• Non ci sono risultati.

Approssimazione di problemi iperbolici

N/A
N/A
Protected

Academic year: 2021

Condividi "Approssimazione di problemi iperbolici"

Copied!
10
0
0

Testo completo

(1)

Approssimazione di problemi iperbolici

Daniele Boffi

Dipartimento di Matematica “F. Casorati”

Universit`a di Pavia

daniele.boffi@unipv.it

http://www-dimat.unipv.it/boffi/

December 2, 2005

(2)

Convection diffusion equation

As usual. . . a one dimensional example ( − εu00(x) + bu0(x) = 0 0 < x < 1

u(0) = 0, u(1) = 1

Non-homogeneous boundary conditions (!)

P´eclet number P = |b|L/(2ε) (L = 1 in our case) Closed form solution can be explicitly computed

u(x) = exp(bx/ε) − 1 exp(b/ε) − 1

(3)

Convection diffusion equation (cont’ed)

u(x) = exp(bx/ε) − 1 exp(b/ε) − 1

(4)

If b/ε  1 then u(x) ' x

If b/ε  1 then u(x) ' exp(−b(1 − x)/ε)

In the second case, boundary layer of size O(ε/b)

(5)

Convection diffusion equation (cont’ed)

Approximation by finite elements

a(u, v) =

Z 1 0

(εu0(x)v0(x) + bu0(x)v(x)) dx

After some computations. . . stiffness matrix is (uniform mesh):

 b

2 − ε h



ui+1 + 2ε

h ui +



−b

2 − ε h



ui−1

Local (discrete) P´eclet number is P(h) = |b|h/(2ε), so that our system has the structure

(P(h) − 1)ui+1 + 2ui − (P(h) + 1)ui−1 = 0

(6)

Convection diffusion equation (cont’ed)

(P(h) − 1)ui+1 + 2ui − (P(h) + 1)ui−1 = 0

General solution

ui =

1 −

1+P(h) 1−P(h)

i

1 −

1+P(h) 1−P(h)

N i = 1, . . . , N

If P(h) > 1 solution oscillates!

(7)

Stabilization techiniques

I Upwind (finite differences)

I Artificial viscosity, streamline diffusion (loosing consistency) I Petrov–Galerkin, SUPG (strongly consistent)

(8)

Hyperbolic equations

Let’s consider the model problem (one dimensional convection equation)

∂u

∂t + a∂u

∂x = 0, t > 0, x ∈ R u(x, 0) = u0(x), x ∈ R

Solution is a traveling wave u(x, t) = u0(x − at).

We consider a finite difference approximation.

(9)

Hyperbolic equations (cont’ed)

unj ' u(xj, tn)

∂u

∂t + a∂u

∂x = 0

un+1j = unj − ∆t

∆x(hnj+1/2 − hnj−1/2)

where hj+1/2 = h(uj, uj+1) is a numerical flux Indeed,

∂tUj = − (au)(xj+1/2) − (au)(xj−1/2)

with Uj =

Z xj+1/2 xj−1/2

u, dx

(10)

Hyperbolic equations (cont’ed)

Courant–Friedrichs–Lewy (CFL) condition

a ∆t

∆x

≤ 1

Very clear geometrical interpretation (see also multidimensional extension and generalization to systems)

Remark: implicit schemes (in time) don’t have restrictions, but add artificial diffusion

Riferimenti

Documenti correlati

D’Amico, A., Il consumatore va preso per il naso: opportunità e rischi del marketing olfattivo, Relazione presentata al Congresso Internazionale “Le Tendenze del

Considering the increase of production and the more and more restrictive limitation on final destination of sewage sludge, it can be easily understood how an efficient management

Preliminaries and functional spaces: Hilbert spaces, multiplication opera- tors, Sobolev spaces, distributions, Gevrey spaces and Gevrey ultradistributions..

I Artificial viscosity, streamline diffusion (loosing consistency) I Petrov–Galerkin, SUPG (strongly consistent).. Hyperbolic

Approssimazione di problemi parabolici..

Oggi lo strumento chiave per realizzare una presentazione è il personal computer: in questo libro si punta proprio sull'impiego più efficace del computer per progettare i

Voci dall'inferno (Italian Edition). Author: Joshua Levine. Binding: Kindle Edition. Iniziava nel luglio 1916 la Battaglia della Somme, tra le più lunghe della prima guerra mondiale,

optical properties of QD’s, relatively little is known on the influence of the dot-induced potentials on transport of electrons flowing in the neighborhood of dots, particularly,