• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 23/03/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 23/03/2019"

Copied!
3
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 23/03/2019

I M 1) If D œ "  3 $, calculate D .

From "  3 œ# " " œ  # cos sin  we get:

# #

3 (  3 (

% %

1 1

"  3$ œ ##cos#" sin#"  ##cos& sin&  and so:

%1  3 %1 œ %1  3 %1

D œ  # # cos& #  sin& #  . )1  5 #1  3 )1  5 #1 ß ! Ÿ 5 Ÿ "

For 5 œ ! À &  3 & œ   3 ,

) )

##cos 1 sin 1 #  " #  "

for 5 œ " À "$  3 "$ œ   3 .

) )

##cos 1 sin 1 #  " #  "

I M 2) The characteristic polynomial of  œ is

# ! !

! " "

! " "

 

 

 

 

 

  À

: œ  œ œ #    " œ

       

 

 

 

 

 

   

- -ˆ - -

-

-

-

# ! !

! " "

! " "

" #

œ #  - - # #- œ-# - -  # œ ! . So we get the three eigenvalues -" œ !, -# œ-$ œ # .

To find an eigenvector associated to the eigenvalue - œ ! we must solve the system:

 

   

   

   

   

   

     

 !ˆ † †

# ! !

! " "

! " "

— œ Ê œ Ê Ê

B !

B !

B !

B œ ! B œ !

B  B œ ! B œ  B

 

 

 

 

 

 

"

#

$

" "

# $ $ #

#

and so the eigenvectors associated to the eigenvalue - œ ! are !ß Bß  B. For B œ " we get !ß "ß  "and the corresponding unit vector " ß " .

# #

Corresponding to the eigenvalue - œ # we must find two orthogonal eigenvectors.

We solve the system:

 

   

   

   

   

   

    

 #ˆ † †

! ! !

!  " "

! "  "

— œ Ê œ Ê

B !

B !

B !

B B œ B

 

 

 

 

 

 

"

#

$

"

$ #

a .

For B œ B œ "" # we get "ß "ß "and the corresponding unit vector   " " " .

$ß $ß $

To find a second eigenvector associated to the eigenvalue - œ # and orthogonal to the eigenvector "ß "ß " we pose "ß "ß " † B ß B ß B  " # #œ B  #B œ ! Ê B œ  #B" # " # from which we get  #ß "ß " and the corresponding unit vector    # " " Þ

'ß 'ß '

So an orthogonal matrix which diagonalizes is  ” œ .

!

 

 

 

 

 

 

 

 

" #

$ '

" " "

# $ '

" " "

# $ '

(2)

I M 3) From Rouchè-Capelli Theorem, if Rank  œRank ˜|  œ 5 the system has ∞85 solutions, where is the number of the variables; in our problem 8 8 œ %. We study the Rank

of the augmented matrix:  |  .

 

 

 

 

 

 

 ˜ œ

" " " " l "

" " " # l "

$ $ $ 2 l 7

By elementary operations on the rows: V Ã V  V# # " and V Ã V  $V$ $ " we getÀ

 

 

 

 

 

 

" " " " l "

! ! ! " l !

! ! ! 2  $ l 7  $

. By (V Ã V  2  $$ $  †V#) we get:

 

 

 

 

 

 

 

 

 

 

 

 

" " " " "

! ! ! " !

! ! ! ! 7  $

l l l

. And so À

 a and 2 7 œ $ À Rank  œRank ˜| œ # À the system has ∞# solutionsà

 a if 2 7 Á $ À Rank  œ # Rank ˜|  œ $ Àthe system has no solutions.

I M 4) Since the vector has coordinates — "ß  " in the basis •œ   #ß " à "ß "  we get:

—œ # " † " œ " –œ $ß " à #ß "

" "  " !

     . In the basis     we have:

  " $ #  B

! œ " " † B"

# Ê B  #B œ " Ê B  #B œ " Ê B œ "

B  B œ ! B œ  B B œ  "

$ " # $ " ""

" # # " # .

So the coordinates of the vector in the basis — – œ   $ß " à #ß "  are "ß  ". Exactly the same.

II M 1) From the equation 0 Bß Cß D œ B /  C /  BD œ !  C D we get:

0 "ß !ß " œ "  !  " œ !  and so the point "ß !ß " satisfies the equation. Then À f0 Bß Cß D œ /  Dà B /  / à C /  B Ê f0 "ß !ß " œ !ß "  /ß  "   C C D D     .

Since 0 "ß !ß " œ  " Á !Dw  it is possible to define an implicit function Bß C Ä D Bß C  

whose derivatives are: ` D ! ` D "  / .

` B "ß ! œ   " œ !à` C "ß ! œ   " œ "  /

II M 2) To s observe that the

Max/min u.c.:

olve the problem: , we



 

0 Bß Cß D œ B  C  D B  C  D œ "

B  C  D œ "

# # #

objective function of the problem is a continuous function, the feasible region is not a com-X pact set, but from the equations of the constraints we can easily explicitly solve respect one variable:

B  C  D œ " #B œ # B œ "

B  C  D œ " Ê D œ B  C  " Ê D œ C . Substituting we get:

0 Bß Cß D œ 0 "ß Dß D œ J D œ "  D  D œ "  #D      # # #. Since J D œ %Dw  simply we get J D œ %Dw    ! for D   !. For D Ÿ ! the function J D  is a decreasing function, for D   ! the function J D  is an increasing function and so the point D œ ! is a minimum point.

For D œ ! we have also B œ " and C œ ! and so the point "ß !ß ! is the unique solution of the problem and it is a minimum point.

If we want to solve the problem using the traditional Lagrangian function with first and second order conditions we have:

ABß Cß Dß- -"ß #œB  C  D# # #-"B  C  D  "-#B  C  D  ". First order conditions bring to the system:

(3)

 

 

 

 

 

 

 

 

 

 

 

A - -

A - -

A - -

- -

wB " #

wC " #

wD " #

"

#

œ #B   œ !

œ #C   œ !

œ #D   œ !

B œ "

C œ ! D œ ! B  C  D œ "

B  C  D œ "

Ê

œ "

œ "

. For the second order conditions we use the borde-

red Hessian matrix: ‡& œ . We must calculate only ‡& .

! ! "  " "

! ! " "  "

" " # ! !

 " " ! # !

"  " ! ! #

 

 

 

 

 

 

 

 

 

 

 

Since  

   

   

   

   

   

   

   

   

   

   

& œ œ œ

! ! "  " " ! ! "  " "

! ! " "  " ! ! " "  "

" " # ! ! " " # ! !

 " " ! # ! ! # # # !

"  " ! ! # !  #  # ! #

œ " † œ œ # † œ

! "  " " ! "  " "

! " "  " ! " "  "

# # # ! ! ! # #

 #  # ! #  #  # ! #

"  " "

" "  "

! # #

   

     

     

     

     

     

     

   

œ # † œ # † %  % œ "'  !

"  " "

! #  #

! # #

 

 

 

 

 

    , constraints are two, an even number, and

since  ‡&  ! we find again that the point "ß !ß ! is the unique solution of the problem and it is a minimum point.

II M 3) Since the function 0 Bß C œ B C  B  # C  C# is clearly a differentiable function in ‘#, we simply calculate H 0@  "ß " œ f0 "ß " †@ and H 0A  "ß " œ f0 "ß " † A.

f0 Bß C œ #BC  C à B  #BC  " Ê f0 "ß " œ "ß !   # #     .

So H 0@  "ß " œ  "ß ! † cosαßsinαœcosα while H 0A  "ß " œ   "ß ! † "ß ! œ " and from this we get cosαœ " Êαœ !.

II M 4) To nalyze the nature of the stationary points of the function we apply first and a second order conditions. For the first order conditions we pose:

f Ê 0 œ # B  #C  # C  #B Ê

0 œ  # # B  #C  C  #B œ !

"!B  )C

 )B  "!C œ !

0 Bß C œ † # † œ !

† † # †

         œ !

   

Bw Cw

from which we get the unique solution B C œ !œ ! Þ

For the second order conditions we construct the Hessian matrix:

‡ ‡ ‡

       ‡

Bß C œ !ß ! œ "!  )  

 ) "! . Since " œ "!!  '% œ $'  ! we see that the

#

œ "!  ! point  !ß ! is a minimum point.

Riferimenti

Documenti correlati

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

[r]