• Non ci sono risultati.

L’associazione fra dilatazione arteriosa e incremento dello spessore medio-intimale in una

N/A
N/A
Protected

Academic year: 2021

Condividi "L’associazione fra dilatazione arteriosa e incremento dello spessore medio-intimale in una "

Copied!
10
0
0

Testo completo

(1)

5. Conclusioni

I principali risultati ottenuti in questo studio utilizzando metodiche ultrasonore innovative confermano l’importante ruolo dei fattori emodinamici nel determinismo del rimodellamento arterioso associato all’età. In una popolazione di soggetti normali senza fattori di rischio cardiovascolare, predittore indipendente del rimodellamento arterioso, oltre all’età, sono risultati la pressione arteriosa diastolica e la taglia corporea. I parametri metabolici (LDL colesterolo, HDL colesterolo, trigliceridi) seppur abbiano dimostrato correlazioni significative in analisi di regressione lineare non si sono confermati, nel modello di analisi multivariata comprendente i fattori emodinamici, determinanti indipendenti dell’ aumento dello spessore medio-intimale.

Inoltre, età e pressione arteriosa sembrano essere responsabili di un incremento del diametro arterioso che a sua volta si associa ad una riduzione della velocità di flusso e di conseguenza dello shear effettivo misurato (e non calcolato) in prossimità delle pareti del vaso. Parallelamente è stato confermato un aumento della rigidità arteriosa associata all’età.

Tutto questo è in accordo con l’ipotesi basata su studi sperimentali, che l’interazione fra forze emodinamiche e alterazioni strutturali di parete età-correlate, in primis la variazione qualitativa e quantitativa delle principali proteine costituenti la matrice extracellulare quali collagene ed elastina, comporti dapprima una dilatazione arteriosa cui si associa una riduzione del WSR ed un aumento dello spessore medio-intimale. Come si evince dalla letteratura sperimentale, la riduzione del WSR potrebbe essere uno dei meccanismi implicati nel determinismo dell’ispessimento medio-intimale, in quanto in grado di promuovere la proliferazione e la migrazione delle cellule muscolari lisce ed il fenotipo delle cellule endoteliali [45,24].

L’associazione fra dilatazione arteriosa e incremento dello spessore medio-intimale in una

popolazione di soggetti sani senza fattori di rischio cardiovascolare, potrebbe essere interpretata

alla luce della teoria della “mutual adaptation”, secondo cui variazioni emodinamiche sarebbero

in grado di modulare il diametro arterioso della carotide comune e di indurre, in una logica di

adattamento reciproco, cambiamenti dello spessore medio intimale allo scopo di mantenere o

ripristinare i livelli fisiologici di shear stress e di stress tensivo in prossimità della parete del

vaso. In quest’ottica l’ispessimento medio-intimale potrebbe essere considerato entro certi limiti

in soggetti senza fattori di rischio cardiovascolare, una risposta fisiologica della parete vasale

alle variazioni delle forze emodinamiche ed al processo di invecchiamento vascolare, e non un

marker precoce di aterosclerosi.

(2)

confrontare le correlazioni che le variabili emodinamiche hanno presentato nelle due popolazioni, nel gruppo di soggetti aterosclerotici lo studio è stato indirizzato essenzialmente alla misurazione del Wall Shear Rate e alla raccolta di dati. Peraltro, come atteso, i valori di WSR sono risultati significativamente ridotti rispetto ai soggetti normali.

In questa tesi è stata presentata l’esperienza preliminare ottenuta con nuova metodica Multigate

Doppler a doppio fascio ultrasonoro. Essa offre la possibilità di indagare diversi distretti arteriosi

studiando il profilo di velocità di flusso e la geometria vascolare e di ottenere misurazioni di

WSR in tempo reale. Inoltre, la migliore riproducibilità presentata dalla metodica e la maggiore

accuratezza nelle determinazione dell’angolo Doppler possono avere implicazioni cliniche

significative in vari ambiti quali la misura del flusso volumetrico e la stima dell’entità della

stenosi arteriosa.

(3)

6. Bibliografia

1. O’ Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertension 2002;15:426-444.

2. Robert W. Wissler , Jack P. Strong risk factors and progression of atherosclerosis in Youth.

Am J Pathol 1998; 153: 1023-1033.

3. Reneman RS, Arts T, Hoeks A: Wall Shear Stress- an important determinant of endothelial cell function and structure-in the arterial system in vivo. Journal of Vascular Research 2006;43251-269.

4. Cunningham KS, Gotlieb A: The role of shear stress in the pathogenesis of atherosclerosis.

Laboratory Investigation 2005; 85, 9-23.

5. Cheng C, Tempel D, van Hapene R, van der Baan A, Grosveld F, Daemen M J.A.P.,Krams R, de Crom R: Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress . Circulation 2006; 113;2744-2753.

6. Cheng C, Tempel D, van Hapene R, de Boer H C,Segers D, Huisman M, van Zonneveld AJ, Leenen P J.M., van der Steen A, Serruys P W, de Crom R, Krams Rob: .: Shear stress-induced changes in atherosclerotic composition are modulated by chemokines . The Journal of Clinical Investigation 2007; 117: 616-626.

7. Xinchun P, Yan C, Berk B C : Atheroprotective mechanisms of flow : inhibition of apoptosis.

ELSEVIER International Congress Series 1262 (2004) 129-132.

8. Lipowsky HH, Kovalcheck S, Zweifach BW: The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Research 1978;43:738-749.

9. Tangelder GJ, Slaaf DW, Arts T, Oude Egbrink MG, Reneman RS: Wall shear rate in

(4)

10. Tangelder GJ, Slaaf DW, Muijtiens AM, Arts T, Oude Egbrink MG, Reneman RS: Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery.Circ.

Research 1986;59: 505-514.

11. Brands PJ, Hoeks APG, Hofstra L, Reneman RS: A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound Med Biol 1995; 21: 171-185.

12. Hoeks APG, Samijo SK, Brands PJ, Reneman RS: Assessment of wall shear rate in humans:

an ultrasound study. Journal of Vascular Investigation 1995; 1: 108-117.

13. Oyre S, Ringgaard S, Kozerke S, Paaske WP, Erlandsen M, Boesinger P, Pedersen EM:

Accurate non-invasive quantitation of blood flow, cross sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modelling of magnetic resonance imaging velocity data. J AM Coll Cardiol 1998; 32:128-134.

14. Bots M L, Hoes A W, Koudstaal PJ, Hofman A, Grobbee DE: Common carotid intima media thickness and risk of stroke and infarction. The Rotterdam Study. Circulation 1997;96:1432- 1437.

15. Heiss G, Sharett AR, Barnes R, Chambless LE, Szklo M, Alzola C, and the ARIC investigators: Carotid atherosclerosis measured by B-mode ultrasound in populations:

associations with cardiovascular risk factors in the ARIC study. AM J Epidemiology.1991; 134:

250-256.

16. Irace C, Cortese C, Fiaschi E, Carallo C, Farinaro E, Gnasso A: Wall shear stress is associated with intima media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk. Stroke 2004; 35: 464-468.

17. Carallo C, Irace C, Pujia A, De Franceschi MS, Crescenzo A, Motti C, Cortese C, Mattioli

PL, Gnasso A: Evaluation of common carotid hemodynamic forces: relations with wall

thickening. Hypertension 1999; 34: 217-221.

(5)

18. Schmidt-Truskass A, Grathwohl D, Schmid A, Boragk R, Upmeier C, Keul Joseph Huonker M: Structural, functional and hemodynamic changes of the common carotid artery with age in male subjects. Arteriosclerosis, thrombosis and vascular biology 1999; 19: 1091- 1097.

19. Kornet L, Lambregts j, Hoeks LAPG, Reneman RS: Differences in near wall shear rate in the carotid artery within subjects are associated with different intima media thicknesses.

Arteriosclerosis, Thrombosis, and Vascular Biology 1998; 18; 1877-1884.

20. Irace C, Carallo C, Crescenzo A, Motti C, De Franceschi MS, Mattioli PL et al. NIDDM is associated with lower low shear stress of the common caroti artery. Diabetes 1999;48; 193-7.

21. Jiang Y, Kohara K, Hiwada K. Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients. Hypertens Research 1999;22: 203-7.

22. Spring S, van der Loo B, Krieger E, Amman-Vesti BR, Rousson V, Koppensteiner R.

Decrease wall shear stress in the common carotid artery of patients with peripheral artery disease or abdominal aortic aneurysm: Relation to blood rheology, vascular risk factors, and intima media thickness. Journal of Vascular Surgery 2006;43:56-63.

23. Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997;28:993-998.

24. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature.

PNAS, October 12, 2004; vol.101, n°41: 14871-14876.

25. Pyke KE, Tschakovsky ME. The relationship between shear stress and flow mediated

dilatation: implication for the assessment of endothelial function. The Journal of Physiology

2005;568:357-369.

(6)

26. Wilcox JN, Subramanian RR, Sundell CL et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arteriolosclerosis, Thrombosis, and Vascular Biology 1997;17: 2479-2488.

27. Chiu JJ, Lee PL, Chen CN, et al. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-alpha in endothelial cells.

Arteriolosclerosis, Thrombosis, and Vascular Biology 2004; 24: 73-79.

28. Walpola PL, Gotlieb AI, Cybulsky MI, et al. Exprression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arteriolosclerosis, Thrombosis, and Vascular Biology 1995; 15: 2-10.

29. Harrison D, Griendling KK, Landmesser U, et al. Role of oxidative stress in atherosclerosis.

Am Journal of Cardiology 2003; 91: 7A-11A.

30. Woodmann CR, Muller JM, Rush JWE, et al. Flow regulation of ecNos and Cu/Zu SOD mRNA expression in porcine coronary arterioles. Am J Phisiology-Heart Circ Physiol 1999; 276:

H1058-H1063.

31. Horiuchi M, Tsutsui M, Tasaki H, et al. Upregulation of vascular extracellular superoxide dismutase in patients with acute coronary sindromes. Arteriolosclerosis, Thrombosis, and Vascular Biology 2004; 24: 106-111.

32. Jaimes EA, DeMaster EG, Tian RX, et al. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriolosclerosis, Thrombosis, and Vascular Biology 2004; 24: 1031-1036.

33. Ungvari Z, Csizar A, Kaminski PM, et al. Chronic high pressure-induced arterial oxidative stress-involvement of protein Kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system. Am Journal of Pathology 2004; 165: 219-226.

34. Gross ER, Ladisa JF, Weihrauch D et al.Reactive oxygen species modulate coronary wall

shear stress and endothelial function during Hyperglicemia. Am J Physiology-Heart Circ Physiol

(7)

35. Stokes KY, Clanton EC, Russell JM, t al. NAD(P)H oxidase-derived superoxide mediates hypercholesterolemia-induced leukocyte-endothelial cell adhesion. Circular Research 2001; 88:

499-505.

36. Liu Y, Min W. Thioredoxin promotes ASK1 ubiquination and degradation to inhibit ASK1- mediated apoptosis in a redox activity-independent manner. Circulation Research 2002; 90 (12):

1259-1266.

37. Nerem RM, Girard PR. Hemodynamic influences on vascular endothelial biology. Toxicol Pathol. 1990; 18: 572-582.

38. Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ.

Reserch. 1972; 30; 23-33.

39. Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985; 107: 341-347.

40. Lee TYJ, Gotileb AI. Microfilaments and microtubules maintain endothelial integrity.

Microsc Res Tech 2003; 60: 115-225.

41. Malek AM, Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Journal of Cell Science 1996; 109:713-726.

42. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 1973; 17: 401-417.

43. Helminger G, Geiger RV, Schreck S, Nerem RM. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng. 1991; 113: 123-131.

44. Goldman J, Zhong Lin, Liu QS. Negative regulation of vascular smooth muscle cell

migration by blood shear stress. Am J Physiol Heart Circ Physiol; Article in press September

(8)

45. Liu SQ, Tieche C, Tang D, Alkema P. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: role of PDGF-β receptor and Src. Am J Physiol Heart Circ Physiol 2003; 285: H1081-H1090.

46. Wentzel JJ, Krams R, Schuurbiers JCH, Oomen JA, Kloet J, van der Giessen J, Serruys PW, Slager CJ. Relantionship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 2001; 103: 1740-1745.

47. Kinlay S, Grewal J, Manuelin D, et al. Coronary flow velocity and disturbed flow predict adverse clinical outcome of coronary angioplasty. Arteriolosclerosis, Thrombosis, and Vascular Biology 2002; 22: 1334-1340.

48. Welt FGP, Rogers C,. Inflammation and restenosis in the stent era. Arteriolosclerosis, Thrombosis, and Vascular Biology 2002; 22: 1769-1776.

49. Ladisa JF, Olson LE, Guler I, et al. Stent design properties and deveployment ratio influence indexes of wall shear stress: a three dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 2004; 97: 424-430.

50. Hoffmann R, Mintz Gs, Dussaillant GR, et al. Patterns and mechanisms of in-stent-restenosis _a serial intravascular ultrasound study. Circulation 1996; 94: 1247- 1254.

51. Butany JW, David TE, Ojha M. Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses. Can J Cardiol 1998; 14:671-677.

52. Norata GD, Garlaschelli K, Ongari M, Raselli, Grigore L, Catapanp AL. Effects of Fractalkine receptor variants on common carotid artery intima media thickness. Stroke 2006; 37:

1558-1561.

53. Stroev PV, Hoskins PR, Easson WJ. Distribution of wall shear rate throughout the arterial

tree: a case study. Atherosclerosis 2007; 191: 276-280.

(9)

54. Dammers R, Stifft F, Tordor JHM, Hameleers JMM, Hoeks APG, Kitslaar PJEHM. Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J Appl Physiol 2003; 94: 485-489.

55. Murray C. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 1926; 12: 207-214.

56. Zamir M. The physics of pulsatile flow. Springer-Verlag; 2000: 49-51

57. Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, van Tol A, Duncker DJ, Robbers-Visser D, Ursem NTC, van Harpener R, Wentzel JJ, Gijsen F, van der Steen AFW;

de Crom R, Krams R. Large variations in absolute wall shear stress levels within one species and between spcies. Atherosclerosis 2007;195: 225-235.

58. August AD, Ariff B, Thom MCcG, Xu XY, Hughes AD. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima media thickness in the human carotid artery. Am J PHysiol Heart Circ Physiol 2007; 293: H1031-H1037.

59. Oshinski JN, Ku DN, Mukundan S Jr, Loth F, Pettigrew RI. Determination of wall shear stress in tha aorta with the use of MR phase velocity mapping. J Magn Reson Imaging 1995; 5:

640-647.

60. Wentzel JJ, Corti R, Zahi AF, Windsom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ. Does shear stress modulate both plaque progression and regression in the thoracic aorta?:

Human study using serial magnetic resonance imaging. Journal of the American College of Cardiology 2005; 45: 846-854.

61. Brands PJ, Hoeks APG, Willigers J, Willekes C, Reneman RS. An integrated system for the

non-invasive assessment of large arteries by means of ultrasound. Eur J Ultrasound 1999; 9: 257-

266.

(10)

63. Ricci S, Boni E, Guidi F, Morganti T, Tortoli P. A programmable real-time system for development and test of new ultrasound investigation methods. IEEE Trans Ultrason Ferroelect Freq Contr, 2006 (in press).

64. Morganti T, Ricci S, Vittone F, Palombo C, Tortoli P. Clinical validation of common carotid artery wall distension assessment based on multigate doppler processing. Ultrasound in Med &

Biol 2005; vol 31, N°7: 937-945.

65. Ranmarine KV, Nassiri DK, Hoskins PR, Lubbers J. Validation of a new blood mimicking fluid for use in Doppler flow test objects. Ultrasound in Med & Biol 1998; 24: 451-459.

66. Samjio SK, Willigers JM, Barkhuysen R, et al. Wall shear stress in the common carotid artery as function of age and gender. Cardiovascular Research 1998;39: 515-522.

67. Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P et al. Mannheim Carotid Intima-Media Thickness Consensus (2004-2006). Cerebrovascular Diseases 2007; 23: 75-80.

68. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison

studies. The Statistician 1983; 32: 307-317.

Riferimenti

Documenti correlati

Anche se mancano ancora progetti strutturati e innovativi, sono già numerose le iniziative di fact checking: come Bufale.net, che raccoglie una gran quantità di notizie

In the next theorem we will show how particular sub- sequences of the sequence x, defined by equation (2.1), generate the Newton and Halley approximations to the root of larger

En colaboración con el DEAL – Centro de Estudios Internacionales y Comparados del Departamento de Economía Marco Biagi (Universidad de Módena y Reggio Emilia,

Sustainability 2017, 9, 1466 8 of 15 When evaluating effluent concentrations, the different behavior of the two plants is clearly shown: for Cyclophosphamide the difference

This paper is concerned with existence and uniqueness of solu- tion for the the optimal control problem governed by the stochastic FitzHugh-Nagumo equation driven by a Gaussian

In this paper, we studied the circadian relationship between blood pressure and heart rate rhythms in normotensive and hypertensive subjects.. The circadian BP and HR

Sulla base delle informazioni ricavate da tale studio è stato possibile dimensionare l'impianto solare termico della palestra per la sola produzione di acqua calda

Dalle analisi si evince che gli elementi chimici analizzati (soprattutto i metalli pesanti) sono concentrati prevalentemente nelle radici delle piante e in piccola parte nelle