Universidad Auto´noma de Madrid, Madrid, Spain 95Universidad de Oviedo, Oviedo, Spain

(14)

97CERN, European Organization for Nuclear Research, Geneva, Switzerland 98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105

Bogazici University, Istanbul, Turkey 106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, Rhode Island, USA

116University of California, Davis, Davis, USA 117University of California, Los Angeles, Los Angeles, USA

118University of California, Riverside, Riverside, USA 119University of California, San Diego, La Jolla, USA 120University of California, Santa Barbara, Santa Barbara, USA

121

California Institute of Technology, Pasadena, USA 122Carnegie Mellon University, Pittsburgh, USA 123University of Colorado at Boulder, Boulder, USA

124Cornell University, Ithaca, USA 125Fairfield University, Fairfield, USA

126Fermi National Accelerator Laboratory, Batavia, USA 127University of Florida, Gainesville, USA 128Florida International University, Miami, USA

129Florida State University, Tallahassee, USA 130Florida Institute of Technology, Melbourne, USA 131University of Illinois at Chicago (UIC), Chicago, USA

132The University of Iowa, Iowa City, USA 133Johns Hopkins University, Baltimore, USA 134The University of Kansas, Lawrence, USA 135Kansas State University, Manhattan, USA 136Lawrence Livermore National Laboratory, Livermore, USA

137University of Maryland, College Park, USA 138Massachusetts Institute of Technology, Cambridge, USA

139University of Minnesota, Minneapolis, USA 140University of Mississippi, Oxford, USA 141University of Nebraska-Lincoln, Lincoln, USA 142State University of New York at Buffalo, Buffalo, USA

143Northeastern University, Boston, USA 144

Northwestern University, Evanston, USA 145University of Notre Dame, Notre Dame, USA

146The Ohio State University, Columbus, USA 147Princeton University, Princeton, USA 148University of Puerto Rico, Mayaguez, USA

149Purdue University, West Lafayette, USA 150Purdue University Calumet, Hammond, USA

151Rice University, Houston, USA 152University of Rochester, Rochester, USA 153

The Rockefeller University, New York, USA

154Rutgers, the State University of New Jersey, Piscataway, USA 155University of Tennessee, Knoxville, USA

156Texas A&M University, College Station, USA 157Texas Tech University, Lubbock, USA

(15)

158Vanderbilt University, Nashville, USA 159University of Virginia, Charlottesville, USA

160Wayne State University, Detroit, USA 161University of Wisconsin, Madison, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, CA, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

k

Also at Fayoum University, El-Fayoum, Egypt.

lAlso at Ain Shams University, Cairo, Egypt. mAlso at British University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pAlso at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran. y

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy. aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ccAlso at Universita` degli Studi di Siena, Siena, Italy.

ddAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. eeAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ffAlso at University of California, Los Angeles, Los Angeles, CA, USA. ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

hhAlso at INFN Sezione di Roma, Universita` di Roma, Roma, Italy. iiAlso at University of Athens, Athens, Greece.

jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. kkAlso at The University of Kansas, Lawrence, KS, USA.

llAlso at Paul Scherrer Institut, Villigen, Switzerland.

mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. nn

Also at Gaziosmanpasa University, Tokat, Turkey.

ooAlso at Adiyaman University, Adiyaman, Turkey. ppAlso at Izmir Institute of Technology, Izmir, Turkey. qqAlso at The University of Iowa, Iowa City, IA, USA.

rrAlso at Mersin University, Mersin, Turkey. ssAlso at Ozyegin University, Istanbul, Turkey.

ttAlso at Kafkas University, Kars, Turkey.

uuAlso at Suleyman Demirel University, Isparta, Turkey. vvAlso at Ege University, Izmir, Turkey.

wwAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. xxAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

(16)

zzAlso at Utah Valley University, Orem, UT, USA. aaaAlso at Institute for Nuclear Research, Moscow, Russia.

bbbAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. cccAlso at Argonne National Laboratory, Argonne, IL, USA.

dddAlso at Erzincan University, Erzincan, Turkey.

eeeAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. fffAlso at Kyungpook National University, Daegu, Korea.

Figura

TABLE I. Systematic uncertainties for two jj regions in percent for the most central (0–2.5)% (hN part ¼ 394i) and most peripheral (70–80)% ( hN part i ¼ 16) collisions.
Figure 1 shows the jj dependence of the transverse energy density for four selected ranges of centrality
Figure 3 shows the energy dependence of ðdET=dÞ=ðhNparti=2Þ for central collisions at  ¼ 0

Riferimenti

Documenti correlati

In this setup, positrons photoionized from electronically excited positronium atoms are trapped along the lines of magnetic field of the trap and accelerated

Specialty section: This article was submitted to Clinical and Health Psychology, a section of the journal Frontiers in Psychology Received: 14 August 2018 Accepted: 15 August

Gabor patch technology RevitalVision™ (RV) is a non-invasive, patient-specific treatment based on visual stimulation and facilitation of neural... connections responsible

To do this a new stochastic simulation environment is necessary, an environment able to simulate various kind of distribution (Poisson distribution, power-law

Lo scopo della presente tesi è stato quello di analizzare le fasi della gestione dei pazienti con sepsi/sepsi severa/shock settico che dal Pronto Soccorso vengono

SSD M-STO/05 (Storia della scienza e della tecnica) – MSU 6/ Code du secteur disciplinaire 624 (Histoire et civilisations: histoire des mondes modernes, histoire du monde

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

- Digital AS Cultural Heritage: entità digitali derivate dalla digitalizzazione e dalla dematerializzazione che registrano nei contenuti approcci culturali, processi, metodi