• Non ci sono risultati.

A Concept Drift-Aware DAG-Based Classification Scheme for Acoustic Monitoring of Farms

N/A
N/A
Protected

Academic year: 2021

Condividi "A Concept Drift-Aware DAG-Based Classification Scheme for Acoustic Monitoring of Farms"

Copied!
14
0
0

Testo completo

(1)

DOI: 10.4018/IJERTCS.2020010104



A Concept Drift-Aware DAG-

Based Classification Scheme for Acoustic Monitoring of Farms

Stavros Ntalampiras, Università degli studi di Milano, Milan, Italy

Ilyas Potamitis, Technological Educational Institute of Crete, Heraklion, Greece

ABSTRACT

Intelligentfarmingaspartofthegreenrevolutionisadvancingtheworldofagricultureinsuchaway

thatfarmsbecomedynamic,withtheoverallscopebeingtheoptimizationofanimalproductionin

aneco-friendlyway.Inthisdirection,thisstudyproposesexploitingtheacousticmodalityforfarm

monitoring.Suchinformationcouldbeusedinastand-aloneorcomplimentarymodetomonitor

thefarmconstantlyatagreatlevelofdetail.Tothisend,theauthorsdesignedaschemeclassifying

thevocalizationsproducedbyfarmanimals.Moreprecisely,adirectedacyclicgraphwasproposed,

whereeachnodecarriesoutabinaryclassificationtaskusinghiddenMarkovmodels.Thetopological

orderingfollowsacriterionderivedfromtheKullback-Leiblerdivergence.Inaddition,atransfer

learning-basedmoduleforhandlingconceptdriftswasproposed.Duringtheexperimentalphase,

theauthorsemployedapubliclyavailabledatasetincludingvocalizationsofsevenanimalstypically

encounteredinfarms,wherepromisingrecognitionrateswerereported.

KEywoRDS

Acoustic Farm Monitoring, Directed Acyclic Graph, Echo State Network, Hidden Markov Model, Mel-Frequency Cepstral Coefficients, Smart Farming

INTRoDUCTIoN

TheareaofComputationalBioacousticSceneAnalysishasreceivedincreasingattentionbythe

scientificcommunityinthelastdecades(Stowell,2018;Blumsteinetal.,2011;Towsey,Truskinger,

&Roe,2015;Dong,Towsey,Zhang,&Roe,2015;Li,Zhou,Zou,&Li,2012).Suchinterestis

motivatedbythepotentialbenefitsthatcanbeacquiredtowardsaddressingmajorenvironmental

challenges including invasive species, infectious diseases, climate and land-use change, etc.

Availabilityofaccurateinformationregardingrange,populationsizeandtrendsiscrucialfor

quantifyingtheconservationstatusofthespeciesofinterest.Suchinformationcanbeobtainedvia

classicalobserver-basedsurveytechniques;however,thesearebecominginadequatesincetheyare

a)expensive,b)subjecttoweatherconditions,c)coveralimitedamountoftimeandspace,etc.To

thisend,autonomousrecordingunits(ARUs)areextensivelyemployedbybiologists(Grill&Schlter,

2017;Ntalampiras,2018a).Thisisalsomotivatedbythecostoftheinvolvedacousticsensorswhich

isconstantlydecreasingduetotheadvancementsinthefieldofelectronics.

Oneofthefirstapproachesemployedforclassifyinganimalvocalizationsisdescribedin(Mitrovic,

Zeppelzauer,&Breiteneder,2006).TheauthorsextractedLinearpredictivecodingcoefficients,

cepstralcoefficientsbasedontheMelandBarkscale,alongwithtime-domainfeaturesdescribingthe

(2)

peaksandsilencepartsofthewaveform.TheclassifierwasaSupportVectorMachine,whilethree

kernelswereconsidered,i.e.polynomial,radialbasisfunction,andsigmoid.Thesewerecompared

withnearestneighborandlinearvectorquantizationschemes.Thespecificdatasetincludedsoundsof

fouranimalclasses,i.e.birds,cats,cows,anddogs.Theliteraturefurtherincludesseveralapproaches

whichconcentrateonspecificspecies,classificationofAustraliananurans(Han,Muniandy,&

Dayou,2011),interpretationofchickenembryosounds(Exadaktylos,Silva,&Berckmans,2014),

classificationofinsects(Noda,Travieso,Snchez-Rodrguez,Dutta,&Singh,2016),etc.However,a

systematicapproachaddressingthespecificcaseoffarmmonitoring,isnotpresentintheliterature.

Thisworkwishestocoverexactlythisgap(Figure1).

Indeed,theacousticmodalitycouldprovidecomplementaryinformationtomonitorthehealth

aswellaspopulationofanimals.Forexample,itcouldbeusedincombinationwithsolutionssuch

as(Kumar&Hancke,2015;Nagpal&Manojkumar,2016;Anu,Deepika,&Gladance,2015)which

recordphysiologicalparametersoftheanimals,suchasrumination,bodytemperature,andheart

ratewithsurroundingtemperatureandhumidity.Thevaluableinformationthatcanbeobtainedvia

theacousticmodalitycouldassistanoverallassessmentofthecurrentstatusoftheanimalsaswell

asthefarmingeneral.Moreprecisely,acousticfarmenvironmentmonitoringcouldassistinthe

followingapplications:

• Trackingofsimilarbreedanimalsandparturitions

• Identificationofspecificanimal(s)forseveralreasons(vaccination,medication,diseases,diet,

etc.)

• Animalhealthmonitoring

• Populationmonitoring

• Detectanimalsmissingfromthefarm

• Intruderdetectionandidentification

Ofcourse,thisisanon-exhaustivelistofthepotentialapplications,whiletheoverallaimis

tooptimizeanimalproductioninaneco-friendlyway.Thespecificareaisanemergingnewtopic

comprisinganintersectionofseveraldisciplinesstartingfromfundamentalbiologyallthewayto

thecurrenttrendsincomputerscienceincludinginternetofthings,signalprocessingovernetworks

andadvancedfaultdiagnosismethods.Towardsanintegratedsolution,theoperationofeachofthese

componentsshouldberecognizedbytherestasitdirectlyinfluencesthestabilityandefficacyof

theoverallsystem.

Figure 1. The logical flow of the proposed method encompassing a) signal windowing, b) feature extraction, c) concept drift detection, d) statistical affinity calculation, e) ESN-based transfer learning, and f) update of the classification scheme

(3)

Thisworksisanextensionof(Ntalampiras,2018b)whiletheaimistoconstructacomprehensive

classificationscheme,theoperationofwhichdoesnotfollowtheblack-boxlogic,i.e.whereoneis

ableto‘open’theclassifier,andbyinspectingthemisclassifications,obtainclearinsightsonhow

itsperformancecanbeboosted.Atthesametime,theproposedsystemisdesignedkeepinginmind

thatitmayhavetooperateundernon-stationaryconditions(Ditzler,Roveri,Alippi,&Polikar,2015;

Dargie,2009),wheredistributionsfollowedbytheknownclassesmayevolveovertime(e.g.due

tonoise,reverberationeffects,etc.),newclassesmayappear(e.g.newspecies),etc.Suchobstacles

requireaschemeabletoincorporatechangesduringitsoperationandaddresstheevolvingphenomena

byappropriatelyalteringitsstructure.

Keepingtheseinmind,weemployedawell-knownfeatureset(Dargie,2009)incombinationwith

aclassificationschemeadoptingadirectedacyclicgraphstructure.There,thetopologicalordering

problemisaddressedbymeansofanapproachbasedontheKullback-Leiblerdivergencemeasured

amongthedifferentsoundclasses.Duringtheexperimentations,weusedpartofthedatasetcalled

EnvironmentalSoundClassification-10describedin(Piczak,2015b)whichincludestheanimals

typicallyencounteredinafarmenvironment,i.e.dog,rooster,pig,cow,cat,hen,andsheep.There,a

preliminaryclassificationanalysisontheentiredatasetprovidedarecognitionrateof72.7%,while

amorerecenteffort(Piczak,2015a)basedonconvolutionalneuralnetworksachievedapproximately

80%.Moreover,weperformedacomparisonwithotherclassificationschemes(echostatenetwork,

class-specificanduniversalhiddenMarkovmodels,supportvectormachines,andrandomforest)and

featuresets(MPEG-7audiostandardandperceptualwaveletpackets),aprocesswhichdemonstrated

thesuperiorityoftheproposedapproach.

Importantly,thedirectedacyclicgraphisaccompaniedbytheframeworkresponsiblefor

handlingconceptdrifts,i.e.theappearanceofnovelaudiodataemittedfromsourcesnotexistingin

theavailabledatabase.Tothisend,weemploytheexistingHMM-basedconceptdriftdetectiontest

describedin(Ntalampiras,2016)complementedbyadataaugmentationmodulebasedontransfer

learning.Wearguethatthemainprobleminaddressingconceptdriftsistheunavailabilityofdata

comingfromthenewsource.Towardsaddressingthispoint,weproposetofindstatisticallysimilar

dataintheavailablecorpusandtransformthemtorepresentthenewsource.Thespecificmodule

wasevaluatedbykeepingoutoftheavailableset,databelongingtoaclassrepresentingthenovel

one.Thisprocedurewascarriedoutforallavailableclassesinarotationalmanner.

Therestofthisarticleisorganizedasfollows:section2formulatestheproblem,whilesection3

detailstheproposedsoundclassificationframeworkincludingtheformalizationoftheDAG-HMM

anditstopologicalordering.Section4providesinformationonthedatasetweemployed,thecontrasted

approaches,andpresentsandanalyzestheexperimentalresults.Finally,section5concludesthiswork.

PRoBLEM FoRMULATIoN

Inthispaperwesupposeasinglechannelaudiodatastream,ytthedurationofwhichisunknown.y

maybeemittedbyvarioussourceswhichareknownonlytoanextent,i.e.C={C1,...,Cm},where

misthenumberofknownsources.Itisfurtherassumedthateachsourcefollowsaconsistent,yet

unknownprobabilitydensityfunctionPiinstationaryconditions,whileataspecifictimeinstance

onesoundsourcedominates(operatingforexampleafterasourceseparationframeworke.g.(Gao,

Woo,&Dlay,2011)).

However,intheconceptdriftenvironmentseveralobstaclesmightbeencountered,e.g.change

oftherecordingconditions,reverberation,appearanceofsoundeventsproducedbysourceswhich

arenota-prioriknown,ytmightbecorruptedbynon-stationarynoise,alterationsintherealizationof

knownsoundevents,etc.Thus,ytbecomesyt’attimet*,wheret*isthestartingtimeinstanceofthe

conceptdrift.SuchobstacleschangethedatagenerationprocessPi,thuseitheranewclassification

methodshouldbedesignedorthealreadyconstructedsystemshouldbeadapted.

(4)

WeassumethataninitialtrainingsequenceTS=yt,t∈[1,T0]isavailablecharacterizedby

stationaryconditionsandcontainingsupervisedpairs(yt,Ci),wheretisthetimeinstantandi∈[1,

m].Noassumptionsaremadewithrespecttothewaytheprobabilitydensityfunctions(pdf)Pi’s

mightalterfort > T0.

THE PRoPoSED SoUND CLASSIFICATIoN FRAMEwoRK

TheproposedframeworkreliesontheDirectedAcyclicGraphlogic(Ntalampiras,2014),i.e.the

classificationschemeisagraphdenotedasG={N,L},whereN={n1,…,nm}representsthenodesand

L={l1,…,lk}thelinksassociatingthenodes.EachnodeinNisresponsibleforabinaryclassification

taskconductedviaasetofhiddenMarkovmodels(HMM)whichfitwellthespecificationsofaudio

patternrecognitiontasks,thustheDAG-HMMnotation.

Themotivationbehindcreatingsuchagraph-basedclassificationsystemisthatinthisway,oneis

abletolimittheproblemspaceanddesignclassificationalgorithmsfortwomutuallyexclusiveclasses

thanhavingtodealwiththeentiretyofthedifferentclassesatthesametime.Essentially,theproposed

methodologybreaksanyCm-classclassificationproblemtoaseriesof2-classclassificationproblems.

DAGscanbeseenasageneralizationoftheclassofDecisionTrees,whiletheredundanciesand

repetitionsthatmayoccurindifferentbranchesofthetreecanbeobservedmoreefficientlysince

differentdecisionpathsmightbemerged.Inaddition,DAGsareabletocollectandconductaseries

oftasksinanorderedmanner,subjecttoconstraintsthatcertaintasksmustbeperformedearlierthan

others.Thesequentialexecutionoftasksisparticularlyimportantanddirectlyrelatedtotheefficacy

withwhichtheoveralltaskisaddressed(VanderWeele&Robins,2010).

TheDAG-HMMarchitectureusedinthispaperincludesm(m−1)/2nodes,eachoneassociated

withatwo-classclassificationproblem.TheconnectionsbetweenthedifferentnodesinGhaveonly

oneorientationwithoutanykindofloop(s).Asaresult,eachnodeofasuchaso-calledrootedDAG

haseither0or2leavingarcs.

ThefollowingsubsectionsprovideadetailedanalysisofthewaytheDAG-HMMisconstructed

andsubsequentlyoperates.TheprincipalissueassociatedwiththedesignofeveryDAGisthe

topologicalordering,i.e.orderingthenodesinawaythatthestartingendpointsofeveryedgeoccur

earlierthanthecorrespondingendingendpoints.Inthefollowing,wedescribehowsuchatopological

orderingisdiscoveredbasedontheKullback-Leiblerdivergence.

Figure 2. The determination of the topological ordering (for simplicity, only four classes are considered)

(5)

Determining the Topological ordering of the DAG-HMM

Naturally,onewouldexpectthattheperformanceoftheDAG-HMMdependsontheorderinwhich

thedifferentclassificationtasksareconducted.Thiswasalsoevidentfromearlyexperimentations.

ThisobservationmotivatedtheconstructionoftheDAG-HMMsothat“simple”tasksareexecuted

earlierinthegraph.Inotherwords,theseareplacedinthetopnodesoftheDAG-HMM,inaway

thatclassesresponsibleforahighnumberofmisclassificationsarediscardedearlyinthegraph

operation.Inordertogetanearlyindicationofthedegreeofdifficultyofaclassificationtask,we

employedthemetricrepresentingthedistanceoftheinvolvedclassesintheprobabilisticspace,i.e.

theKullback-LeiblerDivergence(KLD).ThebasicmotivationistoplaceearlyintheDAG-HMM

tasksconcerningtheclassificationofclasseswithlargeKLD,astheycouldbecompletedwithhigh

accuracy.TheschemedeterminingthetopologicalorderingisillustratedinFigure2.TheKLDbetween

twoJ-dimensionalprobabilitydistributionsAandBisdefinedasin(Taylor,2006).

ItshouldbenotedtheKLDbetweenHMMswasnotusedsincecomputingdistancesbetween

HMMsofunequallengths,whichmightbecommoninthisworkasHMMsrepresentingdifferent

classesmighthavedifferentnumberofstates,canbesignificantlymorecomputationallydemanding

withoutacorrespondinggaininmodelingaccuracy(Zhao,Zhang,Soong,Chu,&Xiao,2007;Liu,

Soong,&Zhou,2007).

AftercomputingtheKLDforthedifferentpairsofclasses,i.e.reachthesecondstagedepicted

inFigure2,theKLDdistancesaresortedinadecreasingmanner.Thiswaythetopologicalordering

oftheDAG-HMMisrevealedplacingtheclassificationtasksoflowdifficultyonitstop.Eachnode

removesaclassfromthecandidatelistuntilthereisonlyoneclassleft,whichcomprisestheDAG- HMMprediction.Theelementsofthedistancematrixcouldbeseenasearlyperformanceindicators

ofthetaskcarriedoutbythecorrespondingnode.Theproposedtopologicalorderingplacestasks

likelytoproducemisclassificationsatthebottomofthegraph.Thisprocessoutputsauniquesolution

forthetopologicalsortingproblem,asitisusuallymetinthegraphtheoryliterature(Cook,1985).

The DAG-HMM operation

TheoperationoftheproposedDAG-HMMschemeisthefollowing:afterextractingthefeaturesof

theunknownaudiosignal,thefirst/rootnodeisactivated.Moreprecisely,thefeaturesequenceisfed

totheHMMs,whichproducetwolog-likelihoodsshowingthedegreeofresemblancebetweenthe

trainingdataofeachHMMandtheunknownone.Thesearecomparedandthegraphflowcontinues

onthelargerlog-likelihoodpath.ItshouldbestressedoutthattheHMMsareoptimized(interms

ofnumberofstatesandGaussiancomponents)sothattheyaddressthetaskofeachnodeoptimally.

Figure 3. An example of a DAG-HMM addressing a problem with four classes along with operation carried out by each node

(6)

Thatsaid,itispossiblethataspecificclassisrepresentedbyHMMswithdifferentparameterswhen

itcomestodifferentnodesoftheDAG-HMM.

AnexampleofaDAG-HMMaddressingaproblemwithfourclassesisillustratedinFigure3.

Theremainingclassesfortestingarementionedbesideeachnode.Digginginsideeachnode,Figure

3showstheHMM-basedsoundclassifierresponsibleforactivatingthepathofthemaximumlog- likelihood.

TheoperationoftheDAG-HMMmaybeparallelizedwiththatofinvestigatingalistofclasses,

whereeachleveleliminatesoneclassfromthelist.Moreindetail,inthebeginningthelistincludes

allthepotentialaudioclasses.Ateachnodethefeaturesequenceismatchedagainsttherespective

HMMsandthemodelwiththelowestlog-likelihoodiserasedfromthelist,whiletheDAG-HMM

proceedstothepartofthetopologywithoutthediscardedclass.Thisprocessterminateswhenonly

oneclassremainsinthelist,whichcomprisesthesystem’sprediction.Hence,incasetheproblem

dealswithmdifferentclasses,theDAG’sdecisionwillbemadeaftertheevaluationofm-1nodes.

1. Input:NovelsoundSuafterconceptdriftdetection(Ntalampiras,2016),parameterk;

2. PartitionthedatasetintoTSandVS;

3. BuildGMMGuandfindthekclosestmodelsinTS;

4. MajorityvotinginkanddiscovertheclasscclosesttoSu;

5. EmployTSofclassctolearnandoptimizethetransformationT:TSc−> Subasedontheminimum

reconstructionerroronVS;

6. ApplyTonVScandaugmentTSu;

Algorithm 1:ThealgorithmfordatasetaugmentationbasedonTransferLearning.

The Feature Set

ThisfeaturesetiscomposedofthefirstthirteenMelfrequencycepstralcoefficientsincludingthe

0-thcoefficientwhichreflectsupontheenergyofeachframe.ForMFCC’sderivationwecompute

thepoweroftheshorttimeFouriertransformwithrespecttoeveryframeandpassthemthrougha

triangularMelscalefilterbank.Subsequently,thelogoperatorisappliedandtheenergycompaction

propertiesofdiscretecosinetransformareexploitedinordertodecorrelateandrepresentthemajority

ofeachenergybandwithjustafewcoefficients.Lastly,athirteen-dimensionvectorisformedby

themostimportantcoefficients.Threederivativesoftheinitialvectorareappendedresultingto

52dimensions.TheprocessingstagewasbasedontheopenSMILEfeatureextractiontool(Eyben,

Weninger,Gross,&Schuller,2013).

Data Augmentation Based on Transfer Learning

Unlikedeformation-basedefforts,e.g.timestretching,pitchshifting,etc.(Salamon&Bello,2017),

weproposetotransferknowledgeexistingintheavailabledatasettoaugmentthedataofthenovel

soundsource.Theproposedalgorithmfirstfindsstatisticallycloserecordingsincludedintheassumed

tobeknowndataset,andsubsequentlyselectstheclosestclass.

Letthenovelsoundsource,afterconceptdriftdetectionasdescribedin(Ntalampiras,2016),be

Su(line1,Algorithm1).AfterportioningthedatasetintotrainingTSandvalidationVSsets(line2,

Algorithm1),thealgorithmcreatesGuandfindsthekclosetmodelsinTSusingEquation3(line3,

Algorithm1).Subsequently,wediscovertheclasscclosesttoSubasedonmajorityvoting(line4,

Algorithm1).Finally,thealgorithmlearnsthetransformationTbyemployingTSc(line5,Algorithm

1),andaugmentsTSubyapplyingTonVSc(line6,Algorithm1).

(7)

The Proposed ESN Transfer Learning Module

Inthiswork,thetransferlearningtransformationTisamultiple-inputmultiple-outputEchoState

Network.ESNmodeling,andinparticularReservoirNetwork(RN),wasemployedatthisstageas

itisabletocapturethenon-linearrelationshipsexistinginthedata(Lukosevicius&Jaeger,2009;

Verstraeten,Schrauwen,&Stroobandt,2006;Jalalvand,Triefenbach,Verstraeten,&Martens,2011).

ThetypicaltopologyofanRNisdemonstratedinFigure4.Iniscomposedofneuronsincluding

non-linearactivationfunctionswithtwopossibilities:a)connectionwiththeinputdata(so-called

inputconnections),andb)connectiontoeachother(so-calledrecurrentconnections).Bothofthem

areassignedrandomlygeneratedweightsduringthelearningstageandremainconstantduringthe

operationoftheRN.Lastly,eachoutputnodeholdsaconnectiontoalinearfunction.

Thebasicmotivationbehindreservoircomputingliesbehindthecomputationalcomplexityof

theback-propagationalgorithm.Duringitsapplication,theinternallayersarenotalteredsignificantly,

thusitisnotincludedinRNlearning.Ontheotherhand,theoutputlayerisassociatedwithalinear

problemandassuch,ofrelativelylowdegreeofperplexity.Nonetheless,thestabilityofthenetwork

isensuredbyconstrainingtheweightsoftheinternallayers.Linearregressionisemployedtolearn

outputweights,so-calledread-outsintheliterature.Adetailedanalysisofthisprocessisoutofthe

scopeofthiswork,whiletheinterestedreaderisdirectedat(Lukosevicius&Jaeger,2009;Jaeger&

Haas,2004)formoreinformation.

EXPERIMENTAL EVALUATIoN

Inthissection,weanalyzethe:a)datasetusedtoacousticallysimulateafarmenvironment,b)

parametrizationofbothDAG-HMMandfeatureextractionmodule,c)contrastedapproaches,and

d)wepresentandcommenttheachievedresults.

Figure 4. The Echo State Network used for feature space transformation

(8)

Dataset

Wecollecteddataassociatedwiththefollowingtypicalfarmanimals:dog,rooster,pig,cow,cat,hen,

andsheep.ThesearetakenfromtheEnvironmentalSoundClassification-10describedin(Piczak,

2015b),whiletheyaresampledat44.1KHz.Eachclassincludes40recordings,eachonewitha

durationof5seconds.

System Parametrization

FollowingtheMPEG-7standardrecommendation,thelow-levelfeatureextractionwindowis30

mswith10msoverlap,sothatthesystemisrobustagainstpossiblemisalignments.Thesampled

dataarehammingwindowedtosmoothpotentialdiscontinuitieswhiletheFFTsizeis512.Standard

normalizationtechniques,i.e.meanremovalandvariancescaling,wereapplied.

TheHMMsofeachnodeareoptimizedintermsofnumberofstatesandnodesfollowingthe

Expectation-MaximizationandBaumWelchalgorithms(Rabiner,1989).Astheconsideredsound

eventsarecharacterizedbyadistincttimeevolution,weemployedHMMswithleft-righttopology,

i.e.onlylefttorightstatestransitionsarepermitted.Moreover,thedistributionofeachstateis

approximatedbyaGaussianmixturemodelofdiagonalcovariance,whichmaybeequallyeffective

toafulloneatamuchlowercomputationalcost(Reynolds&Rose,1995).

Themaximumnumberofk-meansiterationsforclusterinitializationwassetto50whilethe

Baum-Welchalgorithmusedtoestimatethetransitionmatrixwasboundedto25iterationswitha

thresholdof0.001betweensubsequentiterations.Thenumberofexploredstatesrangesfrom3to7

whilethenumberofGaussiancomponentsusedtobuildtheGMMbelongstothe{2,4,8,16,32,

64,128,256,and512}set.Thefinalparameterswereselectedbasedonthemaximumrecognition

ratecriterion.ThemachinelearningpackageTorch(freelyavailableathttp://torch.ch/)wasusedto

constructandevaluateGMMsandHMMs.

Contrasted Approaches

Theproposedapproachwascontrastedtothefollowingones:class-specificHMM(Kim&Sikora,

2004),universalHMMwithaKLDbaseddataselectionscheme(Ntalampiras,2013),supportvector

machine(SVM)withradialbasisfunctionkernel(Chen,Gunduz,&Ozsu,2006),randomforest

(Al-Maathidi&Li,2015),andechostatenetwork(Scardapane&Uncini,2017).Theparameters

oftheseclassificationschemeswereoptimizedonTS.Asforthefeatureset,weexperimentedwith

thedescriptorsfromtheMPEG-7audioprotocol(Casey,2001)andthePerceptualWaveletPackets

(Ntalampiras,Potamitis,&Fakotakis,2009),whichhaveshownencouragingperformancein

generalizedsoundrecognitiontasks.TheESNimplementationisbasedontheEchoStateNetwork

Table 1. The recognition rates achieved by the proposed and contrasted approaches. The approach providing the highest rate is emboldened.

Classifier Average recognition rate (%)

DAG-HMM 93.1

DAG-HMM(conceptdrift) 90.8

Class-specificHMMs 77.1

UniversalHMM 68.6

SVM 52.3

(9)

toolbox(freelyavailableathttps://sourceforge.net/projects/esnbox/)andtheSVMonthelibsvm

library(Chang&Lin,2011).

Asfarasthetransferlearningmoduleisconcerned,weperformedacomparisonwithStacked

AutoEncoders(SAE)whichhavebeenusedforanalyzingemotionmanifestationsacrossmusicand

speechsignals(Coutinho,Deng,&Schuller,2014).Theexperimentwasconductedasdescribedin

Algorithms1and2whilethelog-likelihoodistheevaluationmetric.

1. Input:Augmented

TS

utfromAlgorithm1

2. LearnHMMsH,wherestatess∈{3,4,5,6}andcomponentsg∈{2,4,8,16,32,64,128,256}

3. Computethelog-likelihoodsL=P(VSu|H) 4. Findthemaximumlog-likelihoodinL

5. IdentifytheHMMprovidingthehighestmodelingaccuracyofSu

Algorithm 2:Thealgorithmforevaluatingtheaugmentedfeaturesetandselectingtheoptimum

HMMtorepresentthenovelclass.

Experimental Results

Algorithm2isdesignedtoassesstheperformanceofthetransferlearning-baseddatasetaugmentation

explainedinAlgorithm1.Thedistributionoftheaugmentedfeatureset

TS

ut(line1,Algorithm2)

islearntbymeansofHMMHconstructedusingstatess∈{3,4,5,6}andcomponentsg∈{2,4,8,

16,32,64,128,256}(line2,Algorithm2).Inassessingtheconstructedmodelswecomputethe

log-likelihoodsonVSu(line3,Algorithm2)anddiscoveringthehighestone(line4,Algorithm2).

TherespectiveHMMisidentifiedandstored,whiletheassociatedlog-likelihoodconstitutesameasure

ofcompatibilitybetweentheaugmentedfeatureset

TS

utandtheactualdataofthenovelclassVSu. Figure5demonstratesthecomparativeresultsw.r.tthetransferlearningcapabilitiesofESNand

SAE.Aswecansee,theproposedESN-basedschemeoutperformstheSAEoneacrossallcategories

asitprovidesmoreaccuratemodelingasevaluatedbythelog-likelihoodsproducedontheVS(see

Algorithm1).Asthelog-likelihoodsdemonstratesignificantlylargervalues,wearguethattheESN

showsrelevantabilityincapturingthenon-linearrelationshipexistinginassociatingthefeatures

extractedfromsoundSuandthefeaturesinTS.

Then,Table1includestheresultsachievedbytheproposedDAG-HMMaswellasthecontrasted

approaches.Thedatadivisionprotocolistheten-foldcrossvalidationone.Identicallyselectedfolds

wereusedduringthetrainingandtestingprocessesofallapproaches,enablingareliablecomparison.

Afirstobservationisonthedifficultyofthetaskwhichisrelativelyhighsincemanyclassifications

Table 2. The confusion matrix (in %) with respect to the DAG-HMM. The average classification rate is 93.1%.

Responded

Presented Dog Rooster Pig Cow Cat Hen Sheep

Dog 99.4 - - - - - 0.6

Rooster - 99.7 - - - 0.3 -

Pig 14.4 - 85.6 - - -

Cow - - - 99.8 0.2 - -

Cat 13.9 - - - 86.1 - -

Hen - 0.9 - - - 99.1 -

(10)

schemesfailtoprovideasatisfactoryrecognitionrate.Then,aswecansee,theproposedDAG-HMM

outperformstherestoftheapproaches.ThesecondoneisbasedonclassspecificHMMs,whilethe

ESNachievedthethirdbestrecognitionrate.TheUBMlogicprovideslowerratethattheclass-specific

oneshowingthehighdegreeofdiversitycharacterizingthecommonfeaturespace.Sameconclusions

canbederivedfortheSVM,whichcannotfindreliableboundariesbetweentheclassesandtheRF,the

rulesofwhichdonotclassifythefeaturespaceinareliablemanner.Itisworthtonotethesatisfactory

recognitionrateachievedbytheDAG-HMM(90.8%)intheconceptdriftenvironment,i.e.whenone

classwasunknowntotheclassifier.Inthespecificsetofexperimentsonly5softhenovelclasswere

presentedtothesystem,whilethecorrespondingfeaturespacewasaugmentedviatheESN-based

transferlearningmodule.ThisexperimentwasperformedforallrecordingsandclassesinTS,and

wereporttheaveragedrecognitionrate.

WeconcludethatlimitingtheproblemspaceusingaDAG-HMMisparticularlybeneficialin

thespecificapplicationscenarioprovidingencouragingrecognitionrates.Inasubsequentstep,we

experimentedwiththeMPEG-7andPWPfeaturesets:theDAG-HMMprovidesrecognitionrates

of75.7%and68.9%respectively.Asin(Kim&Sikora,2004),thesuperiorityoftheMFCCsina

generalizedsoundrecognitiontask,wasconfirmed.

TheconfusionmatrixachievedbytheDAG-HMMistabulatedinTable2.Weobservethatthe

classrecognizedwiththehighestaccuracyiscowone(99.8%),whiletheonepresentingtheworst

rateisthesheepone(82.3%).Themisclassifications’sourceisthegreatvariabilityamongsound

samplesofthesameclassasitisassessedbyahumanlistener.Severalsoundclipsareacoustically

similareventhoughtheybelongtodifferentcategories.Thisisparticularlyevidentinthecasesof

sheep-hen,cat-dog,andpig-dogpairs.WeconcludethattheDAG-HMMclassificationapproach

providespromisingperformance;eventhoughtheassociatedcomputationalcostofthetrainingphase

isratherhigh,itistobeconductedonlyonceandoffline.Atthesametime,thetestingphaseincludes

simplelog-likelihoodcomparisonsandestimationscarriedoutusingtheViterbialgorithm,whichis

computationallyinexpensiveasitisbasedonrecursivedynamicprogramming.

Figure 5. The comparative results of the transfer learning module when using ESN and SAE

(11)

CoNCLUSIoN

Thispaperpresentedaclassificationschemeaddressingthenovelscientificareaofacousticfarm

monitoring.WeoutlinedaclassificationschemebasedonaDAGcomposedofHMMstrainedonand

MFCCsfeatureset.Thesuperiorityoftheproposedschemeoverstate-of-the-artclassifierswasproven

onapubliclyavailabledatasetencompassingvocalizationsofsevenfarmanimals.Importantly,the

presentframeworkisabletooperateinaconceptdriftenvironment,i.e.beingabletoonlineevolve

itselfandincreasethedictionaryofanimalvocalizations.

Inthefuturework,weplantoenhancetheproposedsystemsothatitisabletooperateunder

noisyconditions,andespeciallynon-stationarynoise,andevaluateitusingreal-worldrecordings.

ACKNowLEDGMENT

ThisresearchwasfundedbytheELKETEICretefundsrelatedtothedomesticproject:Bioacoustic

applications.

(12)

REFERENCES

Al-Maathidi,M.M.,&Li,F.F.(2015,December).Audiocontentfeatureselectionandclassificationarandom

forestsanddecisiontreeapproach.Proceedings of the 2015 IEEE international conference on progress in informatics and computing (PIC)(p.108-112).IEEEPress.doi:10.1109/PIC.2015.7489819

Anu,V.M.,Deepika,M.I.,&Gladance,L.M.(2015,February).Animalidentificationanddatamanagement

usingRFIDtechnology.Proceedings of the Int. conf. on innovation information in computing technologies(p.

1-6).AcademicPress.doi:10.1109/ICIICT.2015.7396069

Blumstein,D.,Mennill,D.,Clemins,P.,Girod,L.,Yao,K.,Patricelli,G.,Kirschel,A.(2011,6).Acoustic

monitoringinterrestrialenvironmentsusingmicrophonearrays:Applications,technologicalconsiderationsand

prospectus.Journal of Applied Ecology,48(3),758{767.doi:10.1111/j.1365-2664.2011.01993.x

Casey,M.(2001).Mpeg-7sound-recognitiontools.IEEE Trans. on Circuits and Systems for Video Technology,

11(6),737-747.

Chang,C.-C.,&Lin,C.-J.(2011).LIBSVM:Alibraryforsupportvectormachines.ACM Transactions on Intelligent Systems and Technology.Retrievedfromhttp://www.csie.ntu.edu.tw/cjlin/libsvm)

Chen,L.,Gunduz,S.,&Ozsu,M.T.(2006,July).Mixedtypeaudioclassificationwithsupportvectormachine.

Proceedings of the 2006 IEEE international conference on multimedia and expo(p.781-784).IEEEPress.

doi:10.1109/ICME.2006.262954

Cook,S.A.(1985).Ataxonomyofproblemswithfastparallelalgorithms.Information and Control,64(1),

2–22.doi:10.1016/S0019-9958(85)80041-3

Coutinho,E.,Deng,J.,&Schuller,B.(2014,July).Transferlearningemotionmanifestationacrossmusicand

speech.Proceedings of the 2014 international joint conference on neural networks(IJCNN)(p.3592-3598).

AcademicPress.doi:10.1109/IJCNN.2014.6889814

Dargie,W.(2009,July).Adaptiveaudio-basedcontextrecognition.IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Humans,39(4),715–725.doi:10.1109/TSMCA.2009.2015676

Ditzler,G.,Roveri,M.,Alippi,C.,&Polikar,R.(2015,November).Learninginnonstationaryenvironments:A

survey.IEEE Computational Intelligence Magazine,10(4),12–25.doi:10.1109/MCI.2015.2471196

Dong,X.,Towsey,M.,Zhang,J.,&Roe,P.(2015,November).Compactfeaturesforbirdcallretrievalfrom

environmentalacousticrecordings.Proceedings of the 2015 IEEE international conference on data mining workshop (ICDMW)(p.762-767).doi:10.1109/ICDMW.2015.153

Exadaktylos,V.,Silva,M.,&Berckmans,D.(2014).Automaticidentificationandinterpretationofanimal

sounds,applicationtolivestockproductionoptimisation.InH.Glotin(Ed.),Soundscape semiotics - localization and categorization.Rijeka:InTech;doi:10.5772/56040

Eyben,F.,Weninger,F.,Gross,F.,&Schuller,B.(2013).Recentdevelopmentsinopensmile,themunichopen- sourcemultimediafeatureextractor.Proceedings of the 21st ACM international conference on multimedia(pp.

835-838).NewYork:ACM.doi:10.1145/2502081.2502224

Gao,B.,Woo,W.L.,&Dlay,S.S.(2011,September).Adaptivesparsitynon-negativematrixfactorization

forsingle-channelsourceseparation.IEEE Journal of Selected Topics in Signal Processing,5(5),989–1001.

doi:10.1109/JSTSP.2011.2160840

Grill,T.,&Schlter,J.(2017,Aug).Twoconvolutionalneuralnetworksforbirddetectioninaudiosignals.

Proceedings of the 2017 25th European signal processing conference (EUSIPCO)(p.1764-1768).Academic

Press.doi:10.23919/EUSIPCO.2017.8081512

Han,N.C.,Muniandy,S.V.,&Dayou,J.(2011).AcousticclassificationofAustraliananuransbasedonhybrid

spectralentropyapproach.Applied Acoustics,72(9),639–645.doi:10.1016/j.apacoust.2011.02.002

Jaeger,H.,&Haas,H.(2004).Harnessingnonlinearity:Predictingchaoticsystemsandsavingenergyinwireless

communication.Science,304(5667),78–80.doi:10.1126/science.1091277PMID:15064413

(13)

Jalalvand,A.,Triefenbach,F.,Verstraeten,D.,&Martens,J.(2011).Connecteddigitrecognitionbymeansof

reservoircomputing.Proceedings of the 12th annual conference of the international speech communication association(pp.1725-1728).AcademicPress.

Kim,H.-G.,&Sikora,T.(2004,May).Comparisonofmpeg-7audiospectrumprojectionfeaturesandmfcc

appliedtospeakerrecognition,soundclassificationandaudiosegmentation.Proceedings of the 2004 IEEE international conference on acoustics, speech, and signal processing(Vol.5,pp.925-928).IEEEPress.

doi:10.1109/ICASSP.2004.1327263

Kumar,A.,&Hancke,G.P.(2015,January).Azigbee-basedanimalhealthmonitoringsystem.IEEE Sensors Journal,15(1),610–617.doi:10.1109/JSEN.2014.2349073

Li,B.,Zhou,Z.,Zou,W.,&Li,D.(2012,September).Quantummemeticevolutionaryalgorithm-basedlow- complexitysignaldetectionforunderwateracousticsensornetworks.IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews,42(5),626–640.doi:10.1109/TSMCC.2011.2176486

Liu,P.,Soong,F.K.,&Zhou,J.L.(2007,April).Divergence-basedsimilaritymeasureforspokendocument

retrieval.Proceedingsofthe2007IEEEinternationalconferenceonacoustics,speechandsignalprocessing-

ICASSP‘07(Vol.4,p.89-92).doi:10.1109/ICASSP.2007.367170

Lukosevicius,M.,&Jaeger,H.(2009,August).Survey:Reservoircomputingapproachestorecurrentneural

networktraining.Comput. Sci. Rev.,3(3),127-149.doi:10.1016/j.cosrev.2009.03.005

Mitrovic,D.,Zeppelzauer,M.,&Breiteneder,C.(2006).Discriminationandretrievalofanimalsounds.

Proceedings of the 2006 12th international multi-media modelling conference.AcademicPress.doi:10.1109/

MMMC.2006.1651344

Nagpal,S.K.,&Manojkumar,P.(2016,February).Hardwareimplementationofintruderrecognitionina

farmthroughwirelesssensornetwork.Proceedings of the 2016 international conference on emerging trends in engineering, technology and science (ICETETS)(p.1-5).AcademicPress.doi:10.1109/ICETETS.2016.7603012 Noda,J.J.,Travieso,C.M.,Snchez-Rodrguez,D.,Dutta,M.K.,&Singh,A.(2016,February).Usingbioacoustic

signalsandsupportvectormachineforautomaticclassificationofinsects.Proceedings of the 2016 3rd int. conf.

on signal processing and integrated networks(pp.656-659).AcademicPress.doi:10.1109/SPIN.2016.7566778 Ntalampiras,S.(2013,February).Anovelholisticmodelingapproachforgeneralizedsoundrecognition.IEEE Signal Processing Letters,20(2),185–188.doi:10.1109/LSP.2013.2237902

Ntalampiras,S.(2014).Directedacyclicgraphsforcontentbasedsound,musicalgenre,andspeechemotion

classification.Journal of New Music Research,43(2),173–182.doi:10.1080/09298215.2013.859709

Ntalampiras,S.(2016,September).Automaticanalysisofaudiostreamsintheconceptdriftenvironment.

Proceedings of the 2016 IEEE 26th international workshop on machine learning for signal processing (MLSP)

(p.1-6).IEEEPress.doi:10.1109/MLSP.2016.7738905

Ntalampiras,S.(2018a).Birdspeciesidentificationviatransferlearningfrommusicgenres.Ecological Informatics,44,76–81.doi:10.1016/j.ecoinf.2018.01.006

Ntalampiras,S.(2018b,November).Aclassificationschemebasedondirectedacyclicgraphsforacousticfarm

monitoring.Proceedings of the 2018 23rd conference of open innovations association (FRUCT)(p.276-282).

AcademicPress.doi:10.23919/FRUCT.2018.8588077

Ntalampiras,S.,Potamitis,I.,&Fakotakis,N.(2009).Exploitingtemporalfeatureintegrationforgeneralized

soundrecognition.EURASIP Journal on Advances in Signal Processing,(1).

Piczak,K.J.(2015a,September).Environmentalsoundclassificationwithconvolutionalneuralnetworks.

Proceedings of the 2015 IEEE 25th international workshop on machine learning for signal processing (MLSP)

(p.1-6).IEEEPress.doi:10.1109/MLSP.2015.7324337

Piczak,K.J.(2015b).Esc:Datasetforenvironmentalsoundclassification.Proceedings of the 23rd acm international conference on multimedia(pp.1015-1018).NewYork:ACM.doi:10.1145/2733373.2806390 Rabiner,L.R.(1989,February).AtutorialonhiddenMarkovmodelsandselectedapplicationsinspeech

recognition.Proceedings of the IEEE,77(2),257–286.doi:10.1109/5.18626

(14)

Stavros Ntalampiras is an Assistant Professor at the Department of Informatics of the University of Milan. He received the engineering and Ph.D. degrees from the Department of Electrical and Computer Engineering, University of Patras, Greece, in 2006 and 2010, respectively. He has carried out research and/or didactic activities at Politecnico di Milano, the Joint Research Center of the European Commission, the National Research Council of Italy, and Bocconi University. Currently, he is an Associate Editor of IEEE Access and a member of the IEEE Computational Intelligent Society Task Force on Computational Audio Processing, while his research interests include content- based signal processing, audio pattern recognition, machine learning, and cyber physical systems.

Ilyas Potamitis received the B.Eng. and Dr.Eng. degrees in electrical engineering from the Department of Electrical and Computer Engineering. University of Patras, Patras, Greece, in 1995 and 2002, respectively. He is a Full Reynolds,D.A.,&Rose,R.C.(1995,January).Robusttext-independentspeakeridentificationusinggaussian

mixturespeakermodels.IEEE Transactions on Speech and Audio Processing,3(1),72–83.doi:10.1109/89.365379 Salamon,J.,&Bello,J.P.(2017,March).Deepconvolutionalneuralnetworksanddataaugmentation

for environmental sound classification. IEEE Signal Processing Letters, 24(3), 279–283. doi:10.1109/

LSP.2017.2657381

Scardapane,S.,&Uncini,A.(2017,February).Semi-supervisedechostatenetworksforaudioclassification.

Cognitive Computation,9(1),125-135.doi:10.1007/s12559-016-9439-z

Stowell,D.(2018).Computationalbioacousticsceneanalysis.InT.Virtanen,M.D.Plumbley,&D.Ellis(Eds.),

Computationalanalysisofsoundscenesandevents(pp.303-333).Cham:SpringerInternationalPublishing.

doi:10.1007/978-3-319-63450-0_11

Taylor,P.(2006).Thetargetcostformulationinunitselectionspeechsynthesis.InINTERSPEECH 2006 - ICSLP, ninth international conference on spoken language processing,Pittsburgh,PA,September17-21.AcademicPress.

Towsey,M.W.,Truskinger,A.M.,&Roe,P.(2015,Nov).Thenavigationandvisualisationofenvironmental

audiousingzoomingspectrograms.Proceedings of the 2015 IEEE international conference on data mining workshop (ICDMW)(p.788-797).doi:10.1109/ICDMW.2015.118

VanderWeele,T.J.,&Robins,J.M.(2010).Signeddirectedacyclicgraphsforcausalinference.Journal of the Royal Statistical Society: Series B (Statistical Methodology),72(1),111-127.doi:10.1111/j.1467- 9868.2009.00728.x

Verstraeten,D.,Schrauwen,B.,D’Haene,M.,&Stroobandt,D.(2007).Anexperimentalunificationofreservoir

computingmethods.Neural Networks,20(3),391–403.doi:10.1016/j.neunet.2007.04.003PMID:17517492 Verstraeten,D.,Schrauwen,B.,&Stroobandt,D.(2006,July).Reservoir-basedtechniquesforspeechrecognition.

ProceedingsoftheinternationaljointconferenceonneuralnetworksIJCNN‘06(p.1050-1053).Academic

Press.doi:10.1109/IJCNN.2006.246804

Zhao,Y.,Zhang,C.,Soong,F.K.,Chu,M.,&Xiao,X.(2007).Measuring attribute dissimilarity with hmm kl-divergence for speech synthesis.

Riferimenti

Documenti correlati

We built an Expense-Activity-Link Matrix (EAL-matrix) for each clinical trial examined as illustrated in S2 Table. The EAL-matrix reflects the first stage of cost assignment and

Un’idea della dimensione della spesa per compartecipazione per prestazioni ambulatoriali può essere desunta dal si- stema di monitoraggio TS (sistema Tessera Sanitaria) che

We finally agreed to work on this text as a statement of future research developments, which is ultimately also why each author ( tf project research fellow) identified a

Technique for Efficient Solution of Method of Moments Matrix Equations”, Microwave and Optical Technology Letters, vol.. Prakash, “Efficient Analysis of a Class

The subsequent chapters have been significantly strength- ened by the addition of with six new chapters dealing with the following topics: intrauterine blood flow; post-

Theorem 4.1 The circuit satis ability problem can be solved with 2 n strands and O ( s ) biological steps, where n is the number of variables and s is the size of the circuit....

 Invio, autenticazione e convalida reciproca del certificato digitale tra il richiedente (certificato server) e il server autenticazione (certificato client) MIGLIORAMENTI:.

He is the founder of the IEEE International Conference Series on Intelligent Engineering Systems (INES) and IEEE International Conference on Computational Cybernetics (ICCC), and some