• Non ci sono risultati.

Well-posedness for the backward problems in time for general time-fractional diffusion equation

N/A
N/A
Protected

Academic year: 2021

Condividi "Well-posedness for the backward problems in time for general time-fractional diffusion equation"

Copied!
18
0
0

Testo completo

(1)

Partial Di¤erential Equations — Well-posedness for the backward problems in time for general time-fractional di¤usion equation, by Giuseppe Floridia, Zhiyuan L i and Masahiro Yamamoto, communicated on 28 April 2020.

Ab str act. — In this article, we consider an evolution partial di¤erential equation with Caputo time-derivative with the zero Dirichlet boundary condition: qtauþ Au ¼ F where 0 < a < 1 and the

principal partA, is a non-symmetric elliptic operator of the second order. Given a source F, we prove the well-posedness for the backward problem in time and our result generalizes the existing results assuming thatA is symmetric. The key is a perturbation argument and the completeness of the generalized eigenfunctions of the elliptic operator A.

Key wor ds: Fractional PDE, backward problem, well-posedness Mat hemat ics S ubject Cla ss i fica tion: 35R11, 34A12

1. Introduction and main results

Let W be a bounded domain in Rd with su‰ciently smooth boundary qW. Hence-forth let L2ðWÞ denote the real Lebesgue space with the scalar product ð ; Þ and the normk  k, and let H1ðWÞ, H1

0ðWÞ, H2ðWÞ be the Sobolev spaces (e.g., Adams [1]). BykukH2ðWÞ we denote the norm in H2ðWÞ for example.

We consider a fractional partial di¤erential equation:

qtauðx; tÞ ¼ Auðx; tÞ þ F ðx; tÞ; x a W; 0 < t < T; ujqW¼ 0; uðx; 0Þ ¼ aðxÞ; x a W: 8 < : ð1:1Þ

HereA is a uniformly elliptic operator and not necessarily symmetric. Through-out this article, we assume that 0 < a < 1, and the Caputo derivative qtag is defined by qtagðtÞ ¼ 1 Gð1  aÞ Z t 0 ðt  sÞadg dsðsÞ ds;

where G denotes the gamma function. It is known that there exists a unique solution u¼ uðx; tÞ to the initial boundary value problem (1.1) under suitable conditions on A, a and F , and we refer for example to Gorenflo, Luchko and Yamamoto [12], Kubica, Ryszewska and Yamamoto [17], Kubica and Yama-moto [18], Sakamoto and Yamamoto [23], Zacher [33], and also later as lemmata we will show the regularity.

(2)

Equation (1.1) describes slow di¤usion which can be considered as anomalous di¤usion in highly heterogeneous media and is di¤erent from the classical case of a¼ 1. In particular, the Caputo derivative is involved with memory term which possesses some averaging e¤ect, and so (1.1) has not strong smoothing property: for a a L2ðWÞ, we can expect only uð; tÞ a H2ðWÞ with each t > 0. This is an essential di¤erence from the case of a¼ 1.

Now we will formulate our problem and results. For v a H2ðWÞ; we set

AvðxÞ :¼ X d i; j¼1 qiðaijðxÞqjvÞðxÞ þ Xd j¼1 bjðxÞqjvðxÞ þ cðxÞvðxÞ; ð1:2Þ where aij¼ aji aC1ðWÞ; bj; c a C1ðWÞ; 1 a i; j a d and there exists a constant k > 0 such that

Xd i; j¼1 aijðxÞxixjbk Xd j¼1 xj2; x a W; x1; . . . ;xd aR: We consider qtauðx; tÞ ¼ Auðx; tÞ; x a W; 0 < t < T; ujqW¼ 0; uð; TÞ ¼ b 8 < : ð1:3Þ with b a H2ðWÞ B H1 0ðWÞ. We state our first main result.

Theorem 1.1. For each b a H2ðWÞ B H1

0ðWÞ, there exists a unique solution u a Cð½0; T; L2ðWÞÞ B Cðð0; T; H2ðWÞ B H1

0ðWÞÞ to (1.3) such that q a

tu a Cðð0; T; L2ðWÞÞ. Moreover we can choose constants C

1; C2>0 depending on T such that C1kuð; 0ÞkL2ðWÞakuð; TÞkH2ðWÞa C2kuð; 0ÞkL2ðWÞ:

ð1:4Þ

To the best knowledge of the authors, Sakamoto and Yamamoto [23] is the first work for the well-posedness of the backward problem in time for the case of symmetric A, that is, bjC0 for 1 a j a d. Moreover by a technical reason, [23] assumes that c a 0. As for backward problems for time-fractional equations with symmetric A, we can refer to many works: Liu and Yamamoto [19], Tuan, Huynh, Ngoc, and Zhou [24], Floridia and Yamamoto [34]. In particular, as for numerical approaches, see Tuan, Long and Tatar [25], Tuan, Thach, O’Regan, and Can [26]. Wang and Liu [27,28], Wang, Wei and Zhou [29], Wei and Wang [30], Xiong, Wang and Li [31], Yang and Liu [32] and the references therein. However, we do not find the results for non-symmetric A. Originally the

(3)

back-ward well-posedness comes from the time fractional derivative qta, and should not rely on the symmetry of the elliptic operator A, and Theorem 1.1 is a natural gen-eralization of the existing results since [23] to the case of a general uniform elliptic operator A. As is seen by the proof, we can further prove

Cor ollar y 1.2. In Theorem 1.1, for each distinct T1; T2 >0, there exist

con-tants C3 ¼ C3ðT1; T2Þ > 0 and C4¼ C4ðT1; T2Þ > 0 such that C3kuð; T2ÞkH2ðWÞakuð; T1ÞkH2ðWÞa C4kuð; T2ÞkH2ðWÞ:

Furthermore we can show also the backward well-posedness with the presence of a non-homogeneous term F . For the formulation, we introduce some function spaces. Let A0vðxÞ ¼ Xd i; j¼1 qiðaijðxÞqjvÞ; DðA0Þ ¼ H2ðWÞ B H01ðWÞ: ð1:5Þ

Then it is known that the specrum sðA0Þ consists entirely of eigenvalues with finite multiplicities and according to the multiplicities we number:

0 < l1al2al3<   : ð1:6Þ

Also we know that we can choose eigenfunctions jn for ln, n a N such that fjngn A N is an orthonormal basis in L2ðWÞ. Then we can define the fractional power A0g with g b 0: A0gv¼Pln¼1lngðv; jnÞjn; DðA0gÞ ¼ fv a L2ðWÞ; Pl n¼1l 2g n jðv; jnÞj 2 < lg; kA0gvk ¼ ðPn¼1l ln2gjðv; jnÞj 2 Þ12: 8 > < > : ð1:7Þ

We can refer for example to Pazy [20] and we can derive (1.7) directly from A0v¼ Xl n¼1 lnðv; jnÞjn; DðA0Þ ¼ v a L2ðWÞ; Xl n¼1 ln2jðv; jnÞj 2 < l ( ) : Moreover we know that DðA12

0Þ ¼ H01ðWÞ, DðA g 0Þ  H2gðWÞ. Henceforth we set kvkDðAg 0Þ ¼ kA g 0vk.

Now we are ready to state the well-posedness with non-homogeneous term.

The orem 1.3. Let F a Llð0; T; DðAe

0ÞÞ with some e > 0. For each b a H2ðWÞ B H1

0ðWÞ, there exists a unique solution u a Cðð0; T; H2ðWÞ B H1

(4)

to qtau¼ Au þ F ðx; tÞ; x a W; 0 < t < T ; ujqW¼ 0; uð; TÞ ¼ b 8 < :

and we can choose a constant C > 0 such that

kuð; 0Þk a Cðkuð; TÞkH2ðWÞþ kF kLlð0; T ; DðAe 0ÞÞÞ:

The article is composed of three sections. In Section 2, we show fundamental properties of the fractional di¤erential equations and Section 3 is devoted to the proofs of Theorems 1.1 and 1.3.

2. Preliminaries

Let us recall (1.5) and (1.6). For 0 < a < 1 and b > 0, by Ea; bðzÞ we denote the Mittag–Le¿er function with two parameters:

Ea; bðzÞ ¼ Xl k¼0

zk Gðak þ bÞ

(e.g., Podlubny [21]). Then Ea; bðzÞ is an entire function in z a C. We set

SðtÞa ¼X l n¼0 ða; jnÞEa; 1ðlntaÞjnðxÞ; t b 0 and KðtÞa ¼X l n¼0 ta1Ea; aðlntaÞða; jnÞjnðxÞ; t > 0 for a a L2ðWÞ.

Henceforth we write uðtÞ ¼ uð; tÞ, etc., and we regard u as a mapping defined inð0; TÞ with values in L2ðWÞ. Moreover uðtÞ a H1

0ðWÞ means uð; tÞ ¼ 0 on qW in the trace sense (e.g., [1]). Then we can see the following.

Le mma2.1. (i) There exists a constant C > 0 such that

kSðtÞak a Ckak; t b 0 ð2:1Þ

and

kA0SðtÞak a Ctakak; t > 0: ð2:2Þ

(5)

For 0 a g a 1, there exists a constant CðgÞ > 0 such that kA0gKðtÞak a CðgÞtað1gÞ1kak; t > 0: ð2:3Þ

(ii) Let G a Llð0; T; DðAe

0ÞÞ with some e > 0 and a a L2ðWÞ. Then

uðtÞ ¼ SðtÞa þ Z t 0 Kðt  sÞGðsÞ ds; t > 0 ð2:4Þ is in Cðð0; T; H2ðWÞ B H1 0ðWÞÞ and satisfies q a tu a L1ð0; T; L2ðWÞÞ, qtauðtÞ ¼ A0uðtÞ þ GðtÞ; t > 0; limt!0kuð; tÞ  ak ¼ 0; uð; tÞ a H1 0ðWÞ; 0 < t < T: 8 < : ð2:5Þ

(iii) For each t > 0, there exists a constant C > 0 such that kuðtÞkH2ðWÞa Cðtakak þ kA0eGkLlð0; T; L2ðWÞÞÞ:

Remark 1. We can prove stronger regularity of qa

tu but the lemma is su‰cient for our purpose.

Proo f (of Lemma 2.1). (i) We can refer to Gorenflo, Luchko and Yamamoto

[12], and for completeness we give the proof. First we note jEa; 1ðhÞj a

C

1þ h; h > 0 ð2:6Þ

(e.g., Theorem 1.6 (p. 35) in Podlubny [21]).

Sincefjngn A Nis an orthonormal basis in L2ðWÞ, by (2.6) we have kSðtÞak2 ¼X l n¼1 jða; jnÞj 2 jEa; 1ðlntaÞj2 aX l n¼1 jða; jnÞj 2 C 1þ jlntaj 2 a CX l n¼1 jða; jnÞj 2 ;

that is, (2.1) follows. Next, since A0SðtÞa ¼ Xl n¼1 ða; jnÞlnEa; 1ðlntaÞjn; again by (2.6) we see

(6)

kA0SðtÞak2 ¼ t2a Xl n¼1 jða; jnÞj 2 jlntaj2jEa; 1ðlntaÞj2 a Ct2aX l n¼1 jða; jnÞj 2 jlntaj 1þ jlntaj 2 ; t > 0; which implies (2.2). By (1.7), we have A0gKðtÞa ¼X l n¼1 ta1Ea; aðlntaÞlngða; jnÞjn; and so kA0gKðtÞak2a t2a2X l n¼1 C ð1 þ jlntajÞ2 ln2gjða; jnÞj 2 ¼ Ct2a2X l n¼1 ln2gt2ga ð1 þ jlntajÞ2 t2agjða; jnÞj 2 a Ct2ðaagÞ2sup xb0  xg 1þ x 2Xl n¼1 jða; jnÞj 2 :

By 0 a g a 1, we see that supxb01þxxg < l, and so (2.3) can be seen. Thus the proof of Lemma 2.1 (i) is complete.

(ii) In terms of e.g., Theorem 4.1 in [12] and Theorems 2.1 and 2.2 in [23], we already know some regularity of uðtÞ.

By Theorem 2.1 (i) in [23] or by (2.1), we can verify that SðtÞa a Cð½0; T; L2ðWÞÞ and lim

t!0kSðtÞa  ak ¼ 0. By (2.2), we see that

A0 XN

n¼1

ða; jnÞEa; 1ðlntaÞjn 

converges in Cð½d; T; L2ðWÞÞ as N ! l with arbitrarily fixed d > 0. Therefore A0SðtÞa a Cð½d; T; L2ðWÞÞ, which implies

SðtÞa a Cð½d; T; DðA0ÞÞ ¼ Cð½d; T; H2ðWÞ B H01ðWÞÞ: ð2:7Þ

Moreover, we can directly prove that qtaðEa; 1ðlntaÞÞ ¼ lnEa; 1ðlntaÞ, and obtain qtaSðtÞa ¼X l n¼1 qtaðEa; 1ðlntaÞÞða; jnÞjn¼ Xl n¼1 lnEa; 1ðlntaÞða; jnÞjn:

(7)

Hence, by (2.6) we see that kqtaSðtÞak 2 ¼X l n¼1 ln2jEa; 1ðlntaÞj2jða; jnÞj 2 ð2:8Þ ¼ t2aX l n¼1 ðlntaÞ2jEa; 1ðlntaÞj2jða; jnÞj 2 a Ct2aX l n¼1 jða; jnÞj 2 lnta 1þ lnta 2 a Ct2akak2 and qtaSðtÞa a Cðð0; T; L2ðWÞÞ: ð2:9Þ

By (2.3) with g¼ 0, we can easily verify that Z t 0 Kðt  sÞGðsÞ ds         a C Z t 0 ðt  sÞa1kGðsÞk ds a CkGkLlð0; T; L2ðWÞÞ ta a ! 0: Hence, with SðtÞa a Cð½0; T; L2ðWÞÞ, we see that lim

t!0kuðtÞ  ak ¼ 0. Moreover by Theorem 2.2 (i) in [23], we see

qtaZ t 0

Kðt  sÞGðsÞ ds aL2ðW  ð0; TÞÞ: This with (2.8), we obtain qtau a L1ð0; T; L2ðWÞÞ.

Now we will prove Z t

0

Kðt  sÞGðsÞ ds a Cðð0; T; H2ðWÞ B H1 0ðWÞÞ:

For arbitrarily fixed 0 < d0<d, we set vd0ðtÞ ¼

Z td0

0

A0Kðt  sÞGðsÞ ds; t b d: By (2.3) we can see that vd0 aCð½d; T; L

2ðWÞÞ. For d a t a T, by (2.3) we estimate Z t 0 A0Kðt  sÞGðsÞ ds  vd0ðtÞ         ¼ Z t td0 A0Kðt  sÞGðsÞ ds         ¼ Z t td0 A01eKðt  sÞA0eGðsÞ ds        

(8)

a C Z t td0 ðt  sÞae1kAe 0GðsÞk ds a CkAe 0GkLlð0; T; L2ðWÞÞ d0ae ae: Hence vd0 ! Z t 0 A0Kðt  sÞGðsÞ ds in Cð½d; T; L2ðWÞÞ as d0! 0, and by vd0 aCð½d; T; L 2ðWÞÞ, we conclude that Z t 0 Kðt  sÞGðsÞ ds a Cð½d; T; H2ðWÞ B H01ðWÞÞ for any d > 0, and then

Z t 0 Kðt  sÞGðsÞ ds a Cðð0; T; H2ðWÞ B H01ðWÞÞ: Consequently by (2.7), we obtain u a Cðð0; T; H2ðWÞ B H1 0ðWÞÞ. Finally, by (2.3) we have A0 Z t 0 Kðt  sÞGðsÞ ds         ¼ Z t 0 A01eKðt  sÞA0eGðsÞ ds         a C Z t 0 ðt  sÞae1kA0eGðsÞk ds a CkAe 0GkLlð0; T; L2ðWÞÞ tae ae:

With (2.2), the proof of the part (iii) is complete. Thus the proof of Lemma 2.1 is

complete. r Henceforth we set BvðxÞ ¼X d j¼1 bjðxÞqjvðxÞ þ cðxÞvðxÞ; v a DðBÞ ¼ H2ðWÞ B H01ðWÞ:

Next by Lemma 2.1, we can prove

Le mma2.2. Let F a Llð0; T; DðAe

0ÞÞ with some e > 0 and a a L2ðWÞ. Then the solution u to (1.1) belongs to

Cðð0; T; H2ðWÞ B H1 0ðWÞÞ

(9)

and there exists a constant C > 0 depending on T, such that

kuðTÞkH2ðWÞa Cðtakak þ kA0eFkLlð0; T ; L2ðWÞÞÞ; t > 0:

Proo f (of Lemma 2.2). Without loss of generality, we can assume that

0 < e <1 4. By Lemma 2.1, we have uðtÞ ¼ SðtÞa þ Z t 0 Kðt  sÞF ðsÞ ds þ Z t 0 Kðt  sÞBuðsÞ ds: ð2:10Þ

By Gorenflo, Luchko and Yamamoto [12] or Kubica, Ryszewska and Yama-moto [17], we know that there exists a unique solution u a Cð½0; T; L2ðWÞÞ to (2.10). Applying A0 to equation (2.10), we have

A0uðtÞ ¼ A0SðtÞa þ Z t 0 A01eKðt  sÞAe 0FðsÞ ds þ Z t 0 A01eKðt  sÞAe 0BuðsÞ ds:

Then, applying Lemma 2.1 (i), we obtain kuðtÞkH2ðWÞa Ctakak þ C Z t 0 ðt  sÞae1dskAe 0FkLlð0; T; L2ðWÞÞ þ C Z t 0 ðt  sÞae1kuðsÞkH2ðWÞds a Cðtakak þ kAe 0FkLlð0; T ; L2ðWÞÞÞ þ C Z t 0 ðt  sÞae1kuðsÞkH2ðWÞds:

Here we used the following: by 0 < e <1

4 we have kA e

0vk P kvkH2eðWÞ for v a

DðAe

0Þ ¼ H2eðWÞ (e.g., Fujiwara [11]), and so kAe

0BuðsÞk a CkBuðsÞkH2eðWÞa CkuðsÞkH2ðWÞ

because BuðsÞ a H1ðWÞ  DðAe

0Þ by uðsÞ a H

2ðWÞ B H1

0ðWÞ. The generalized Gronwall inequality (e.g., Henry [14] or Lemma A.2 in [17]) yields

kuðtÞkH2ðWÞa Cðtakak þ kA0eFkLlð0; T; L2ðWÞÞÞ þ CeCt Z t 0 ðt  sÞae1ðsakak þ kA0eFkLlð0; T; L2ðWÞÞÞ ds a Cðtakak þ kAe 0FkLlð0; T; L2ðWÞÞÞ

þ CeCttaeaGðaeÞGð1  aÞ Gð1  a þ aeÞkak þ tae aekA e 0FkLlð0; T; L2ðWÞÞ  :

(10)

Consequently

kuðtÞkH2ðWÞa Cðtakak þ kA0eFkLlð0; T; L2ðWÞÞÞ:

Thus the proof of Lemma 2.2 is complete. r

Finally we know

Le mma2.3. For T > 0, the operator

SðTÞ : L2ðWÞ ! H2ðWÞ B H01ðWÞ is surjective and there exist constants C1; C2>0 such that

C1kSðTÞakH2ðWÞakak a C2kSðTÞakH2ðWÞ:

Lemma 2.3 is proved as Theorem 4.1 in [23], whose proof is based on the representation of SðTÞa by the eigenfunction expansion and the complete mo-notonicity of Ea; 1ðlntaÞ (e.g., Gorenflo, Kilbas, Mainardi and Rogosin [13], pp. 46–47, Pollard [22]).

3. Proofs of Theorems 1.1 and 1.3 3.1. Proof of Theorem 1.1

In terms of the lower-order part B of the elliptic operator A, we can rewrite (1.1) as qtauðtÞ ¼ A0uðtÞ þ BuðtÞ; t > 0; uð0Þ ¼ a; uðtÞ a H1 0ðWÞ; 0 < t < T: 8 < : ð3:1Þ

By Lemma 2.1 (ii), we have

b :¼ uaðTÞ ¼ SðTÞa þ Z T

0

KðT  sÞBuaðsÞ ds: ð3:2Þ

Here, by uaðtÞ, we denote the solution to (3.1). Applying Lemma 2.3 to (3.2), we obtain a¼ SðTÞ1b SðTÞ1 Z T 0 KðT  sÞBuaðsÞ ds ¼: SðTÞ1b La; ð3:3Þ where La¼ SðTÞ1 Z T 0 KðT  sÞBuaðsÞ ds: ð3:4Þ

(11)

First Step. We prove that L : L2ðWÞ ! L2ðWÞ is a compact operator. We set L0a¼ Z T 0 KðT  sÞBuaðsÞ ds; a a L2ðWÞ: Then La¼ SðTÞ1L0a.

We choose 0 < d0 <d1<14. We will estimate kA01þd0L0ak. We note that A0gKðtÞa ¼ KðtÞA0ga for g b 0 and a a DðA

g

0Þ, which can be directly verified. By (2.3), we have kA1þd0 0 L0ak ¼ Z T 0 A1þd0 0 KðT  sÞBuaðsÞ ds         ¼ Z T 0 A1þd0d1 0 KðT  sÞA d1 0 BðuaðsÞÞ ds         a C Z T 0 ðT  sÞaðd1d0Þ1 kAd1 0 BuaðsÞk ds a C Z T 0 ðT  sÞaðd1d0Þ1sakak ds:

For the last inequality, we used 0 < d0 <d1 <14, and bj; c a C1ðWÞ and Lemma 2.2, and DðAd1

0 Þ ¼ H2d1ðWÞ (e.g., [11]) and kAd1

0 BuaðsÞk a CkBuaðsÞkH2 d1ðWÞ

a CkuaðsÞkH1þ2d1ðWÞa CkA0uaðsÞk a Csakak:

Therefore kA1þd0 0 L0ak a Ckak Z T 0 ðT  sÞaðd1d0Þ1sads

¼ CTaðd1d01ÞGðaðd1 d0ÞÞGð1  aÞ

Gð1  a þ aðd1 d0ÞÞ kak because d1 d0 >0.

Since DðA1þd0

0 Þ  H2þ2d0ðWÞ and the embedding H2þ2d0ðWÞ ! H

2ðWÞ is compact, the operator L0: L2ðWÞ ! H2ðWÞ is compact. Moreover SðTÞ1: H2ðWÞ ! L2ðWÞ is bounded by Lemma 2.3, we see that L ¼ SðTÞ1L

0 : L2ðWÞ ! L2ðWÞ is a compact operator.

Second Step. Since b a H2ðWÞ B H1

0ðWÞ, by Lemma 2.3 we have p :¼ SðTÞ 1 b a L2ðWÞ and we rewrite (3.3) as ð1 þ LÞa ¼ p in L2ðWÞ: ð3:5Þ

(12)

In the First Step, we already prove that L : L2ðWÞ ! L2ðWÞ is compact. Hence if we will prove that

La¼ a implies a¼ 0; ð3:6Þ

then the Fredholm alternative yields that ð1 þ LÞ1: L2ðWÞ ! L2ðWÞ is a bounded operator, and the proof can be finished.

Equation (3.6) implies SðTÞa þ

Z T 0

KðT  sÞBuaðsÞ ds ¼ 0 in L2ðWÞ:

Then we have to prove a¼ 0. For it, by means of Lemma 2.1 (ii), it is su‰cient to prove that if w satisfies

qtawðtÞ ¼ AwðtÞ; wðtÞ a H1

0ðWÞ; 0 < t < T 

and wðTÞ ¼ 0 in L2ðWÞ, then wð0Þ ¼ 0.

We recall that the operator A is defined by (1.2) with DðAÞ ¼ H2ðWÞ B H1

0ðWÞ. Then it is known that the spectrum sðAÞ of A consists entirely of eigen-values with finite multiplicities. We denote sðAÞ by fm1;m2; . . .g. Here sðAÞ is a set and so mi and mj, i A j are mutually distinct. Let Pn be the projection for mn, n a N which is defined by Pn ¼ 1 2ppffiffiffiffiffiffiffi1 Z gð mnÞ ðz  AÞ1dz;

where gðmnÞ is a circle centered at mn with su‰ciently small radius such that the disc bounded by gðmnÞ does not contain any points in sðAÞnfmng. Then Pn : L2ðWÞ ! L2ðWÞ is a bouned linear operator and P2n ¼ Pn for n a N (e.g., Kato [15]). Setting mn:¼ dim PnL2ðWÞ, we have mn < l.

The following is a fundamental fact.

Le mma3.1. If y a L2ðWÞ satisfies Pny¼ 0 for all n a N, then y ¼ 0.

Pr oof. First we note

ðAvÞðxÞ ¼ X d i; j¼1 qiðaijqjvÞ  Xd j¼1 qjðbjvÞ þ cðxÞv; DðAÞ ¼ H2ðWÞ B H01ðWÞ;

where A is the adjoint operator of A. Let Pn be the adjoint operator of Pn: ðPnj; cÞ ¼ ðj; PncÞ for each j; c a L2ðWÞ.

Then it is known (e.g., [15]) that sðAÞ ¼ fm

ngn A N, where m denotes the com-plex conjugate of m a C and Pn is the projection for the eigenvalue mn of A, and

(13)

dim PnL2ðWÞ ¼ dim PnL2ðWÞ ¼ mn. Then by Theorem 16.5 in Agmon [2], we have Spann A NP nL2ðWÞ ¼ L 2 ðWÞ; that is, ðy; PncÞ ¼ 0; n a N; c a L 2 ðWÞ imply y¼ 0: ð3:7Þ

Now we can complete the proof of Lemma 3.1. Let Pny¼ 0 for n a N. Then ðPny; cÞ ¼ 0 for all c a L2ðWÞ. Therefore 0 ¼ ðPny; cÞ ¼ ðy; PncÞ for all n a N

and c a L2ðWÞ, which yields y ¼ 0 by (3.7). r

Third Step: Completion of the proof of Theorem 1.1. Let us note qtaðPnuðtÞÞ ¼ PnqtauðtÞ because Pn : L2ðWÞ ! L2ðWÞ is a bounded operator. We set unðtÞ ¼ PnuðtÞ. Then

PnAunðtÞ ¼ AunðtÞ ¼ mnunðtÞ þ DnunðtÞ;

where Dn is an operator satisfying Dnmn ¼ O, which corresponds to the Jordan canonical form. Then (3.1) yields

qtaunðtÞ ¼ ðmnþ DnÞunðtÞ; unð0Þ ¼ Pna; n a N: 

We can define an operator Ea; 1ððmnþ DnÞtaÞ by the power series:

Ea; 1ððmnþ DnÞtaÞ ¼ Xl k¼0

ðmnþ DnÞktak

Gðak þ 1Þ ; t > 0: Then we can directly verify

unðtÞ ¼ Ea; 1ððmnþ DnÞtaÞPna; t > 0: ð3:8Þ

Now we calculate the right-hand side of (3.8). Correspondingly to the Jordan canonical form, we can choose a suitable basis of PnL2ðWÞ:

cjk : k¼ 1; . . . ; ln; j¼ 1; . . . ; dk satisfyingPln k¼1dk¼ mn, and ðA  mnÞc k 1 ¼ 0; ðA  mnÞc k 2 ¼ c k 1;          ; ðA  mnÞc k dk ¼ c k dk1; 1 a k a ln: 8 > > > < > > > :

(14)

We expand Pna in terms of this basis in PnL2ðWÞ: Pna¼ Xln k¼1 Xdk j¼1 ajkcjk: Then Ea; 1ððmnþ DnÞtaÞðc1kc k 2    c k dkÞ ak 1 .. . ak dk 0 B B @ 1 C C A ¼X l m¼0 tamðmnþ DnÞ m Gðam þ 1Þ ðc k 1c k 2   c k dkÞ ak 1 .. . ak dk 0 B B @ 1 C C A ¼ ðc1kc k 2   c k dkÞ X l m¼0 tam Gðam þ 1Þ ðmnÞ m       0 ðmnÞ m                     0 0    ðmnÞ m  0 0    0 ðmnÞ m 0 B B B B B @ 1 C C C C C A ak 1 .. . ak dk 0 B B @ 1 C C A:

Since unðTÞ ¼ 0, we see that each component of the above is equal to 0 at t ¼ T, and so Ea; 1ðmnTaÞa1kþ Pdk p¼2y1papk¼ 0; Ea; 1ðmnTaÞa2kþ Pdk p¼3y2papk¼ 0;          Ea; 1ðmnTaÞadkk1þ ydk1; dka k dk ¼ 0; Ea; 1ðmnTaÞadkk ¼ 0; 8 > > > > > > < > > > > > > : ð3:9Þ

where yjpwith jþ 1 a p a dk and j¼ 1; . . . ; dk 1, are some constants depend-ing also on T . By the complete monotonicity (e.g., [13] and [22]), we see that Ea; 1ðmnTaÞ A 0. Therefore by the backward substitution in (3.9), we can se-quentially obtain adkk ¼ 0, ak

dk1¼ 0; . . . ; a

k

1 ¼ 0 for k ¼ 1; . . . ; ln. Hence Pna¼ 0 for each n a N. Then we reach a¼ 0 in L2ðWÞ. Thus the proof of Theorem 1.1

is complete. r

3.2. Proof of Theorem 1.3 Let w¼ wðtÞ be the solution to

(15)

qtawðtÞ ¼ AwðtÞ þ F ; t > 0; wð0Þ ¼ 0; wðtÞ a H1

0ðWÞ; t > 0: 

Since F a Llð0; T; DðAe

0ÞÞ, Lemma 2.2 proves that w a Cðð0; T; H 2ðWÞ B H01ðWÞÞ. We consider qtavðtÞ ¼ AvðtÞ; t > 0; vðTÞ ¼ b  wðTÞ; vðtÞ a H1 0ðWÞ; t > 0:  ð3:10Þ By Theorem 1.1, for b a H2ðWÞ B H1

0ðWÞ, there exists a unique solution v a Cð½0; T; L2ðWÞÞ B Cðð0; T; H2ðWÞ B H1

0ðWÞÞ such that q a

tv a Cðð0; T; L2ðWÞÞ to (3.10). Setting u¼ v þ w, we see that uðTÞ ¼ b  wðTÞ þ wðTÞ ¼ b. Then we can verify that u satisfies

qtauðtÞ ¼ AuðtÞ þ F ðtÞ; t > 0; uðTÞ ¼ b; uðtÞ a H1

0ðWÞ; t > 0: 

The uniqueness of u is seen by Theorem 1.1. Thus the proof of Theorem 1.3 is

complete. r

In future projects we would investigate similar problems where the principal part is an operator of order greater than 2, like in [9] and in [10], and in the case of applied systems like [3], [5], [7], [8], and [16]. Moreover we would study related inverse problems similarly to [4] and [6].

Ac know ledg ments . The authors are indebted to the anonymous referee for the criticism and the useful suggestions which have made this paper easier to read and understand. This work is sup-ported by the Istituto Nazionale di Alta Matematica (INdAM), through the GNAMPA Research Project 2020. Moreover, this research was performed in the framework of the French-German-Italian Laboratoire International Associe´ (LIA), named COPDESC, on Applied Analysis, issued by CNRS, MPI and INdAM. The second author thanks National Natural Science Foundation of China 11801326.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965.

[3] P. Baldi - G. Floridia - E. Haus, Exact controllability for quasi-linear perturba-tions of KdV, Analysis & PDE 10, no. 2, (2017) 281–322 (ArXiv:1510.07538).

[4] P. Cannarsa - G. Floridia - F. Go¨lgeleyen - M. Yamamoto, Inverse coe‰cient problems for a transport equation by local Carleman estimate, Inverse Problems 35, no. 10 (2019).

[5] P. Cannarsa - G. Floridia - A. Y. Khapalov, Multiplicative controllability for semilinear reaction-di¤usion equations with finitely many changes of sign, Journal de

(16)

Mathe´matiques Pures et Applique´es 108 (2017) 425–458,

DOI: 10.1016/j.matpur.2017.07.002.

[6] P. Cannarsa - G. Floridia - M. Yamamoto, Observability inequalities for transport equations through Carleman estimates, Springer INdAM series 32 (2019), Trends in Control Theory and Partial Di¤erential Equations, by F. Alabau-Boussouira, F. Ancona, A. Porretta, C. Sinestrari,doi:10.1007/978-3-030-17949-6_4.

[7] G. Floridia, Nonnegative controllability for a class of nonlinear degenerate parabolic equations with application to climate science, Electron. J. Di¤erential Equations 59 (2020) 1–27.

[8] G. Floridia - C. Nitsch - C. Trombetti, Multiplicative controllability for non-linear degenerate parabolic equations between sign-changing states, ESAIM: COCV 26, no. 18, (2020) 1–34,https://doi.org/10.1051/cocv/2019066.

[9] G. Floridia - M. A. Ragusa, Interpolation inequalities for weak solutions of non-linear parabolic systems, Journal of Inequalities and Applications 2011, 2011:42 (2011). [10] G. Floridia - M. A. Ragusa, Di¤erentiability and partial Ho¨lder continuity of

solutions of nonlinear elliptic systems, Journal of Convex Analysis 19, no. 1, (2012) 63–90.

[11] D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic di¤erential operators of the second order, Proc. Japan Acad. 43 (1967) 82–86.

[12] R. Gorenflo - Y. Luchko - M. Yamamoto, Time-fractional di¤usion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18 (2015) 799–820.

[13] R. Gorenflo - A. A. Kilbas - F. Mainardi - S. V. Rogosin, Mittag-Le¿er Func-tions, Related Topics and ApplicaFunc-tions, Springer-Verlag, Berlin, 2014.

[14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

[15] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. [16] A. Y. Khapalov - P. Cannarsa - F. S. Priuli - G. Floridia, Wellposedness of a

2-D and 3-D swimming models in the incompressible fluid governed by Navier-Stokes equation, J. Math. Anal. Appl. 429, no. 2, (2015) 1059–1085.

[17] A. Kubica - K. Ryszewska - M. Yamamoto, Time-fractional Di¤erential Equations – A Theoretical Introduction, Springer Japan, Tokyo, 2020.

[18] A. Kubica - M. Yamamoto, Initial-boundary value problems for fractional di¤u-sion equations with time-dependent coe‰cients, Fract. Calc. Appl. Anal. 21 (2018) 276–311.

[19] J.-J. Liu - M. Yamamoto, A backward problem for the time-fractional di¤usion equation, Appl. Anal. 89 (2010) 1769–1788.

[20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Di¤erential Equa-tions, Springer-Verlag, Berlin, 1983.

[21] I. Podlubny, Fractional Di¤erential Equations, Academic Press, San Diego, 1999. [22] H. Pollard, The completely monotonic character of the Mittag-Le¿er function

EaðxÞ, Bull. Amer. Math. Soc. 54 (1948) 115–116.

[23] K. Sakamoto - M. Yamamoto, Initial value/boundary value problems for fractional di¤usion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011) 426–447.

[24] N. H. Tuan - L. N. Huynh - T. B. Ngoc - Y. Zhou, On a backward problem for nonlinear fractional di¤usion equations, Applied Mathematics Letters 92 (2019) 76–84.

(17)

[25] N. H. Tuan - L. D. Long - S. Tatar, Tikhonov regularization method for a back-ward problem for the inhomogeneous time-fractional di¤usion equation, Appl. Anal. 97 (2018) 842–863.

[26] N. H. Tuan - T. N. Thach - D. O’Regan - N. H. Can, Backward problem for time fractional reaction-di¤usion equation with nonlinear source and discrete data, preprint:arXiv:1910.14204.

[27] L. Wang - J.-J. Liu, Data regularization for a backward time-fractional di¤usion problem, Comp. Math. Appl. 64 (2012) 3613–3626.

[28] L. Wang - J.-J. Liu, Total variation regularization for a backward time-fractional di¤usion problem, Inverse Problems 29 (2013) 115013.

[29] J.-G. Wang - T. Wei - Y.-B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional di¤usion equation, Appl. Math. Model. 37 (2013) 8518– 8532.

[30] T. Wei - J.-G. Wang, A modified quasi-boundary value method for the backward time-fractional di¤usion problem, ESAIM: Math. Model. Numer. Anal. 48 (2014) 603–621.

[31] X.-T. Xiong - J.-X. Wang - M. Li, An optimal method for fractional heat conduc-tion problem backward in time, Appl. Anal. 91 (2012) 823–840.

[32] M. Yang - J.-J. Liu, Solving a final value fractional di¤usion problem by boundary condition regularization, Appl. Numer. Math. 66 (2013) 45–58.

[33] R. Zacher, Weak solutions of abstract evolutionary integro-di¤erential equations in Hilbert spaces, Funkcial. Ekvac. 52 (2009) 1–18.

[34] G. Floridia - M. Yamamoto, Backward problems in time for fractional di¤usion-wave equation, Inverse Problems,doi.org/10.1088/1361-6420/abbc5e, 2020.

Received 27 January 2019, and in revised form 12 April 2020

Giuseppe Floridia Department PAU Universita` Mediterranea di Reggio Calabria Via dell’Universita` 25 89124 Reggio Calabria, Italy floridia.giuseppe@icloud.com Zhiyuan Li School of Mathematics and Statistics Shandong University of Technology Zibo Shandong 255049, China zyli@sdut.edu.cn Masahiro Yamamoto Graduate School of Mathematical Sciences The University of Tokyo Komaba, Meguro Tokyo 153-8914, Japan and

(18)

Honorary Member of Academy of Romanian Scientists Splaiul Independentei Street, no. 54 050094 Bucharest, Romania and Peoples’ Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St Moscow 117198, Russia myama@ms.u-tokyo.ac.jp

Riferimenti

Documenti correlati

By analysing the number and the value of the M&amp;A transactions occurred throughout the years, it has been possible to describe their patterns and to introduce the term Merger

4 Modalità di accesso delle donne vittime di violenza altrui alle strutture di pronto soccorso (Liguria, 2013).. (*) Per le minorenni viene considerata la decisione

Ce mouvement de danseuse agitant sa robe, par lequel elle avait conquis Hulot, fascina Steinbock » (p. La version en prose et prosaïque du sonnet baudelairien À une passante

We propose an iterative co- clustering algorithm which exploits user-defined constraints while minimizing the sum-squared residues, i.e., an objec- tive function introduced for

Introduce e modera: Alessandro Barbano, direttore de “Il Mattino”. Ne discutono: Angelo Abignente,

Il sentirsi accolti e quindi di appartenere ad un certo sistema affettivo, nel quale le vicende che si susseguono sono tra loro intrecciate e creano una storia comune, permette

La ridotta efficienza di veicolazione del transgene da parte dei costrutti SIN rispetto ai replicazione-competente è stata confermata anche tramite analisi su western blot: a