• Non ci sono risultati.

TASKS of MATHEMATICS for economic applications AA. 2012/13

N/A
N/A
Protected

Academic year: 2021

Condividi "TASKS of MATHEMATICS for economic applications AA. 2012/13"

Copied!
5
0
0

Testo completo

(1)

TASKS of MATHEMATICS for economic applications AA. 2012/13

Intermediate Test December 2012

I M 1) Compute 3 , using trigonometric form for complex numbers.

"  3  "  3

) '

%

   

I M 2) Given the matrices œ and œ , verify if

" $ %  # #  #

# !  %  # # "

 "  $  %  ' '  $

   

   

   

   

   

   

   

   

   

   

   

   

they have the same eigenvalues, and then check if they are similar matrices.

I M 3) Given the linear map 0 À Ä ß 0 œ † , with œ , if the

" " " !

! " " "

" # # 5

%$  —  — 

 

 

 

 

 

 

 

 

 

 

 

 

dimension of the Kernel is equal to , find a basis for the Image and a basis for the Kernel of# the linear map.

I M 4) The linear system has solutions. Find all the solutions



B  C  #D œ  "

#B  C  D œ "

 #B  7C  5D œ "

"

of the linear system.

I M 5) Given the matrix  œ check if, varying the parameter , the matrix can5

" ! !

! 5 "

! " "

 

 

 

 

 

 

 

 

 

 

 

 

admit a multiple eigenvalue.

I Winter Exam Session 2013

I M 1) After finding the roots , , , D" D# D$ D% of the equation D  #D  #D  )D  ) œ !% $ # , then calculate $ D † D † D † D" # $ %.

I M 2) The matrix œ is similar to the matrix by means of the matrix

" # "

#  "  "

" ! "

 

 

 

 

 

 

 

 

 

 

 

 

(similarity transformation) œ . Determine the matrix and its eigenvalues.

" ! "

!  " "

! ! "

 

 

 

 

 

 

 

 

 

 

 

 

I M 3) Given the matrix  œ check if, varying the parameter , the matrix7

$  " "

! # !

7 5 $

 

 

 

 

 

 

 

 

 

 

 

 

can admit multiple eigenvalues, and then, for such values, check, varying the parameter , if5 the matrix is a diagonalisable one.

I M 4) Given the linear map 0 À Ä ß 0 œ † , with œ , if the

" " ! !

! " " !

! ! " "

5 ! ! "

%%  —  — 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimension of the Kernel is maximum, find the image of the vector "ß  "ß "ß  ".

(2)

II M 1) The system of equations    is satisfied at a uni-

 

0 Bß Cß D œ D  #BC œ !

1 Bß Cß D œ B  C  %B C  D œ !# # #

que point P œ "ß Cß D ; determine that point and check which implicit function can be so defined; then calculate the first order derivatives of such function.

II M 2) Given the function 0 Bß C œ BC "  B  C   #  determine its stationary points and then check their type.

II M 3) Solve the problem .

Max/min s.t.:



 

0 Bß C œ B  C B  C Ÿ "

C   #B

# #

# #

II M 4) Given the function 0 Bß C œ , that it is not differentia- BC

B  C Bß C Á !ß !

! Bß C œ !ß !

 



   

   

# #

ble at the point  !ß ! , using the definition check for the directions for which the directional@ derivative W@0 !ß !  exists.

II Winter Exam Session 2013

I M 1) After finding the roots , , , of the equation D D D D" # $ % D  D  D  *D  "! œ !% $ # , then calculate .% D  D  D  D" # $ %

I M 2) Check for existence and number of solutions, on varying parameters and , for the7 5 linear system of equations . When the system has solutions, find







B  C  #D œ "

#B  $C  D œ  "

B  'C  (D œ 7

&C  &D œ 5 them.

I M 3) Vector — œ B ß B " # has coordinates  "ß # in the base   #ß " à  "ß  #. Determine its coordinates in the base    $ß # à "ß " .

I M 4) Determine an orthogonal matrix that diagonalizes  œ .

! " "

" ! "

" " !

 

 

 

 

 

 

 

 

 

 

 

 

II M 1) Given 0 Bß C œ B  $BC  $ , and unit vector of @  "ß " , find the points B ß C! ! at which it results W@0 B ß C ! !œ ! and W@ß@# 0 B ß C ! !œ !.

II M 2) Given the equation 0 Bß Cß D œ B C  C D  BCD œ !  $ $ $ and the point P! œ "ß !ß "  that satisfies it, determine the equation of the tangent plane to the surface of the implicit function defined with such equation.

II M 3) Solve the problem Max/min .

s.t.:

 0 Bß Cß D œ BCD  B  C  D œ &

We recommend using the simplest procedure.

II M 4) Solve the problem .

Max/min s.t.:



 

  

0 Bß C œ B  BC  C B  "  C Ÿ "

B  #C Ÿ !

#

I Additional Exam Session 2013 I M 1) Compute "  3#! "  3 "#.

(3)

I M 2) Find a basis for ‘# consisting of eigenvectors of , where is a matrix similar to 

œ %  " œ $ "

# " & #

  with   the similarity transformation matrix.

I M 3) Given the matrix  œ , check, varying the parameters and , the5 7

" ! ! 5

! " ! 5 7 ! " ! 7 ! ! "

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximum possible dimension for the Kernel of the linear map 0 À‘% Ä‘%ß 0 — œ —† , and then check, for such and , if vector 5 7 —œ "ß "ß "ß "  may belong to the Kernel of such linear map.

I M 4) Check if the matrix  œ may be diagonalised with an orthogonal matrix.

# # "

! " !

" # #

 

 

 

 

 

 

 

 

 

 

 

 

II M 1) Verify that with the equation 0 Bß C œ B  B C  / œ !  % # C it is always possible to define an implicit function C œ C B , at any point P that satisfies it. If P! ! œ "ß ! , compute C "w  and C "ww .

II M 2) Given the function 0 Bß C œ B/  C/  C B, check if there exist directions such that@ W@0 !ß ! œ !  and W#@ß@0 !ß ! œ !  .

II M 3) Check if the function 0 Bß C œ B † C  B    is differentiable at the point  !ß ! .

II M 4) Solve the problem .

Max/min s.t.:



 

0 Bß C œ B  C B  %C Ÿ % B  )C Ÿ %

# #

#

I Summer Exam Session 2013

I M 1) After finding the roots , , of the equation D" D# D$ D  $D  %D  ) œ !$ # , then calculate .$ D † D † D" # $

I M 2) The matrix œ admits the eigenvalue - œ ". Check if such mat-

# #  "

 " # 5

$ !  #

 

 

 

 

 

 

 

 

 

 

 

 

rix is a diagonalizable one.

I M 3) Given the linear map 0 À Ä ß 0 œ † , with œ " " 5 ,

! 7  "

$#  —  —   

knowing that the vector "ß  "ß # belongs to the Kernel, find the dimension of the Image of the map.

I M 4) Check for existence and number of solutions, on varying parameters and , for the7 5

linear system of equations .



B  B œ $

#B  B  B  B œ # B  B  7B  #B œ 5

" %

" # $ %

" # $ %

II M 1) Find maxima and minima for 0 Bß C œ $C  #B  in the quadrangle having as vertices the points , ,      !ß ! "ß ! "ß # and . !ß "

II M 2) Given 0 Bß C œ B  BC  $C  # , find point T! at which W?0 T  ! œ # and W@0 T ! œ  # , where is the unit vector of # ?  "ß " and is the unit vector of @ "ß  " Þ

II M 3) Solve the problem .

Max/min s.t.:



 

 

0 Bß C œ B  #C B  #

%  C Ÿ "

#

#

(4)

II M 4) Verify that with the equation 0 Bß C œ /  BC cosB  C œ ! , at the point  "ß " , it is possible to define an implicit function C œ C B , and then compute C "w  and C "ww .

II Summer Exam Session 2013

I M 1) Calculate  $   .

"& $

# "  $3  # "  3

I M 2) Check when the matrix  œ , varying the parameter , is a diagona-5

! 5 !

" ! !

! ! 5

 

 

 

 

 

 

 

 

 

 

 

 

lizable one.

I M 3) Given a linear map 0 À Ä ß 0 œ † , with œ + , - , knowing

+ , -

$# —  —  " " "

# # #

   

that the image of the vector "ß "ß " is the vector  "ß " and that the vector "ß !ß " belongs to the Kernel, check if the dimension of the Image of the map may be equal to ."

I M 4) Find the representation of the vector "ß #ß $ in the basis "ß !ß " à "ß "ß ! à "ß !ß !    . II M 1) Analyse stationary points for 0 Bß C œ B  C  5 BC  $ $ on varying the parameter .5 II M 2) Solve the problem Max/min

s.t.:

 0 Bß C œ B  C  B  %C Ÿ %# # # # Þ

II M 3) Given 0 Bß C œ BC  C  #, if W?0 "ß " œ !  and W?0 "ß  " œ  #, determine the unit vector ? œ cosαàsenα.

II M 4) Verify that with the system sen cos , at the

      

 

0 Bß Cß D œ B  C  D  #B œ "

1 Bß Cß D œ /#BD /CBœ !

point "ß "ß #, it is possible to define an implicit function B Ä C B ß D B    , and then compu- te the equation of the tangent line at B œ ".

I Autumn Exam Session 2013

I M 1) If D œ # cos  3sen and D œ % cos  3sen , calculate D † D .

& & & &

% %

"  1 1 #  1 1 $ " #

I M 2) Given the basis !ß "ß  " à "ß  "ß ! à "ß "ß "    , find the coordinates of the vector

"ß  #ß # in this basis.

I M 3) Check when the matrix  œ , varying the parameter , is a diagonaliza-5

! " "

5 ! 5

! " "

 

 

 

 

 

 

 

 

 

 

 

 

ble one.

I M 4) Given the linear maps 0 À Ä ß 0 œ † , with œ and

" 5

"  "

5 !

#$  —  — 

 

 

 

 

 

 

 

 

 

 

 

 

1 À Ä ß 1 œ † œ " 5 " 5

! " "

$#  —  —, with   , check, varying the parameter , when the dimentions of the Image and of the Kernel of the composite map 1 0  — À‘# Ä‘# are equal.

II M 1) Analyse stationary points for 0 Bß C œ B  BC  5C  # # on varying the parameter .5 II M 2) Solve the problem Max/min

s.t.:

 0 Bß C œ B  BC  C  B  C Ÿ "# # # # Þ

(5)

II M 3) Given 0 Bß Cß D œ B  CD  # , if and are the unit vectors of ? @ "ß !ß " and !ß "ß ", compute .W#?ß@0 "ß  "ß " 

II M 4) Verify if with the equation 0 Bß C œ B  C  B  C œ !  $ $ # # , at the points  !ß ! or

 "ß " , it is possible to define an implicit function C œ C B , and then compute and Cw Cww. II Autumn Exam Session 2013

I M 1) Once you have found the three roots of the equation B  #B  %B  ) œ !$ # , verify that they cannot be the three third order roots of a complex number.

I M 2) After verifying that œ # " and œ  $  $ are similar matrices,

" # ) (

   

check how many are the matrices that realize the similarity.

I M 3) Check for existence and number of solutions, on varying parameters , and , for7 5 2

the linear system of equations .



B  #B  #B  B œ  "

#B  $B  B  B œ # B  *B  7B  5B œ 2

" # $ %

" # $ %

" # $ %

I M 4) In a linear map 0 À‘$ Ä‘$ß 0 — œ —† , the two vectors —" œ "ß !ß !  and

# œ !ß "ß "  form a basis for the Kernel of such map, and the vector ˜" œ $ß  $ß  '  is the image of the vector —$ œ "ß #ß  " . Find the matrix and check if is a diagonali-  zable matrix.

II M 1) Given the function 0 Bß C œ , that it is not differentiable at B

B  C B  C Á !

! B  C œ !

 



#

the point  !ß ! , using the definition check for the directions for which the directional deri-@ vative W@0 !ß !  exists.

II M 2) Verify that with the system    , at the point , it is

   

0 Bß Cß D œ BCD  / œ !

1 Bß Cß D œ BCD  / œ ! "ß "ß "

BC CD

possible to define an implicit function B Ä C B ß D B    , and then compute the equation of the tangent line at B œ ".

II M 3) Solve the problem .

Max/min s.t.:



 

0 Bß C œ B  C B  #B  C  " Ÿ ! B  #B  C  " Ÿ !

#

#

II M 4) Check if the problem Max/min may have solutions.

s.t.:

 0 Bß Cß D œ BC  D  BD  CD œ %

Riferimenti

Documenti correlati

TASKS of MATHEMATICS for Economic

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

TASKS of MATHEMATICS for Economic Applications AA... Find

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Being a problem with an inequality constraint we apply the Kuhn-Tucker conditions, find the solutions and then we study the objective function on the frontier