• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 07/02/2017

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 07/02/2017"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 07/02/2017

I M 1) $ 3  "#  & 3  "# œ$  "  " & 3  #3  "# œ

œ$  # &  "  #3  " œ$  #&† #3œ$  # 3 œ #' #$  3 œ œ %$ cos $ sin $ %cos #  sin # 

#1  3 #1 œ 1#  5$ 1  3 1#  5$ 1 ,

! Ÿ 5 Ÿ #. The three roots are:

B œ %  3 œ %3

# #

" cos 1 sin 1  ;

B œ % (  3 ( œ % $  3" œ  # $  3

' ' # #

# cos 1 sin 1      ;

B œ % ""  3 "" œ % $  3" œ # $  3

' ' # #

$ cos 1 sin 1    .

I M 2) The characteristic polynomial of is

: œ  œ œ

$  # "

" % 

" # 

   

 

 

 

 

 

 

- -ˆ

-

-

-

 5

 $

œ $  %   # "  " %  œ

#  "  "

 - -     -

- -

5 5

 $  $ #

œ $  - - #- "#  #5 #  $  -5  #  % -œ

œ -$ %-# # '  5- % )  5 œ - #-# #  # ) -  5.

If we define ; - œ -# #  # ) -  5, - œ # is a multiple eingenvalue for iff

; # œ # )    5œ ! or 5 œ  ); in such case the characteristic polynomial : - can be factorized as : - œ - -  ## and the three eingevalues are -"ß# œ # and -$ œ ! . To check if  is a diagonalizable matrix we need the geometric multiplicity of - œ # to be equal to , its algebraic multiplicity.#

For this goal we consider a generic element —œ −Xf , must satisfy the— B

B B

 

 

"

#

$

-œ#

condition i.e. the linear system:

 

 

  

B  #B  B œ ! B  #B  B œ ! B  #B  )B œ !  *B œ !

B  #B  &B œ !  'B œ !

Ê Ê B œ  #B

B œ !

" # $ " # $

" # $ $

" # $ $

" #

$ . Every element of

Xf-œ# is a vector     - is

   

 #B  #

B "

! !

œ B

#

# # ; the geometric multiplicity of œ # only " and the matrix is not diagonalizable.

I M 3) The dim Imm of a linear map is equal to the rank of the matrix    associated at the map; so by elementary operations on matrix's lines we get:

(2)

   

   

   

   

   

   

   

   

   

   

   

   

" " #  # " " #  #

" # " " ! "  " $

$ # 7 5 !  " 7  ' 5  '

Ä Ä

V  V

V  $V V  V

# "

$ " $ #

Ä

" " #  #

! "  " $

! ! 7  ( 5  *

 

 

 

 

 

 

 

 

 

 

 

  , and so we get:

Rank if . By the dimention Theorem:

otherwise

  œ #

$ 7 œ ( • 5 œ  *

dim Ker dim Imm œdim ‘% œ % and trivially dim Ker is maximum if and only  if dim Imm is minimum and so   7 œ ( • 5 œ  * with dim Imm œdim Ker œ #. To find a basis for Ker remember that belongs to the kernel of if — 0  —† œ, i.e.:

 

 

 

B  B  #B  #B œ ! B  B  #B  #B œ ! B  #B  B  B œ ! B  B  $B œ !

$B  #B  (B  *B œ !  B  B  $B œ !

Ê Ê

" # $ % " # $ %

" # $ % # $ %

" # $ % # $ %

Ê B œ  $B  &B B œ B  $B

"# $ $ % % . Every element of the Kernel is a vector:

— œ  $B  &B B  $B B ß B $ %ß $ %ß $ %œ B$ $ " "ß !  B &  $ !ß "ß ß  % ß ß  and a basis for the Kernel is UO/< 0  œ $ " "ß ! ß &  $ !ß "ß ß   ß ß .

To find a basis for Imm note that a vector belongs to the image of if ˜ 0  —† œ˜, that in system form is:

 

 

 

B  B  #B  #B œ C B  B  #B  #B œ C B  #B  B  B œ C B  B  $B œ C  C

$B  #B  (B  *B œ C  B  B  $B œ C  $C

Ê Ê

" # $ % " " # $ % "

" # $ % # # $ % # "

" # $ % $ # $ % $ "

Ê C  C  %C œ ! C œ %C  C

B  B  #B  #B œ C B  B  $B œ C  C

! œ C  C  %C



" # $ % "

# $ % # "

$ # "

$ # " $ " #

. From we get

and so every element of Imm is a vector:

˜ œ C C C "ß #ß $ œ C C %C  C"ß #ß " #œ C " ! %  C ! "" ß ß  # ß ß " and a basis for the Image is UM77 0  œ" ! % ß ! "ß ß   ß ß ".

I M 4) If two matri es are similar they have the same characteristic polynomial, and so,- calculating the two polynomials we get:

: œ  œ "  # œ  %  "

" $ 

  -  -ˆ  -  - -

-

# and

: œ  œ  œ  %  " : œ :

" 

  -  -ˆ  -  - -  -  -

-

 "

%

# , so .

For similarity we need a non singular matrix such that:

 † œ  † Ê " # † : : œ : : † !  " Ê

" $ : : : : " %

    #""" ##"#  ""#" ##"#   

Ê :  #: :  #: œ : %:  :

:  $: :  $: : %:  :

 """" #"#" "#"# ####  ##"# "### ""#" and in system form we get:

 

 

 

 

 

 

 

:  #: œ : :  #: œ :

:  #: œ %:  : :  #: œ $: : œ #

:  $: œ : :  $: œ :

:  $: œ %:  : :  : œ :

Ê Ê

"" #" "# "" #" "#

"# ## "# "" "" ## "# ""

"" #" ## "" #" ##

"# ## ## #" "# #" ##

:  : : œ :  :

#" "#

## "# #" .

 is any matrix of the form œ #:  ; ; ; Á „ #:

: :  ;

  with   .

(3)

II M 1) It is easy to verify that on point T the given equation is satisfied.

The gradient of the functions is f0 œ #B/C B# # /BCß #C/C B# #  /BC from which f0 T œ  $ß $ ; since 0Cw T Á ! the equation defines an implicit function

B Ä " œ  T œ  œ "

C B C 0 T  $

0 $

  with w Bw . The Hessian matrix

Cw

   

  is:

‡   

 

Bß C œ # #B  " /  /  %BC/  /

 %BC/  / # #C  " /  /

 

# C B BC C B BC

C B BC # C B BC

# # # #

# # # # , from which:

‡ "ß " œ "  $

 $ &

  .

Since C 0 0 C 0 C we get

0

ww BBww BCww w CCww w

Cw

            

" œ  T  # T †  "  T † "

T

#

Cww #  $

   

" œ  "  "  & œ !

$

† † "

.

II M 2) The Lagrangian function of the problem is

AÐBß Cß ß Ñ œD - B  C  D# # # Ð- B  C  D  "Ñ and its gradient is:

f œ #A  B ß- #C ß- #D ß  Ð- B  C  D  " .Ñ

M SÞGÞ Ê

# œ !

# œ ! œ œ œ

# œ ! œ

: , with only one solution, the point







 B

C B C D

D

 Î#

 $ Î#

-

- -

- -

B  C  D œ  "

 "

T œ "Î$ß  "Î$ß  "Î$ß  #Î$ .

MM SÞGÞ œ

  

 #

 #

 #

: ‡ A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

! !

! !

! !

" " "

"

"

"

, since the problem has three variables

and one constraint, we must consider two principal minors, ‡ A$  and ‡ A% .

$ T œ œ   œ  #  # œ  %  !

 

 #

 #

  #

 # 

 

 

 

 

 

 

!

!

!

!

!

" "

"

"

" "

" " ;

% T œ œ

  

 #

 #

 #

 

 

 

 

 

 

 

 

!

! !

! !

! !

" " "

"

"

"

œ

! ! ! !

! ! ! ! #

! ! !

     

     

     

     

     

     

  #  #

 #  

 #  #  !

   œ  %  %  % œ  "#  !

" " "

" " "

" " "

. On point T, ‡$ T and ‡% T are both negative, so T is a minimum point with

min 0 œ 0 "Î$  "Î$  "Î$ß ß œ"Î$ .

II M 3) The function 0 Bß C œ B C  BC  # # is a twice differentiable function, so H 0@  T! œ f0 T ! † @ and H@ßA# 0 T! œ@ †f0 T ! † AT.

(4)

Since @ œ #ß # , A œ  #ß # , 0 Bß C BC  C B  BC

# # # #

      

 

f œ # #ß # # ,

f œ  "  " Bß C # #  # !

# # ! #

0 T C B  C T

B  C B

         

 

! ß ; ‡ œ , ‡ ! œ .

And so:

H 0@  T 0 T † @ † #ß # #

# #

! œ f  ! œ  "  " ß     œ  ;

H@ßA# 0 T @ † 0 T † A #ß # † †

# #

! !

#

#

#

#

œ f œ  # ! œ

! #

   

 

T   

 

œ    

# # 

# ß # † #

 # œ # .

II M 4) f0 œ œ

0 0 0

 

 

 

 

 

 

 

Bw Cw Dw

#C  D  C  # †

† 691 † #  † 691 † $ C  #

† 691 †  $D 

$ #CD " $ C# "

#CD C# #

#CD #

B BD D

B B BD BD

B B

$ $

$ $

$

 

 

 

   

 

C  #$ BD C# "$ †B .

Riferimenti

Documenti correlati

To find a basis for the Kernel we solve the homogeneous system: ... The constraints are

I M 4) To solve the problem we can apply

[r]

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order