• Non ci sono risultati.

Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4+ assimilation and nitrogen derived protective compounds

N/A
N/A
Protected

Academic year: 2021

Condividi "Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4+ assimilation and nitrogen derived protective compounds"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Plant

Science

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i

Comparative

study

of

Zn

deficiency

in

L.

sativa

and

B.

oleracea

plants:

NH

4

+

assimilation

and

nitrogen

derived

protective

compounds

Eloy

Navarro-León

a,∗

,

Yurena

Barrameda-Medina

a

,

Marco

Lentini

b

,

Sergio

Esposito

b

,

Juan

M.

Ruiz

a

,

Bego ˜

na

Blasco

a

aDepartmentofPlantPhysiology,FacultyofSciences,UniversityofGranada,18071Granada,Spain

bDipartimentodiBiologia,UniversitàdiNapoli“FedericoII”,ComplessoUniversitariodiMonteSant’Angelo,ViaCinthia,80126Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1March2016

Receivedinrevisedform30March2016 Accepted5April2016

Availableonline6April2016 Keywords: Zndeficiency Nmetabolism Proline Glycinebetaine Lactucasativa Brassicaoleracea

a

b

s

t

r

a

c

t

Zinc(Zn)deficiencyisamajorprobleminagriculturalcropsofmanyworldregions.Nmetabolismplays anessentialroleinplantsandchangesintheiravailabilityandtheirmetabolismcouldseriouslyaffect cropproductivity.Themainobjectiveofthepresentworkwastoperformacomparativeanalysisof differentstrategiesagainstZndeficiencybetweentwoplantspeciesofgreatagronomicinterestsuch asLactucasativacv.PhillipusandBrassicaoleraceacv.Bronco.Forthis,bothspeciesweregrownin hydroponicculturewithdifferentZndoses:10␮MZnascontroland0.01␮MZnasdeficiencytreatment. ZndeficiencytreatmentdecreasedfoliarZnconcentration,althoughingreaterextentinB.oleraceaplants, andcausedsimilarbiomassreductioninbothspecies.ZndeficiencynegativelyaffectedNO3−reduction

andNH4+assimilationandenhancedphotorespirationinbothspecies.ProandGBconcentrationswere

reducedinL.sativabuttheywereincreasedinB.oleracea.Finally,theAAsprofilechangedinbothspecies, highlightingagreatincreaseinglycine(Gly)concentrationinL.sativaplants.WeconcludethatL.sativa wouldbemoresuitablethanB.oleraceaforgrowinginsoilswithlowavailabilityofZnsinceitisableto accumulateahigherZnconcentrationinleaveswithsimilarbiomassreduction.However,B.oleraceais abletoaccumulateNderivedprotectivecompoundstocopewithZndeficiencystress.

©2016ElsevierIrelandLtd.Allrightsreserved.

1. Introduction

Zinc (Zn) is an essential micronutrient for living organisms

foundina wide varietyof metabolicprocesses suchasprotein

synthesis,ribonucleasesinhibition,maintainingtheintegrityand

functionofcellmembranesandsynthesisofauxinprecursor

tryp-tophan[1].InadditionZnispartofcarbonicanhydraseenzyme

for starch synthesis, Cu-Zn-superoxide dismutase (Cu-Zn SOD),

dehydrogenasesand Zn-finger structural domains that mediate

transcriptionfactorsbindingtoDNA[2].

IthasbeenfoundthatZndeficiencyis themostwidespread

micronutrientdeficiency. Zndeficiencyin plantsoccurs insoils

Abbreviations:AA,aminoacid;Arg,arginine;Asn,asparagine;Asp,asparticacid; Cu-ZnSOD,Cu-Zn-superoxidedismutase;GB,glycinebetaine;GDH,glutamate dehy-drogenase;GGAT,glutamate:glyoxylateaminotransferase;Gln,glutamine;Glu, glutamate;Gly,glycine;GO,glyoxylateoxidase;GOGAT,glutamatesynthase;GS, glutaminesynthetase;His,histidine;HR,hydroxypyruvatereductase;NiR,nitrite reductase;NR,nitratereductase;Pro,proline;ROS,reactiveoxygenspecies;Ser, serine;Tyr,tyrosine.

∗ Correspondingauthor.

E-mailaddress:enleon@ugr.es(E.Navarro-León).

with low concentration of available Zn, found in many world

regions[3].ExternalsymptomsoccurringinplantswithZndeficit

are observed mainly in leaves and usually consist of reduced

biomass,internervialchlorosis,necroticspots,browning,rosette

disposal,smallanddeformedleaves,andgrowthdelay[4].Asa

resultofZndeficiencyseveralchangesinphysiologicalprocesses

occur: reduction in photosynthesis, glycolysis,starch synthesis,

protein synthesis activity, membranes destabilization and also

floweringandseedproductionareaffected[5].Besidesthese

pro-cesses,underZndeficiencynitrogen(N)metabolismisalteredand

itwasfoundthatNO3−absorptionisreducedandthereforetheir

concentrationintheplant[6].

N metabolismplays an essential role in plants and changes

in theiravailabilityand theirmetabolismcouldseriouslyaffect

cropproductivity[7,8].In this regard, severalresearchers have

demonstratedadirectrelationshipbetweenNO3−concentration

andbiomassproductionandthesamerelationshipoccursbetween

biomassandfoliarN[9,10].Furthermore,asdescribedlater,the

degreeofsensitivitytoZndeficiencycanbecorrelatedwiththe

alterationofNreduction and assimilationand theformationof

protectiveNcompoundsagainststressconditions.

http://dx.doi.org/10.1016/j.plantsci.2016.04.002

(2)

NO3−isthemainNsourceforplantsinmostagriculturalsoils.

Itisabsorbedbyrootsandtransportedtoleaves,whereitgivesrise

toassimilationproductsasaminoacids(AAs)andproteins,needed

forbiomassproduction[11].NO3−isreducedtoNH4+bynitrate

reductase(NR)andnitritereductase(NiR)enzymes.

Photorespira-tionisaprocessthatalsoproducessignificantamountsofNH4+and

isessentialformaintainingtheadequateNlevelintheplant[12].It

involvesseveralenzymesfromdifferentorganellesincluding

gly-oxylateoxidase(GO)(EC.1.2.3.5)andglyoxylateaminotransferase

(GGAT)(EC.2.6.1.4)inperoxisomesandhydroxypyruvatereductase

(HR)(EC.1.1.1.81)inmitochondria.InadditiontoprovidingNH4+,

photorespirationprovidesmetabolitesforotherprocesses,protects

againstphotoinhibitionandagainstdifferenttypesofstress[13].

OnceproducedNH4+ismainlyassimilatedintoorganicformby

twoenzymes:glutaminesynthetase(GS)(EC6.3.1.2)andglutamate

synthase(GOGAT)(EC1.4.1.13)thatproduceglutamine(Gln)and

glutamate(Glu)respectively,andtheyaretheprecursorsforthe

synthesisofotherAAs,nucleicacids,polyaminesandchlorophylls.

Ontheotherhandglutamatedehydrogenase(GDH)(EC1.4.1.2)can

alsoassimilateNH4+whenitishighconcentratedinplants[14].

There are few studies about how Zn deficiency affects N

metabolismdescribedabove.HarperandPaulsen[15]inan

exper-iment in wheat plants grown under Zn deficiency observed a

decreaseinNO3− reductionandtheysuggestedthatitwasdue

tothelowerNO3−contentinZndeficientplantsastheseabsorb

itlessthancontrolplants.However,thiseffectonNmetabolism

didnot resultin alowerconcentrationofassimilationproducts

neitherproteinsintheplant.SeethambaramandDas[16],inrice

andmilletplants,observedthatZndeficiencydecreasedNR

activ-ityin both species.Nevertheless, NH4+ assimilation(GS/GOGAT

cycle)wasreducedonlyinmilletandthereforeinthisspeciesa

decreaseinAAsandproteinsconcentrationsandalsoingrowth

wasproduced.Furthermore,Zndeficiencyincreased

photorespi-rationinriceplants.TheauthorssuggestthatGS/GOGATcycleis

maintainedinriceplantstoremovetheNH4+excessproducedin

photorespiration,whichcouldbetoxictoplants.Thisagreeswith

observationsbyKitagishiandObata[17]inricemeristemsinwhich

aNH4+ accumulationoccurred,probablyasaresultof

photores-pirationincrease.Inthisworkareductioninproteincontentand

biomasswasobserved,althoughtheNH4+assimilationprocesswas

notaffectedasitincreasedtheAAsconcentrationbeingthedirect

productsofthisprocess.

Besidesitsimportanceinprimarymetabolism,protective

sec-ondarycompoundssuchasproline(Pro)andglycinebetaine(GB)

canbesynthesizedfrom N,and theyact ascompatible organic

solutesthatarenotnormallytoxicathighconcentrationsinthecell

[18].Thesecompoundscanprotectplantsagainststressby

adjust-ingosmoticpotential,detoxifyingreactiveoxygenspecies(ROS),

protectingmembraneintegrityandstabilizingenzymesand

pro-teins[19].However,dependingonthespeciestheaccumulationof

thesecompoundsmaybeonlyindicativeandnotstresstolerance

mechanism[20].

Proisthemostdetectableosmolyteinplantcellsinresponse

toabioticstressandissynthesizedfromGlu,sotheirsynthesisis

closelyrelatedtoNmetabolism[21].ProimportanceunderZn

defi-ciencyconditionsseemstodependonthespeciesstudied.Thus,in

redcabbageplants(B.oleracea)it hasbeenfoundthatPro

con-centrationincreasedunderZndeficiency.Although thisdidnot

increaseplanttolerancetoZndeficit,asthere isaconsiderable

biomassreduction,butitincreasedtheplanttolerancetodrought

stress[22].Inanotherexperimentconductedinriceplantsgrown

underZndeficiencyconditionsProconcentrationswasfivetimes

higher than in control plants. Thishigher concentration of Pro

improvedinthiscaseZndeficittoleranceandauthorspostulated

thatthiscouldbeduetotheenhancerProfunctionoftheplant

antioxidantsystem[23].Neverthelessinanotherstudywith

Phase-olusvulgarisplantsalowerProconcentrationwasobservedinZn

deficientleavesandthisAAincreaseswithincreasingZn

concen-tration,sointhisexperimentProdidnotimproveZndeficiency

tolerance[24].

IthasbeenshownthatbothexogenousGBsupplyandenhanced

plantbiosynthesisbygeneticengineeringcanincreasethe

toler-anceofplantstoabioticstress[25].InGBsynthesisSerproduced

inphotorespiratorycyclebecomesethanolamineand thisforms

choline,whichisthebasisforGBsynthesisinthechloroplast[26].

IthasbeenobservedthatGBlevelsinplantsincreasesunder

vari-ousabioticstresses[27].However,therearenostudiestoestablish

thepossiblerelationshipbetweenZndeficiencyandGB

concentra-tioninplants.Previousworksbyourresearchgrouphaveshown

thatLactucasativaandBrassicaoleraceahavedifferentlevelsof

tol-erancetoZntoxicityandshoweffectsonNmetabolismandinthe

synthesisandaccumulationofProandGB,beingGBagood

indi-catorofthisstresstypeinL.sativa[28].Althoughacomparative

analysisofthesespeciesunderZndeficiencyconditionshasnotyet

beenstudied.

Lettuce (L. sativa cv. Phillipus) and cabbage (B. oleracea cv.

Bronco)aretwoleafyvegetablesofgreatagronomicinterestwith

alargeproductioninthelastyears.Thesearetwoleafyvegetables

consumedworldwideassalads.ThemainproducersareChinaand

India(http://faostat.fao.org),countrieswhereZndeficiencyisone

ofthemajorproblemsintheircrops[4].Inshort,themain

objec-tiveofthisworkwastoperformacomparativeanalysisofdifferent

strategiesagainstZndeficiencybetweenthesetwospecies.

2. Materialsandmethods

2.1. Plantmaterial,growthconditionsandtreatments

L. sativa cv. Phillipus and B. oleracea cv. Bronco seeds

were germinated and grown for 30days in cell flats (cell

size=3cm×3cm×10cm) filled with perlite mixture, and flats

were placed on benches in an experimental greenhouse in

southern Spain (Granada, Motril, Saliplant S.L.). The

30-day-old seedlings were transferred to a growth chamber under

controlled environmental conditions with a relative humidity

of 60–80%, temperature of 22/18◦C (day/night) and 12/12-h

photoperiod at a photosynthetic photon flux density (PPFD)

of 350␮molm−2s−1 (measured at the top of plants with a

190 SB quantum sensor, LI-COR Inc., Lincoln, NE, USA). Plants

weregrowninhydroponiccultureinlightweightpolypropylene

trays(60cm diametertop, bottomdiameter 60cm and 7cm in

height) with a volume of 3l. Throughout the experiment the

plants received a growth solution composed of 4mM KNO3,

3mMCa(NO3)2·4H2O,2mMMgSO4·7H2O,1mMKH2PO4,1mM

NaH2PO4·2H2O,2␮MMnCl2·4H2O,0.25␮MCuSO4·5H2O,0.1␮M

Na2MoO4·2H2O,5ppm,Fe-chelate(Sequestrene;138FeG100)and

10␮M H3BO3.Thissolution,withapHof5.5–6.0,waschanged

everythreedays.Treatmentswereinitiated30daysafter

germi-nationandweremaintainedfor21days.Plantsweregrownwith

differentZndoses:10␮MofZnSO4ascontroland0.01␮MofZnSO4

as deficiency treatment. The shape of theexperimental design

consistedofrandomizedcompleteblockwithfourtreatments(L.

sativa-control,B.oleracea-control,L.sativa-0.01␮MZn,B.

oleracea-0.01␮MZn),eightplantspertreatmentandthreereplicationseach.

2.2. Plantsampling

Plantsofeach treatmentweredividedintoroots andleaves,

washedwithdistilledwater, driedonfilterpaperandweighed,

therebyobtainingfreshweight(FW).Halfoftherootsandleaves

(3)

Table1

RootandleafbiomassandZnconcentrationinL.sativaandB.oleraceaplantssubmittedtoZndeficiency.

Znfoliarconcentration(␮gg−1PS) Leafbiomass(gDW/plant) Rootbiomass(gDW/plant)

L.sativa Control 44.58±0.18 4.12±0.07 0.16±0.01 0.01␮MZn 35.80±1.50 3.16±0.03 0.07±0.01 p-value ** *** *** LSD0.05 4.20 0.20 0.03 B.oleracea Control 50.49±3.17 3.61±0.02 0.21±0.01 0.01␮MZn 16.36±4.36 2.91±0.13 0.13±0.00 p-value ** ** *** LSD0.05 14.97 0.34 0.03 Analysisofvariance Doses(D) *** *** *** Especies(E) * *** *** D×E ** NS NS LSD0.05 6.46 0.18 0.02

Valuesaremeans±S.E.(n=9)anddifferencesbetweenmeanswerecomparedbyFisher´sleast-significancetest(LSD;P=0.05).Thelevelsofsignificancewererepresented byp>0.05:ns(notsignificant).

* p<0.05. ** p<0.01. ***p<0.001.

biochemicalassaysandtheotherhalfoftheplanmaterialsampled

waslyophilicedtoobtainthedryweight(DW)andthesubsequent

analysisofZn,NO3−,NH4+,totalreducedNandGBconcentrations.

2.3. AnalysisofZnandNforms

FortheZnconcentrationdetermination,asampleof150mgdry

materialwassubjectedtoaprocessofmineralizationwithsulfuric

acidandH2O2bythemethodofWolf[29],thenZnconcentration

wasdeterminedbyICP-MS.

NO3−wasanalyzedfromanaqueousextractionof0.1gofDW

in10mlofMillipore-filteredwater.A100-␮laliquotwastakenfor

NO3−determinationandaddedto10%(w/v)salicylicacidinsulfuric

acidat96%,measuringtheNO3−concentrationby

spectrophotom-etryasperformedbyCataldoetal.[30].NH4+wasanalyzedfrom

anaqueousextractionandwasdeterminedbyusingthe

colorimet-ricmethoddescribedbyKrom[31].TotalreducedNconcentration

wasanalyzedfromdigestedsamples.A1-mlaliquotofthedigest

wasaddedtothereactionmediumcontainingbuffer(5%potassium

sodiumtartrate,100␮Msodiumphosphate,and5.4%w/vsodium

hydroxide),15%/0.03%(w/v)sodiumsilicate/sodiumnitroprusside,

and5.35%(v/v)sodiumhypochlorite.Sampleswereincubatedat

37◦Cfor15min,andorganicNwasmeasuredby

spectrophotom-etryaccordingtothemethodofBaethgenandAlley[32].

2.4. Enzymeextractionsandassays

Leavesweregroundinamortarat0◦Cin50mMKH2PO4buffer

(pH7.5)containing2mMEDTA,2mM dithiothreitol(DTT),and

1%(w/v)insolublepolyvinylpolypyrrolidone.Thehomogenatewas

filteredand thencentrifuged at30,000g for20min.The

result-ingextract(cytosolandorganellefractions)wasusedtomeasure

enzymeactivityofNR,GOGAT,andGDH.Theextractionmedium

wasoptimizedfortheseenzymeactivitiessothattheycouldbe

extractedtogetheraccordingtothesamemethod[33–35].

TheNRassayfollowed themethodology ofKaiserandLewis

[34].TheNO2−formedwascolorimetricallydeterminedat540nm

after azocoupling with sulfanilamide and

naphthylethylenedi-aminedihydrochlorideaccordingtothemethodofHagemanand

Hucklesby[36].

GOGATactivitywasassayedspectrophotometricallyat30◦Cby

monitoringtheoxidationofNADHat340nm,essentiallyas

indi-catedbyGroatandVance[33]andSinghandSrivastava[35],always

within2hofextraction.Thedecreaseinabsorbancewasrecorded

for5min.

GDH activity was assayed by monitoring the oxidation of

NADHat340nm,essentiallyasindicatedbyGroatandVance[33]

andSinghandSrivastava[35].Thereactionmixtureconsistedof

50mMKH2PO4buffer(pH7.5)with200mMNH4sulfate,0.15mM

Table2

ResponseofNO3−reductionandNH4+concentrationinL.sativaandB.oleracealeavessubmittedtoZndeficiency.

NO3−(mgg−1DW) NR(␮MNO2mgprot−1min−1) NH4+(mgg−1DW) L.sativa Control 94.47±1.15 0.49±0.01 2.16±0.05 0.01␮MZn 100.56±0.96 0.23±0.01 2.01±0.07 p-value *** *** NS LSD0.05 3.17 0.03 0.18 B.oleracea Control 104.26±1.48 1.71±0.03 1.85±0.09 0.01␮MZn 85.29±0.94 1.30±0.13 2.25±0.05 p-value *** *** ** LSD0.05 3.72 0.12 0.21 Analysisofvariance Doses(D) *** *** NS Especies(E) * *** NS D×E *** * *** LSD0.05 2.35 0.06 0.13

Valuesaremeans±S.E.(n=9)anddifferencesbetweenmeanswerecomparedbyFisher´ısleast-significancetest(LSD;P=0.05).Thelevelsofsignificancewererepresented byp>0.05:ns(notsignificant).

* p<0.05. ** p<0.01. ***p<0.001.

(4)

Table3

ResponseofsomephotorespirationenzymesinL.sativaandB.oleracealeavessubmittedtoZndeficiency.

GO(Absmgprot-1min-1) GGAT(Absmgprot−1min−1) HR(Absmgprot-1min-1)

L.sativa Control 0.003±0.00 0.01±0.00 0.86±0.03 0.01␮MZn 0.01±0.00 0.03±0.00 0.80±0.03 p-value *** *** NS LSD0.05 0.00 0.00 0.08 B.oleracea Control 0.005±0.00 0.02±0.00 0.88±0.01 0.01␮MZn 0.01±0.00 0.05±0.00 0.92±0.02 p-value *** *** NS LSD0.05 0.00 0.00 0.04 Analysisofvariance Doses(D) *** *** NS Especies(E) *** *** ** D×E * *** * LSD0.05 0.00 0.00 0.05

Valuesaremeans±S.E.(n=9)anddifferencesbetweenmeanswerecomparedbyFisher´ısleast-significancetest(LSD;P=0.05).Thelevelsofsignificancewererepresented byp>0.05:ns(notsignificant).

*p<0.05. **p<0.01. ***p<0.001.

NADH,2.5mM2-oxoglutarate,andenzymeextract.Thedecrease

inabsorbancewasrecordedfor3min.

FortheGOdetermination,freshleaftissue(0.25g)wasground

inachilledmortarwithPVPPand1mlof50mMTris–HClbuffer(pH

7.8)with0.01%TritonX-100and5mMDTT.Thehomogenatewas

centrifugedat30,000gfor20min.Thesupernatantwasdecanted

andimmediatelyusedfortheenzymeassay.GOwasassayedas

describedbyFeierabendandBeevers[37]withmodifications.A

vol-umeofassaymixturecontaining50mMTris–HClbuffer(pH7.8),

0.009%TritonX-100,3.3mMphenylhydrazineHCl(pH6.8),50␮l

plantextract,and5mMglycolicacid(neutralizedtopH7withKOH)

wasusedtostartthereaction.GOactivitywasdeterminedby

fol-lowingtheformationofglyoxylatephenylhydrazoneat324nmfor

2minafteraninitiallagphaseof1min.

Fordetermination ofGGATand HR,leavesweregroundin a

chilledmortarin100mMTris–HClbuffer(pH7.3)containing0.1%

(v/v) Triton X-100 and 10mM DTT. The homogenatewas

cen-trifugedat20,000gfor10min.Theresultingextractwasusedto

measureenzymeactivity.Theextractionmediumwasoptimized

fortheenzymeactivitiessuchthattheycouldbeextractedtogether

usingthesamemethod[38].

GGAT activity was measured by coupling the reduction of

2-oxoglutaratebyNADHinareactioncatalyzedbyGDH.The

reac-tionwasassayedin amixturecontaining100mMTris–HCl(pH

7.3),20mMglutamate,1mMglyoxylate,0.18mMNADH,0.11mM

pyridoxal-5-phosphate,83mMNH4Cl,and0.3UGDHinafinal

vol-umeof0.6ml[39].

HRassaywasperformedwith100mMTris–HCl(pH7.3),5mM

hydroxypyruvate,and0.18mMNADH.Activitywasassayed

spec-trophotometricallybymonitoringNADHoxidationat340nm[38].

GSwasdeterminedbyanadaptationofthehydroxamate

syn-thetaseassay publishedby Kaiser and Lewis [34]. Leaveswere

groundinamortarat0◦Cin50mlmaleicacid-KOHbuffer(pH6.8)

containing100mMsucrose,2%(v/v)␤-mercaptoethanol,and20%

(v/v)ethyleneglycol.Thehomogenatewascentrifugedat30,000g

for20min.Theresultingextractwasusedtomeasureenzyme

activ-ityofGS.ThereactionmixtureusedintheGSassaywascomposed

of100mMKH2PO4buffer(pH7.5)with4mMEDTA,1000mMl

-sodiumglutamate,450mMMgSO4·7H2O,300mMhydroxylamine,

100mM ATP,andenzyme extract.Twocontrolswereprepared,

onewithoutglutamineandtheotherwithouthydroxylamine.After

incubationat28◦Cfor30min,theformationof

glutamylhydroxa-matewascolorimetricallydeterminedat540nmaftercomplexing

withacidifiedferricchloride[40].

The protein concentration of the extracts was determined

accordingtothemethodofBradford[41]usingbovine-serum

albu-minasthestandard.

2.5. ProandGBdetermination

For thedetermination of theProconcentration, leaveswere

homogenized in 5ml of ethanol at 96%. Insolublefraction was

washedwith5mlofethanolat70%.Theextractwascentrifuged

at3500gfor10minandthesupernatantwaspreservedat4◦Cfor

prolinedetermination[42]:a1mlaliquotofthesupernatantwas

takenand,afteraddingreactiveninhydrinacidreagent(ninhydrin,

phosphoricacid6M,glacialaceticacid60%)andglacialaceticacid

at99%(2.5ml),wasplacedinawaterbathat100◦C.After45min,

thetubeswerecooledonice,and 5mlofbenzenewereadded.

After5–10mintheabsorbanceoftheorganicphasewasmeasured

at515nm.

GBconcentrationwasdeterminedbythemethodofGrieveand

Grattan[43].GBwasextractedfrom38mgofdryplantmaterialin

1.5mlofdistilledwatergentlyshakingfor24h.Extractwasfiltered

andadded2mlof2NH2SO4,thesolutionwasincubated16hat4◦C

andthencentrifugedat9000g15minat0◦C.Thepelletobtained

bycentrifugationwasresuspendedin1,2dichloroethane.After2h

theGBcontentwasmeasuredbyreadingabsorbanceat365nm,

andquantifiedusingastandardcurveofGB.

2.6. Aminoaciddetermination

SolubleAAswereextractedin1mlof80%ethanol,leftfor30min

at 4◦C and centrifuged. The supernatant was filtered through

Waters Sep-Pak C18 Light Cartridges.An aliquot (50␮l) of the

extractwasderivatizedfor1minwithoPAandseparatedbyHPLC

forAAanalysis.ChromatographicequipmentwasfromGilson.The

oPA derivatives wereseparated ona reverse-phase C18

ultras-pherecolumn(250mm×4.6mm).SolventAconsistedof50mM

NaOAc(pH7)plus1%tetrahydro-furaneandsolventBwas

abso-lutemethanol(CarloErba).Asample(20␮l)ofthemixturewas

injectedandelutedataflowrateof1mlmin−1.TheelutedoPA

derivativesweredetectedbyafluorometerdetector(model121;

GILSON).QuantificationofsingleAAswasmadeagainstarelative

(5)

Table4

ResponseofenzymesresponsibleforNH4+assimilationandconcentrationoftotalreducedNinL.sativaandB.oleracealeavessubmittedtoZndeficiency.

GS(␮Mglutamylhydroxamate mgprot−1min−1)

GOGAT(Absmgprot−1min−1) GDH(Absmgprot−1min−1) TotalreducedN(mgg−1PS)

L.sativa Control 15.04±0.58 1.32±0.06 1.00±0.09 44.12±2.07 0.01␮MZn 2.62±0.31 0.56±0.05 0.17±0.01 44.98±1.87 p-value *** *** *** NS LSD0.05 1.39 0.16 0.19 5.91 B.oleracea Control 11.07±0.38 1.35±0.06 4.25±0.14 24.36±1.40 0.01␮MZn 6.67±0.21 0.45±0.04 0.26±0.03 17.07±0.64 p-value *** *** *** *** LSD0.05 0.91 0.14 0.31 3.26 Analysisofvariance Doses(D) *** *** *** NS Especies(E) NS NS *** *** D×E *** NS *** * LSD0.05 0.8 0.1 0.17 3.24

Valuesaremeans±S.E.(n=9)anddifferencesbetweenmeanswerecomparedbyFisher´ısleast-significancetest(LSD;P=0.05).Thelevelsofsignificancewererepresented byp>0.05:ns(notsignificant).**p<0.01.

* p<0.05. ***p<0.001.

2.7. Statisticalanalysis

DataweresubjectedtoasimpleANOVAat95%confidence,using

theStatgraphicsCenturionXVIprogram.Atwo-tailedANOVAwas

appliedtoascertainwhetherthedosesofZnandthespecies

signif-icantlyaffectedtheresultsandmeanswerecomparedbyFisher’s

leastsignificantdifferences(LSD).Thesignificancelevelsforboth

analyseswereexpressedas*P<0.05,**P<0.01,***P<0.001,orNS

(notsignificant).

3. Results

3.1. BiomassandZnconcentration

ZndeficiencytreatmentcausedadecreaseinfoliarZn

concen-trationrelativetocontrolinbothL.sativaandB.oleracea,although

thisdecreasewasgreaterinB.oleracea(Table1).Plantssubjected

toZndeficiencyofbothspeciesshowedasignificantdecreasein

foliarandrootbiomassdue tothelowerconcentrationofZnin

theplant(Table1).Theshootbiomasswasreducedequallyinboth

species,althoughthereductioninrootbiomasswasgreaterinL.

sativaplantsovercontrolwithoutZndeficiency(Table1).

3.2. ProductionofNH4+:NO3reductionandphotorespiration

NO3− concentrationshowedopposite trendsin both species

underZndeficiency.WhileinL.sativawasincreasedrelativeto

controlinB.oleraceawasreduced(Table2).NRactivitywaslower

comparedtocontrolsinbothspeciesunderZndeficiency(Table2),

beingthisreductionmostimportantinL.sativa.InL.sativaplants

NH4+concentrationdidnotdifferwithrespecttotheplants

with-outZndeficit,butinB.oleraceaplantsfoliarconcentrationofNH4+

increasedbyZndeficiency treatment(Table 2).Regarding

pho-torespiration,bothGOandGGATactivitiesincreasedinbothspecies

underZndeficitcomparedtocontrolplants(Table3).Therewere

nosignificantdifferencesfromcontrolsintheHRactivityinboth

species(Table3).

3.3. NH4+incorporationandassimilationproducts

GS,GOGATandGDHactivitiesdiminishedcompared to

con-trolsinplantsunderZndeficiencyinbothspecies(Table4).Total

reducedNconcentrationwasnotsignificantlyaffectedbyZn

defi-ciencytreatmentinL.sativa,whereasinB.oleraceawasreduced

comparedtoplantsnotsubjectedtoZndeficiency(Table4).

3.4. Nderivedprotectivecompounds

ZndeficiencyhadoppositeeffectsontheNderivedprotective

compoundsconcentrationinthetwospeciesanalyzed.Pro

concen-trationwasreducedbyZndeficiencytreatmentinL.sativa,while

inB.oleraceaincreasedcomparedtocontrols(Fig.1).GBlevels

fol-lowedthesametrendasthoseofPro,decreasinginL.sativaand

increasinginB.oleraceaplantsrespectGBlevelsofcontrolplants

(Fig.2).

Fig.1. EffectofZndeficiencyonProconcentrationinL.sativa(A)andB.oleracea(B)leaves.Columnsaremean±SE(n=9)anddifferencesbetweenmeanswerecompared usingFisher’sleast-significantdifferencetest(LSD;p=0.05).Asterisk(*)indicatessignificantdifferencewithcontrolgroups.

(6)

Fig.2.EffectofZndeficiencyonGBconcentrationinL.sativa(A)andB.oleracea(B)leaves.Columnsaremean±SE(n=9)anddifferencesbetweenmeanswerecompared usingFisher’sleast-significantdifferencetest(LSD;p=0.05).Asterisk(*)indicatessignificantdifferencewithcontrolgroups.

3.5. AAsconcentration

ZndeficiencytreatmentcausedagreatincreaseinGly

concen-trationsinL.sativaplants,buttherestoffreeAAsweredecreased

exceptSer withnodifferencesrespectcontrol plants (Table5).

RegardingB.oleraceaplants,alltheAAsanalyzedincreasedtheir

concentrationbyZndeficiencytreatment,exceptSerandGlywhose

valuesdidnotdifferfromcontrolplants(Table5).

4. Discussion

4.1. BiomassandZnconcentration

Oneof themostobvioussymptomsof Zndeficiency treated

plantsisthelossofbiomassasobservedincropplants like

let-tuce,tomato,potato,carrotandonion[4].ItwasobservedthatZn

deficiencyisthemostwidespreadmicronutrientdeficiencyinrice

anditsproducessignificantcroplosses[45].Inanexperimentwith

severalrice genotypesgrownin hydroponicswith0.1␮Mof Zn

plantswerestuntedandshoweda75%reductioninshootZn

con-centration[46].In anotherstudyB.oleraceaplantstreated with

2␮MofZnaftertwoweekswithoutZninthenutritivesolution,

foliarbiomassshowedreductionsofupto62%fromcontrolplants

[47].InourstudytheresultssuggestthatunderZndeficiency

condi-tionsL.sativaisabletoaccumulatehigherZnconcentrationsinthe

shoot(Table1).Infact,inZndeficientL.sativaplants,foliarZn

con-centrationreducedby20%whileinB.oleraceaplantsreductionwas

68%comparedtocontrols(Table1).However,thisunequal

reduc-tioninleafZnconcentrationcausedasimilarreductioninbiomass

inbothspeciesstudied,althoughtherewasagreaterreductionin

rootbiomassovercontrolinL.sativa(Table1).Therefore,L.sativa

iscapableofstoringZnintheshootgreaterextentthanB.oleracea,

nevertheless,deficiencyeffectsareobservedinthisspecies

mani-festedbyareductionofbiomass.Ontheotherhand,B.oleraceawas

unabletoaccumulateasmuchasZnL.sativabutitsreductionin

biomasswassimilartothatofthisspecie,suggestingthatB.oleracea

islesssensitivetoZndeficiencythanL.sativa.

4.2. NH4+production:NO3−reductionandphotorespiration

SeveralstudieshaveshownthatNO3−reductiontoNH4+hasa

directimpactonbiomassproduction[9,10].Inourstudythis

pro-cessisdiminishedinZndeficientplants,whichcouldbeareason

whythebiomassisreducedin theplantsstudied.Weobserved

thatNO3−concentrationincreasesslightlycomparedtocontrolin

ZndeficientL.sativaplants,whereasinB.oleraceaplantssubjected

tothesametreatmentdecreases(Table2).Furthermore,NRactivity

waslowerinbothspeciesunderZndeficiency,beingmore

signif-icantthereductioninL.sativawitha54%decreasecomparedto

thecontrolplants(Table2).ThelowerNO3−concentrationinZn

deficientL.sativaplantscanbeexplainedbythefactthatNO3−

absorptionisnotimpairedandNRactivityisdiminishedinthese

plants(Table2),asithasbeendemonstratedthatbyinhibitionof

NRactivityanaccumulationofNO3−mayoccurduetothe

decreas-ingrateofreductiontoNO2−[48].Furthermore,itwasfoundthat

NO3−concentrationcoulddecreaseinZndeficientplantsbecause

theseabsorbfewerthisnutrientthancontrolplants[15].Thiscould

becausedbytheimpairmentincellmembranepermeabilityand,

therefore, the impairment in NO3− absorption [49]. This could

explainthedecreaseinNO3−concentrationweobservedinZn

defi-cientB.oleraceaplantswithrespecttocontrolplants(Table2).In

addition,thatdecreaseinNO3−levelscouldexplainthelowerNR

activityintheseplants(Table2).HarperandPaulsen[15]observed

thesameresultsinwheatplantsunder Zndeficiency,theyhad

lowerNRactivityandtheysuggestedthatitwasduetothelower

NO3−concentrationintheseplantsbecauseitsabsorptionwasless

thanincontrolplantswithoutZndeficiency.Inanotherstudywith

riceandmilletplantsunderZndeficiencytheresearchersobserved

thatNRactivitywasreducedcomparedtothecontrolplants,with

thegreatestreductioninrice.Apossibleexplanationisthelackof

NADHproducedbyreducingphotosynthesisduetoZndeficiency,

affectinglesserextentmilletplantswithC4metabolism[16].

NH4+levelsshowednosignificantdifferencesfromtheL.sativa

control plantswhereas in B.oleracea wereincreasedby 22%in

Zndeficient plantswithrespect controlplants (Table 2).It has

beenfoundthatwhenphotorespiratoryprocessisactivecan

pro-ducemoreNH4+thanbyreducingNO3−andthereforeisessential

tomaintainNmetabolism[12].InourexperimentZndeficiency

causesanincreaseinphotorespiratorycycle,manifestedbyalarge

increaseinGOandGGATactivitiesregardingcontrolsinthetwo

speciesstudied(Table3).However,therewerenosignificant

dif-ferencesfromcontrolsintheHRactivityinbothspecies(Table3).

Comparingbothspecies,B.oleraceahashigherGGATandHR

activ-itieswithrespecttothecontrolsthatL.sativaplants(Table3).This

couldbeonereasonfortheB.oleraceagreaterresistanceagainstZn

deficit,sincegreaterphotorespirationactivitycanhelpinROS

elim-ination[12]. Asconsequenceof increasedphotorespirationrate

levelsofNH4+shouldbeincreasedontheplant,butthisonly

hap-pensinB.oleracea(Table2).InastudyconductedbySeethambaram

etal.[50]similarresultswereobservedinriceplantsbeingthat

Zndeficiencycausedanincreaseinthephotorespiratorycycleand

henceahigherrelease ofNH4+ bydecarboxylationofGlycould

compensatethedecreaseintheNO3−reduction.

4.3. NH4+incorporationandassimilationproducts

OnceNO3−isreducedtoNH4+thisisrapidlyassimilatedbecause

(7)

assimilationiscarriedoutmainlybytheGS/GOGATcyclethat

pro-ducesGluasaresultofprimaryassimilationofN[51].Inastudyof

milletplantsgrownunderZndeficiencyconditions,itwasobserved

thatGSandGOGATactivitiesweredecreased.Theauthors

postu-latedthatthiseffectwasduetothelackofATPforGSactivityand

thelackofreducedferredoxinforGOGATactivitythatoccursas

aresultofZndeficiency[16].Insimilarstudiesinriceplantsno

decreasewasobservedinGSandGOGATactivitiesbecause,

accord-ingtotheauthors,thereleaseofNH4+fromphotorespirationmust

bedetoxifiedandassimilatedbytheseenzymes[17,16].

According to our results, Zn deficiency adversely affects

GS/GOGATenzymeactivityinleavesofbothspecies(Table4).

How-everforGSactivity,thepercentage reductionrelativetocontrol

washigherinL.sativa,with83%reductionactivitywithrespectto

plantswithoutZndeficiency(Table4).IfincreasedlevelsofNH4+

fromphotorespirationisnotlinkedtoincreasedGS/GOGATactivity

canproduceatoxicbuildupofNH4+[8].InL.sativaNH4+

concentra-tionwasnotaffecteddespiteGSandGOGATactivitieswereaffected

byZnshortage(Table2).Thiscouldbeduetothegreaterdecrease

inNO3−reductionandsmallerincreaseinGGATactivityproduced

inthisspecies(Table3),resultinginalowerproductionofNH4+

inL.sativacomparedtoB.oleracea.Furthermore,asobservedin

Arabidopsisthaliana,L.sativaplantscouldcompartmentalizeNH4+

itselforasureaintherootcellsvacuolestoavoidtoxic

accumula-tioninleaves[52,53].

GDHenzymehasaminorroleinNH4+assimilation.However,

ithasbeenfoundthatthisenzymeismoreactivewhenthereis

ahigherNH4+concentrationincells[14].Inourexperiment,GDH

activityisheavilyreducedinbothspecies(Table4),with80%

reduc-tionin L.sativaand 90%in B.oleraceawithrespecttocontrols

(Table4).AlthoughNH4+ concentrationishigherinZndeficient

B.oleraceaplants(Table2),intheseplantsthereislessGDH

activ-ity(Table4).ThisisprobablybecauseZnisnecessaryfornormal

activityofthisenzyme[1].

TheresultofNH4+assimilationcanbequantifiedbyanalyzing

thetotalreducedN,whichisusuallytheproductofassimilationof

NandconsistsmainlyofAAsandproteins.Therefore,itisan

essen-tialparametertodeterminetheplantnutritionalstatus[10].Our

resultsshowthattotalreducedNconcentrationisnotaffected

sig-nificantlybyZndeficitinL.sativa,whileisreducedby30%compared

tocontrolinB.oleraceaplants(Table4).Thiscouldbeduetothe

lowerGS/GOGATactivitywhichoccursasaresultofZndeficiency.

However,wedidnotobservealowertotalNreducedconcentration

inZndeficientL.sativaplantsinspiteofthelowerGS/GOGAT

activ-ity(Table4).ApossibleexplanationcouldbethatGS/GOGATcycle

inrootsisnotaffectedtothesameextentasinleavesand

there-foreAAsproducedinrootwouldbetransportedtotheshootand

totalreducedNconcentrationwouldbemaintained.Ithasbeen

provedthatBoron(B)deficienttobaccoplantsareabletoinduce

theirGSandGOGATactivitiesinrootstodetoxifytheNH4+excess

producedduetoBdeficitstress[54].Furtherresearchwouldbe

neededinordertofindouthowZndeficiencyaffectsNmetabolism

inL.sativaroots.

4.4. Nderivedprotectivecompounds

N derived protective compounds act as organic compatible

solutesandnormallytheyarenottoxicathighconcentrationsin

thecell[18].Thesecompoundscanprotectplantsagainststressby

adjustingtheosmoticpotential,detoxifyingROS,protecting

mem-braneintegrityandstabilizingenzymesandproteins[19].Among

thesecompoundsareProandGB[21].

Accordingtoourresults,Zndeficiencycausesa65%decrease

inProconcentrationand39%decreaseinGBconcentrationinL.

sativaplantscomparedtocontrols(Figs.1Aand2A).Inastudy

inP.vulgarisplantsunderZndeficitalowerconcentrationofPro

wasalsoobservedinZndeficientleaves[24].Thiscouldbebecause

ZnaffectssomenecessaryprocessforProsynthesisinthisspecies.

OnepossibilitywouldbealowersynthesisofGluasaresultofthe

decreaseinGS/GOGATandGDHactivitiessinceGluisaprecursor

inProsynthesis.InB.oleraceaweobservetheoppositeeffectto

thatproducedinL.sativabecauseinplantsunderZndeficitProand

GBconcentrationincreaseby86%and287%respectivelycompared

tocontrols(Figs.1Band2B).Thisisconsistentwithwhatwas

observedincabbageplants(B.oleracea)[22]andriceplants[23]

inwhichProconcentrationincreaseovercontrolinZndeficient

plants.

ConsideringtheGBsynthesisrouteinplants,ifSeraccumulates

itwillenhanceGBsynthesis.Accordingtoourresults,B.oleracea

plantsunderZndeficiencyappropriateconditionsforSerbuilding

upexist:thereisanincreaseinGOandGGATactivitiesandalso

HRactivityisnotincreased(Table3)sohydroxypyruvate

accumu-latesandhenceSerwouldaccumulatetoo.Therefore,inB.oleracea

Proandespecially GBbuildupseemstobeamechanismfor Zn

deficiencytolerancebecausedespitehavinggreaterdecreaseon

Znconcentrationinleaves,comparedwithL.sativa,thebiomass

decreaseissimilartothatofthisspecies.

Table5

Responseoffoliaraminoacidsconcentration(␮molg-1FW)inL.sativaandB.oleracealeavessubmittedtoZndeficiency.

Arg Asn Asp Gln Glu Gly His Ser Tyr

L.sativa Control 2.52±0.03 2.93±0.06 3.05±0.09 5.11±0.10 4.85±0.12 0.23±0.00 0.36±0.02 1.70±0.09 0.18±0.00 0.01␮MZn 1.05±0.09 1.16±0.07 2.75±0.15 3.31±0.22 3.97±0.12 1.93±0.02 0.35±0.02 1.76±0.08 0.11±0.01 p-value *** *** NS ** ** *** NS NS *** LSD0.05 0.25 0.26 0.50 0.68 0.46 0.05 0.07 0.33 0.02 B.oleracea Control 0.39±0.04 0.94±0.01 1.81±0.1 2.37±0.01 3.87±0.17 0.23±0.00 0.23±0.02 3.58±0.08 0.34±0.00 0.01␮MZn 0.6±0.03 1.07±0.03 2.24±0.08 3.07±0.16 4.57±0.19 0.20±0.02 0.43±0.02 3.04±0.21 0.78±0.04 p-value * NS * ** NS NS ** NS *** LSD0.05 0.13 0.28 0.36 0.45 0.71 0.04 0.08 0.62 0.11 Analysisofvariance Doses(D) *** *** NS ** NS *** ** NS *** Especies(E) *** *** *** *** NS *** NS *** *** D×E *** *** * *** *** *** *** * *** LSD0.05 0.12 0.16 0.26 0.34 0.35 0.03 0.04 0.29 0.05

Valuesaremeans±S.E.(n=9)anddifferencesbetweenmeanswerecomparedbyFisher´ısleast-significancetest(LSD;P=0.05).Thelevelsofsignificancewererepresented byp>0.05:ns(notsignificant).

* p<0.05. ** p<0.01. ***p<0.001.

(8)

4.5. AAsconcentration

PreviousstudiesshowthatfreeAAsprofilechangeinplants

sub-mittedtoZndeficiency,inthissense,anincreaseinasparticacid

(Asp),asparagine(Asn)andGlnwasobservedinriceplantsandthis

increasewaslowerinZnefficientgenotypes[55].Inother

exper-imentscarriedoutintomato[56]andrice[17]grownunderZn

deficiencySer,AsnandGlnwerealsoaccumulated.Inour

exper-imentL.sativaplantsgrownunderZndeficiencyshoweda728%

increaseinGlyconcentrationrespectcontrolplants(Table5)and

thiscouldbeonereasonwhyL.sativacanaccumulateahigherZn

concentrationthanB.oleracea.Intwoindependentexperiments

carriedout in lettuce plantstreated withdifferentZn-AA

com-plexes,theresultsshowedthat Zn(Gly)2 complexes weremore

effectivepromotingtheplantgrowthandthiscomplexisoneofthe

mosthelpedtheZnaccumulationintheshoot[57,58].Thelower

arginine(Arg),Asn,GluandGlnconcentrationsmightbecausedby

thelowerNassimilationactivityinthisspeciesunderZndeficiency

(Table4).RespectingB.oleraceaplantswedidnotobserve

differ-encesinGlyconcentrationinZndeficientplantswithrespectto

control,butinthiscasehistidine(His)increasedby63%(Table5).

ThisAAhashighZnaffinityanditisimportantforZnhomeostasisin

anotherBrassicaceaespecieslikeThlaspicaerulescens[59],although

inourexperimentHisdidnothelptoaccumulatemoreZn.

Further-moreintheseplantstyrosine(Tyr)increasedby94%(Table5)and

thiscanbeexplainedbyanactivationofTyrmetabolismcaused

byZndeficiencytosynthesisetocopherolantioxidants[60].Finally

Gln,AspandArgwereincreasedbyZndeficiencyinB.oleracea

plants(Table5).ThesearetransportAAsandtheyareoften

pro-ducedactivelyasaresultofNH4+increaseinleavesasweobserved

inourB.oleraceaplantsgrownunderZndeficiency(Table2)to

avoidNH4+excessinleaves[61].

5. Conclusions

TheresultsshowthatZndeficiencynegativelyaffectsbothNO3−

reduction andNH4+ assimilation,enhancephotorespirationand

changethefreeAAsprofileinthetwospeciesstudied.According

toourresults,L.sativawouldbemoresuitablethanB.oleraceafor

growinginsoilswithlowconcentrationand/oravailabilityofZn

sinceitisabletoaccumulateahigherZnconcentrationinleaves

likely due to a Gly accumulation and presents similarbiomass

reduction.However,B.oleraceaisabletoaccumulate Nderived

protectivecompoundstocopewithZndeficiencystress.Therefore

apossibilityinplantbreedingcouldbeperforminggenetic

manipu-lationtechniquestoinducegreaterproductionofsuchcompounds.

ThesetechniqueswouldbeparticularlyusefulinspeciessuchasL.

sativaabletoaccumulatemoreZnunderdeficiencyconditionsas

theywouldreducethebiomasslossproducedbyZndeficit.

Acknowledgments

ThisworkwasfinancedbythePAIprogram(PlanAndaluzde

Investigación,GrupodeInvestigaciónAGR161)andbyaGrantfrom

theFPUoftheMinisteriodeEducaciónyCienciaawardedtoENL.

References

[1]B.L.Vallee,D.S.Auld,Zinccoordination,function,andstructureofzinc enzymesandotherproteins,Biochemistry29(1990)5647–5659,http://dx. doi.org/10.1021/bi00476a001.

[2]T.C.Fox,M.L.Guerinot,Molecularbiologyofcationtransportinplants,Annu. Rev.PlantPhysiol.PlantMol.Biol.49(1998)669–696,http://dx.doi.org/10. 1146/annurev.arplant.49.1.669.

[3]M.Sillanpää,MicronutrientsandtheNutrientStatusofSoils:aGlobalStudy, Food&AgricultureOrg.,Rome,1982.

[4]B.J.Alloway,ZincinSoilsandCropNutrition,3rded.,InternationalZinc Association,Brussels,Belgium,2008.

[5]P.H.Brown,I.Cakmak,Q.Zhang,FormandFunctionofZincPlants,in:A.D. Robson(Ed.),Springer,Netherlands,1993,pp.93–106.

[6]A.D.Johnson,J.G.Simons,Diagnosticindicesofzincdeficiencyintropical legumes,J.PlantNutr.1(1979)123–149,http://dx.doi.org/10.1080/ 01904167909362705.

[7]W.R.Ullrich,Salinityandnitrogennutrition,in:A.Läuchli,U.Lüttge(Eds.), Salinity:Environment-Plants-Molecules.,Springer,Netherlands,2002,pp. 229–248.

[8]P.J.Lea,R.A.Azevedo,Nitrogenuseefficiency.1.Uptakeofnitrogenfromthe soil,Ann.Appl.Biol.149(2006)243–247, http://dx.doi.org/10.1111/j.1744-7348.2006.00101.x.

[9]C.T.MacKown,S.J.Crafts-Brandner,T.G.Sutton,Relationshipsamongsoil nitrate,leafnitrate,andleafyieldofburleytobacco,Agron.J.91(1999)613,

http://dx.doi.org/10.2134/agronj1999.914613x.

[10]J.Ruiz,L.Romero,Cucumberyieldandnitrogenmetabolisminresponseto nitrogensupply,Sci.Hortic.(Amsterdam)82(1999)309–316,http://dx.doi. org/10.1016/S0304-4238(99)00053-9.

[11]S.Sivasankar,A.Oaks,Nitrateassimilationinhigherplants:theeffectof metabolitesandlight,PlantPhysiol.Biochem.34(1996)609–620.

[12]A.Wingler,P.J.Lea,W.P.Quick,R.C.Leegood,Photorespiration:metabolic pathwaysandtheirroleinstressprotection,Philos.Trans.R.Soc.London.Ser. BBiol.Sci.355(2000)1517–1529,http://dx.doi.org/10.1098/rstb.2000.0712. [13]S.-W.Guo,Y.Zhou,Y.-X.Gao,Y.Li,S.Qi-Rong,NewInsightsintothenitrogen

formeffectonphotosynthesisandphotorespiration,Pedosphere17(2007) 601–610,http://dx.doi.org/10.1016/S1002-0160(07)60071-X.

[14]S.A.Robinson,A.P.Slade,G.G.Fox,R.Phillips,R.G.Ratcliffe,G.R.Stewart,The roleofglutamatedehydrogenaseinplantnitrogenmetabolism,PlantPhysiol. 95(1991)509–516.

[15]J.E.Harper,G.M.Paulsen,Nitrogenassimilationandproteinsynthesisin wheatseedlingsasaffectedbymineralnutrition.II.Micronutrients,Plant Physiol.44(1969)636–640,http://dx.doi.org/10.1104/pp.44.5.636. [16]Y.Seethambaram,V.S.R.Das,Effectofzincdeficiencyonenzymeactivitiesof

nitratereductionandammoniaassimilationofOryzasativaL.andPennisetum americanumL.,Leeke,Proc.IndianNatn.Sci.Acad.4(1986)491–496.

[17]K.Kitagishi,H.Obata,Effectsofzincdeficiencyonthenitrogenmetabolismof meristematictissuesofriceplantswithreferencetoproteinsynthesis,Soil Sci.PlantNutr.32(1986)397–405,http://dx.doi.org/10.1080/00380768.1986. 10557520.

[18]R.Serraj,T.R.Sinclair,Osmolyteaccumulation:canitreallyhelpincreasecrop yieldunderdroughtconditions?PlantCellEnviron.25(2002)333–341,

http://dx.doi.org/10.1046/j.1365-3040.2002.00754.x.

[19]H.J.Bohnert,R.G.Jensen,Strategiesforengineeringwater-stresstolerancein plants,TrendsBiotechnol.14(1996)89–97, http://dx.doi.org/10.1016/0167-7799(96)80929-2.

[20]C.F.deLacerda,J.Cambraia,M.A.Oliva,H.A.Ruiz,J.T.Prisco,Solute accumulationanddistributionduringshootandleafdevelopmentintwo sorghumgenotypesundersaltstress,Environ.Exp.Bot.49(2003)107–120,

http://dx.doi.org/10.1016/S0098-8472(02)00064-3.

[21]M.Ashraf,M.R.Foolad,Rolesofglycinebetaineandprolineinimproving plantabioticstressresistance,Environ.Exp.Bot.59(2007)206–216,http:// dx.doi.org/10.1016/j.envexpbot.2005.12.006.

[22]R.Hajiboland,F.Amirazad,DroughttoleranceinZn-deficientredcabbage (BrassicaoleraceaL.var.capitataf.rubra)plants,Hort.Sci.(Prague)37(2010) 88–98.

[23]S.Höller,M.R.Hajirezaei,N.Wirén,M.Frei,Ascorbatemetabolisminrice genotypesdifferinginzincefficiency,Planta239(2013)367–379,http://dx. doi.org/10.1007/s00425-013-1978-x.

[24]P.I.Michael,M.Krishnaswamy,Theeffectofzincstresscombinedwithhigh irradiancestressonmembranedamageandantioxidativeresponseinbean seedlings,Environ.Exp.Bot.74(2011)171–177,http://dx.doi.org/10.1016/j. envexpbot.2011.05.016.

[25]T.H.H.Chen,N.Murata,Enhancementoftoleranceofabioticstressby metabolicengineeringofbetainesandothercompatiblesolutes,Curr.Opin. PlantBiol.5(2002)250–257,

http://dx.doi.org/10.1016/S1369-5266(02)00255-8.

[26]S.D.McNeil,M.L.Nuccio,M.J.Ziemak,A.D.Hanson,Enhancedsynthesisof cholineandglycinebetaineintransgenictobaccoplantsthatoverexpress phosphoethanolamineN-methyltransferase,Proc.Natl.Acad.Sci.98(2001) 10001–10005.

[27]R.Storey,N.Ahmad,R.G.W.Jones,Taxonomicandecologicalaspectsofthe distributionofglycinebetaineandrelatedcompoundsinplants,Oecologia27 (1977)319–332,http://dx.doi.org/10.1007/BF00345565.

[28]V.Paradisone,Y.Barrameda-Medina,D.Montesinos-Pereira,L.Romero,S. Esposito,J.M.Ruiz,Rolesofsomenitrogenouscompoundsprotectorsinthe resistancetozinctoxicityinLactucasativacv.PhillipusandBrassicaoleracea cv.Bronco,ActaPhysiol.Plant.37(2015)1–8,http://dx.doi.org/10.1007/ s11738-015-1893-9.

[29]B.Wolf,Acomprehensivesystemofleafanalysesanditsusefordiagnosing cropnutrientstatus,Commun.SoilSci.PlantAnal.13(1982)1035–1059,

http://dx.doi.org/10.1080/00103628209367332.

[30]D.A.Cataldo,M.Maroon,L.E.Schrader,V.L.Youngs,Rapidcolorimetric determinationofnitrateinplanttissuebynitrationofsalicylicacid,Commun. SoilSci.PlantAnal.6(1975)71–80,http://dx.doi.org/10.1080/

(9)

[31]M.D.Krom,Spectrophotometricdeterminationofammonia:astudyofa modifiedBerthelotreactionusingsalicylateanddichloroisocyanurate, Analyst105(1980)305–316,http://dx.doi.org/10.1039/AN9800500305. [32]W.E.Baethgen,M.M.Alley,Amanualcolorimetricprocedureformeasuring

ammoniumnitrogeninsoilandplantKjeldahldigests,Commun.SoilSci.Plant Anal.20(1989)961–969,http://dx.doi.org/10.1080/00103628909368129. [33]R.G.Groat,C.P.Vance,Rootnoduleenzymesofammoniaassimilationin

alfalfa(MedicagosativaL.).Developmentalpatternsandresponsetoapplied nitrogen,PlantPhysiol.67(1981)1198–1203,http://dx.doi.org/10.1104/pp. 67.6.1198.

[34]J.J.Kaiser,O.A.M.Lewis,Nitratereductaseandglutaminesynthetaseactivity inleavesandrootsofnitrate-fedHelianthusannuusL,PlantSoil.77(1984) 127–130,http://dx.doi.org/10.1007/BF02182818.

[35]R.P.Singh,H.S.Srivastava,Increaseinglutamatesynthase(NADH)activityin maizeseedlingsinresponsetonitrateandammoniumnitrogen,Physiol. Plant.66(1986)413–416,http://dx.doi.org/10.1111/j.1399-3054.1986. tb05944.x.

[36]R.H.Hageman,D.P.Hucklesby,Nitratereductase,Meth.Enzym.23(1971) 497–503.

[37]J.Feierabend,H.Beevers,Developmentalstudiesonmicrobodiesinwheat leaves,Planta123(1972)63–77,http://dx.doi.org/10.1007/BF00388061. [38]M.Hoder,R.Rej,H.U.Berjmeyer,J.Berjmeyer,Alanineaminotransferase,in:

M.Gral(Ed.),Chemie,Weinhein,1983,pp.444–456.

[39]D.Igarashi,H.Tsuchida,M.Miyao,C.Ohsumi,Glutamate:glyoxylate aminotransferasemodulatesaminoacidcontentduringphotorespiration, PlantPhysiol.142(2006)901–910,http://dx.doi.org/10.1104/pp.106.085514. [40]R.M.Wallsgrove,P.J.Lea,B.J.Miflin,Distributionoftheenzymesofnitrogen

assimilationwithinthepealeafcell,PlantPhysiol.63(1979)232–236,http:// dx.doi.org/10.1104/pp.63.2.232.

[41]M.M.Bradford,Arapidandsensitivemethodforthequantitationof microgramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding, Anal.Biochem.72(1976)248–254, http://dx.doi.org/10.1016/0003-2697(76)90527-3.

[42]J.J.Irigoyen,D.W.Einerich,M.Sánchez-Díaz,Waterstressinducedchangesin concentrationsofprolineandtotalsolublesugarsinnodulatedalfalfa (Medicagosativa)plants,Physiol.Plant.84(1992)55–60,http://dx.doi.org/10. 1111/j.1399-3054.1992.tb08764.x.

[43]C.M.Grieve,S.R.Grattan,Rapidassayfordeterminationofwatersoluble quaternaryammoniumcompounds,PlantSoil.70(1983)303–307,http://dx. doi.org/10.1007/BF02374789.

[44]A.Rogato,E.D’Apuzzo,A.Barbulova,S.Omrane,A.Parlati,S.Carfagna,A. Costa,F.L.Schiavo,S.Esposito,M.Chiurazzi,Characterizationofa

developmentalrootresponsecausedbyexternalammoniumsupplyinLotus japonicus,PlantPhysiol.154(2010)784–795,http://dx.doi.org/10.1104/pp. 110.160309.

[45]H.U.Neue,R.S.Lantin,Micronutrienttoxicitiesanddeficienciesinrice,in:A.R. Yeo,T.J.Flowers(Eds.),SoilMiner.Stress.ApproachestoCropImprov., Springer,Berlin,Heidelberg,1994,pp.175–200,http://dx.doi.org/10.1007/ 978-3-642-84289-4.

[46]M.Wissuwa,A.M.Ismail,S.Yanagihara,Effectsofzincdeficiencyonrice growthandgeneticfactorscontributingtotolerance,PlantPhysiol.142 (2006)731–741,http://dx.doi.org/10.1104/pp.106.085225.

[47]R.Hajiboland,F.Amirazad,Growth,photosynthesisandantioxidantdefense systeminZn-deficientredcabbageplants,PlantSoilEnv.56(2010)209–217.

[48]I.Bonilla,C.Cadahía,O.Carpena,V.Hernando,Effectsofborononnitrogen metabolismandsugarlevelsofsugarbeet,PlantSoil.57(1980)3–9,http://dx. doi.org/10.1007/BF02139636.

[49]R.W.Welch,M.J.Webb,J.F.Loneragan,ZincinMembraneFunctionandIts RolePhosphorusToxicity,in:A.Scaife(Ed.),WarwickUniversity,UK,1982, pp.710–715.

[50]Y.Seethambaram,A.N.Rao,V.S.R.Das,Thelevelsofcarbonicanhydraseandof photorespiratoryenzymesunderzincdeficiencyinOryzasativaL.and PennisetumamericanumL.Leeke,Biochem.Physiol.Pflanz180(1985) 107–113,http://dx.doi.org/10.1016/S0015-3796(85)80062-7.

[51]B.Hirel,P.J.Lea,AmmoniaAssimilation,in:J.P.Lea,J.-F.Morot-Gaudry(Eds.), Springer,Berlin,Heidelberg,2001,pp.79–99.

[52]B.Li,G.Li,H.J.Kronzucker,F.Baluˇska,W.Shi,Ammoniumstressin Arabidopsis:signaling,geneticloci,andphysiologicaltargets,TrendsPlant Sci.19(2014)107–114,http://dx.doi.org/10.1016/j.tplants.2013.09.004. [53]A.Bittsánszky,K.Pilinszky,G.Gyulai,T.Komives,Overcomingammonium

toxicity,PlantSci.231(2015)184–190,http://dx.doi.org/10.1016/j.plantsci. 2014.12.005.

[54]V.M.Beato,J.Rexach,M.T.Navarro-Gochicoa,J.J.Camacho-Cristóbal,M.B. Herrera-Rodríguez,A.González-Fontes,Borondeficiencyincreases expressionsofasparaginesynthetase,glutamatedehydrogenaseand glutaminesynthetasegenesintobaccorootsirrespectiveofthenitrogen source,SoilSci.PlantNutr.60(2014)314–324,http://dx.doi.org/10.1080/ 00380768.2014.881706.

[55]M.T.Rose,T.J.Rose,J.Pariasca-Tanaka,T.Yoshihashi,H.Neuweger,A. Goesmann,M.Frei,M.Wissuwa,Rootmetabolicresponseofrice(Oryzasativa L.)genotypeswithcontrastingtolerancetozincdeficiencyandbicarbonate excess,Planta236(2012)959–973, http://dx.doi.org/10.1007/s00425-012-1648-4.

[56]J.Possingham,Theeffectofmineralnutritiononthecontentoffreeamino acidsandamidesintomatoplantsIAcomparisonoftheeffectsofdeficiencies ofcopperzinc,manganese,iron,andmolybdenum,Aust.J.Biol.Sci.9(1956) 539–551.

[57]S.Ghasemi,A.H.Khoshgoftarmanesh,M.Afyuni,H.Hadadzadeh,The effectivenessoffoliarapplicationsofsynthesizedzinc-aminoacidchelatesin comparisonwithzincsulfatetoincreaseyieldandgrainnutritionalqualityof wheat,Eur.J.Agron.45(2013)68–74,http://dx.doi.org/10.1016/j.eja.2012.10. 012.

[58]P.Mohammadi,A.H.Khoshgoftarmanesh,Theeffectivenessofsyntheticzinc (Zn)-aminochelatesinsupplyingZnandalleviatingsalt-induceddamageson hydroponicallygrownlettuce,Sci.Hortic.(Amsterdam)172(2014)117–123,

http://dx.doi.org/10.1016/j.scienta.2014.03.047.

[59]M.J.Haydon,C.S.Cobbett,Transportersofligandsforessentialmetalionsin plants,NewPhytol.174(2007)499–506, http://dx.doi.org/10.1111/j.1469-8137.2007.02051.x.

[60]H.Holländer-Czytko,J.Grabowski,I.Sandorf,K.Weckermann,E.W.Weiler, Tocopherolcontentandactivitiesoftyrosineaminotransferaseandcystine lyaseinArabidopsisunderstressconditions,J.PlantPhysiol.162(2005) 767–770,http://dx.doi.org/10.1016/j.jplph.2005.04.019.

[61]F.Potel,M.-H.Valadier,S.Ferrario-Méry,O.Grandjean,H.Morin,L.Gaufichon, S.Boutet-Mercey,J.Lothier,S.J.Rothstein,N.Hirose,A.Suzuki,Assimilationof excessammoniumintoaminoacidsandnitrogentranslocationinArabidopsis thaliana—rolesofglutamatesynthasesandcarbamoylphosphatesynthetase inleaves,FEBSJ.276(2009)4061–4076, http://dx.doi.org/10.1111/j.1742-4658.2009.07114.x.

Riferimenti

Documenti correlati

We present here a case of idiopathic male infertility who developed deep vein thrombosis (DVT) with the use of tamoxifen, a selective estrogen receptor modulator, probably through

The young pul- sars population has been modeled by following the method used for MSPs: we have derived the distributions for radial and vertical distances, spin period and

“Introduzione alla valutazione del capitale economico, criteri e logiche di stima”, Franco Angeli editore, 2000.. BIANCHI MARTINI S., CORVINO A., DONI F., GUIDI M., RIGOLINI A.,

Grafico 4 Distribuzione di ogni valore di Oto score Tutti i nostri pazienti sottoposti a trapianto di polmone sono stati infine valutati per il mismatch delle dimensioni

Nei sistemi ibridi, al sistema di accumulo è richiesto un rapporto P/E (potenza specifica/energia specifica) molto più marcato che nei BEV, quindi le batterie

On the other hand, the size of the experimental raw data (due to the required higher scan rates) and the resulting tables, due to the repetitive peak

Gain rescaling with full overlap of input–output functions (i.e., the disappearance of the difference between input– output functions [Figure 6D]) occurred only when input rescaling

Although a thorough interpretation of the current data would require more detailed information than the one currently made public by the experimental collaborations, we have designed