• Non ci sono risultati.

Control Systems Lecture (4) Constantinos Siettos

N/A
N/A
Protected

Academic year: 2021

Condividi "Control Systems Lecture (4) Constantinos Siettos"

Copied!
33
0
0

Testo completo

(1)

Control Systems

Lecture (4)

Constantinos Siettos

(2)

Feedback Control Systems

Control of a System’s Response

Transient Steady State

(3)

Why Feedback?

Steady-State Error



E(s)R(s) 1  K



E(s)R(s) 1  K s



e(t)  1 1  K



e(t)  e

K t

Y(s) Y(s)

For

R(s)=1/s For R(s)=1/s

  lim

t

  lim

s 0

 

f f t sF s



  

The difference between input and output for a predetermined input for



t  

(4)

Steady-State Error- Proportional Control

Control Gc(s)

system G

p

(s)

feedback H(s)=1 reference input, R(s)

error, E(s) output, Y(s)

+ -

error, u(s)

   

     

   

1

p c

c p

G s G s T s Y s

R s G s G s

 

    

   

1

c p

E s R s

G s G s

 

 

0

 

lim lim

ss t s

e e t sE s



 

(5)

Steady-State Error with Proportional Controller - Step Input

   

   

1

c p

E s R s

G s G s

         

       

0 0

0

0

1

1 1

lim lim lim

lim lim

ss t s s

c p

s c p s c p

A

e e t sE s s s

G s G s

A A

G s G s G s G s



   

  

Constant of steady state error

Α

(6)

Steady-State Error with Proportional Controller-Ramp Input

   

   

1

c p

E s R s

G s G s

         

   

2

0 0

0

lim lim lim

lim

ss t s s

c p

s c p

A

e e t sE s s s

s sG s G s A

sG s G s



   

Constant of velocity error

Α

(7)

Steady-State Error with Proportional Controller

   

   

 

1

p c

c p

G s k T s Y s

R s k G s

 

E.g. for a 1st order process

 

( )

p

G s K

s a

     

c

R s s a E s s a k K

 

     

 

c c

Y s Kk

T sR ss a k K

 

Control Gc(s)=kc

system G

p

(s)

feedback H(s)=1 reference input, R(s)

error, E(s) output, Y(s)

+ -

error, u(s)

(8)

Steady-State Error, Use of Matlab

clear all Kc=1;

K=1;

a=0.5;

sys1=tf(1,1);

sys2=tf(K,[1 a]);

sysh=tf(1,1);

sys3=series(sys1,sys2);

sys4=feedback(sys3,sysh) step(sys4)

T=0:0.01:4

U=ones(length(T),1);

LSIM(sys4,U,T) U=0.35*T;

LSIM(sys4,U,T)

(9)

Steady-State Error-

Simple Design Example

   

 

1

p

E s R s

KG s

Find Κ so that the steady-state error is 10%

1. For R(s) step ?

   

       

     

0 0

1

1 0

5 5

1 1

6 7 8 6 7 8

lim lim

s s

e t s s

s s

K K

s s s s s s s s

    

 

 

     

(10)

   

 

1

p

E s R s

KG s

1. For R(s) ramp ?

   

       

     

       

2

0 0

1

1

5 5

1 6 7 8 6 7 8

1 336

5 5 0 1 6 7 8

lim lim

.

s s

e t s s

s s

K s K

s s s s s s s

K K

    

 

 

     

 

So Κ=672

Steady-State Error-

Simple Design Example

Find Κ so that the steady-state error is 10%

(11)

Control System of the Direction of Automotive Robot

  1

p

G s K

s

 

 

1 2

c

G s K K

  s

   

   

1

c p

E s R s

G s G s

  1. For R(s) step and Κ

2

=0:

 

0 0

1 1 1

1 1 1

1 1

lim lim

s s

A

A A

e t s s

K K K K

K K

s s

 

    

  

 

2. For R(s) step and Κ

2

>0:

 

0 0

1 2

2 1

0 1 1

1 1

lim lim

s s

A s A

e t s

K s K K

K K

K ss ss

    

   

       

y

(12)

  1

p

G s K

s

 

 

1 2

c

G s K K

  s

   

   

1

c p

E s R s

G s G s

 

3. For R(s) ramp and Κ

2

>0:

 

 

2

0 0

2 2

1 2

1

1

1 1

lim lim

s s

A

A A

e t s s

K K s K s K K K K

K sss

    

   

       

y

Control System of the Direction of

Automotive Robot

(13)

  1

p

G s K

s

 

 

1 2

c

G s K K

  s

   

   

1

c p

E s R s

G s G s

 

3. For R(s) ramp and Κ

2

>0:

 

 

2

0 0

2 2

1 2

1

1

1 1

lim lim

s s

A

A A

e t s s

K K s K s K K K K

K sss

    

   

       

y

Control System of the Direction of

Automotive Robot

(14)

  1

p

G s K

s

 

 

1 2

c

G s K K

  s

 

2

e t A

   K K

clear all K1=1;

K2=0.5;

Tau=0.1

sys1=tf([Κ1 Κ2],[1 0]);

sys2=tf(K,[tau 1]);

sysh=tf(1,1);

sys3=series(sys1,sys2);

sys4=feedback(sys3,sysh) T=0:0.01:10

U=sin(T);

LSIM(sys4,U,T)

0 1 2 3 4 5 6 7 8 9 10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1 Linear Simulation Results

Time (sec)

Amplitude

Control System of the Direction of

Automotive Robot-Use of Matlab

(15)

0 05

4 3

3

:

n sT

.

s

n s

s

n

T e

T T



 



 

  

1 

2

 

n

T

p



P.O. 100e



1 2



M

pt

1 e



1 2

Percent Overshoot is defined as:

P.O. = [(Mpt – fv) / fv] * 100%

Mpt = The peak value of the time response fv = Final value of the response

) 1 sin(

1 )

(   



e

t

t

y

nt n

1 

2

     cos

1

Performance of Feedback System in Time

Field

(16)

Performance of Feedback System in Time Field

) 1 sin(

1 )

(   



e

t

t

y

nt n

1 

2

     cos

1

Oscillation Period:

2

2

n

1

T

 

 

Time that the output takes the maximum value :

2

2

2

2

2

1 1 1 0

1

, 0, 1, 2, ...

1

( )

n nt

sin

n n nt

cos

n

n

dy t e t e t

dt

t n n

 

        

 

       

  

The first time that the edge appears for n=1:

1 

2

 

n

T

p

 

2 2 2

 

2

n

n n

Y s R s

s s

 

  

(17)

clear all

t=[0:0.1:12];

Num=1;

For zeta=[0.1 0.2 0.5 0.9 1 2];

Den1=[1 2*zeta 1];

Sys=tf(num,den);

[y,tout]=step(sys,t);

plot(tout,y);

Pause(1) hold on;

end

0 2 4 6 8 10 12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

ζ

Performance of Feedback System in Time

Field-MATLAB

(18)

An example: Reading the Hard-Disc

H(s)=1 R(s)

Κ Y(s),

Rotation Velocity + -

-

5 +

D(s)

1 20

s s

Design: the maximum overshoot <5%, Τs<250, Overshoot in step disturbance <5x10-3

(19)

   5   

2

5  

2 2 2

 

20 5 20 5 2

n

n n

K K

Y s R s R s R s

s s K s s K s s

 

  

     

1 2

1 1 005 .

M

pt

e



 

3 250

s

n

T 

1 2

100 e 5



2

n

20 10

n

 

   

maple( 'solve(100*exp(-10*pi/

(sqrt(5*x))/sqrt(1-100/(5*x)))<5),x' )

An example: Reading the Hard-Disc

H(s)=1

R(s) Κ Y(s),

Rotation Velocity + -

-

5 +

D(s)

120

s s

Design: the maximum overshoot <5%, Τs<250, Overshoot in step disturbance <5x10-3

(20)

clear all

t=[0:0.01:1];

K=25;

Num=[5*K];

Den1=[1 20 5*K];

Sys=tf(num,den);

[y,tout]=step(sys,t);

plot(tout,y),grid;

Pause(1) hold on;

end

 

2

5  

20 5

Y s K R s

s s K

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

y(t)

H(s)=1

R(s) Κ Y(s),

Rotation Velocity + -

-

5 +

D(s)

120

s s

Design: the maximum overshoot <5%, Τs<250, Overshoot in step disturbance <5x10-3

An example: Reading the Hard-Disc

(21)

Control of the Insouline injection

 

 

 

 

 

   

     

2

1 2

2 1 2

1 1

K s

s s K s

Y s R s R s

s s s K s

K s s

 

 

   

 

What is the value of Κ so that the maximum value of response in a unit step disturbance do not exceed 5x10-3,

Time period of settling 250ms

Pump

Κ Body

H(s)=1

R(s) E(s) Y(s)

Sugar concentration

+ -

insouline

   

 

2

p

1 G s s

s s

 

(22)

   

     

2

1 2

Y s K s R s

s s K s

 

What is the value of Κ so that the maximum value of response in unit step disturbance does not exceed 2%, settling time 4ms

clear all

t=[0:0.1:12];

Num=[K 2K];

Den1=[1 (1+K) 2*K];

Sys=tf(num,den);

[y,tout]=step(sys,t);

plot(tout,y);

   

 

2

2 2 2

n

n n

a s a

Y s R s

s s

 

 

 

Control of the Insouline injection

Pump

Κ Body

H(s)=1

R(s) E(s) Y(s)

Sugar concentration + -

insouline

   

 

2

p 1 G s s

s s

(23)

Integral Indices of Performance – Optimal Design

1. Integral of the absolute value of the error (IAE)

 

0

IAE e t dt

 

e(t) denotes the difference between set point and output

• Criteria that optimize the closed loop response of set-point changes or disturbances.

• The optimal values of the control parameters minimize the integral criteria

• The 3 most used criteria are the following:

(24)

2. Integral of the squared error (ISE)

 

2

0

ISE e t dt

 

   

3. Integral of the time-weighted absolute error (ITAE)

 

0

ITAE t e t dt

 

Integral Indices of Performance – Optimal Design

• Criteria that optimize the closed loop response of set-point changes or disturbances.

• The optimal values of the control parameters minimize the integral criteria

• The 3 most used criteria are the following:

(25)

H(s)=1 R(s)

Κ Y(s), bank angle

+ -

s 1010

s s12 2

Activation of the Wind Slope (BANK)

Plane Dynamics

Gyroscope Gain

Integral Indices of Performance –

Optimal Design-Matlab

(26)

Aim: Optimization of the closed loop response in a step change with IAE criterion

clear all kiter=0;

for K=0.1:0.001:2;

sys1=tf(K,1);

sys2=tf(10,[1 10]);

sys3=tf(12, [1 2 0]);

sys12=series(sys1,sys2);

sysopen=series(sys12,sys3);

sysclosed=feedback(sysopen,1);

%H=get(sysclosed);

y=step(sysclosed);

kiter=kiter+1;

Ksave(kiter)=K;

e(kiter)=sum(abs(y-1));

[K e(kiter)]

end

plot(Ksave,e)

Integral Indices of Performance – Optimal Design-Matlab

H(s)=1

R(s) Κ Y(s), bank angle

+ -

12 2 s s

s1010

Activation of the Wind Slope

Plane Dynamics

Gyroscope Gain

(27)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0

100 200 300 400 500 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7

0 0.2 0.4 0.6 0.8 1 1.2

1.4 Step Response

Time (sec)

Amplitude

0 10 20 30 40 50 60 70 80 90 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2 Step Response

Time (sec)

Amplitude

0 50 100 150 200 250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2 Step Response

Time (sec)

Amplitude

Integral Indices of Performance – Optimal Design-Matlab

Aim: Optimization of the closed loop response in a step change with IAE criterion

(28)

Y s(s)

C(s) U(s)

Y sp (s)

G c(s) Y(s)

D(s)

G a(s) G p(s)

G s(s)

G d (s)

+ -

E(s)

+ +

Feedback Control loop

1 )

( )

( )

( )

(

) ( )

( )

( )

( ) (

 

s G

s G

s G

s G

s G

s G

s G

s Y

s Y

s c

a p

c a

p sp

1 )

( )

( )

( )

(

) ( )

( ) (

 

s G

s G

s G

s G

s G

s D

s Y

s c

a p

d

(29)

Characteristic Equation

1 0 ( ) ( ) ( ) ( )

p a c s

G s G s G s G s  

The transient response of the system is determined from the place of poles which are the roots of the characteristic equation

A state of a system is stable if bounded inputs result to bounded outputs

The complex s-plane seperates in two regions: one stable whchcorresponds to the left semi-plane and the unstable region which corresponds to the right semi-plane

s-plane

stable unstable

x x

x

x x

x

x

j

x x

(30)

Poles and Stability

Re Im

Time

y

Re Im

Time

y

Re Im

Time

y

(31)

Linear Control System– PID Controllers

0

0

1 ( )

( ) ( ) ( )

where ( ) ( )

t

c D

I

s s

c t c K e t e t dt de t

dt

e t R y t

 

 

     

 

 

 

 

  

s

K s s

E

s s C

G D

I c

c

 1 1

) (

) ) (

(

(32)

Linear Control Systems– PID Controllers

e(t)- the error from setpoint [e(t)=R

s

-y

s

] K

c

- the controller gain is a tuning parameter

I

- the reset time is a tuning parameter and determines the amount of integral action.

D

- the derivative time is a tuning parameter and

determines the amount of derivative action.

(33)

Steady-State Error

Riferimenti

Documenti correlati

This paper discusses modularization as a mechanism for improving the flexibility and comprehensibility of a system while allowing the shortening of its development

Given the small model theorem above, we can conclude that, when evaluating the entailment, we can restrict our consideration to small models, namely, to polynomial multi-linear

In the present experiments the eff ects of relaxin on colonic motility in mice were further investigated and electrophysiological records in a single smooth muscle cell were

In developed countries, the spectrum of aetiology of CD includes functional disorders, nutrient malabsorp- tion (such as food allergy, celiac disease, and cystic fibrosis), autoim-

School of Applied Mathematics and Physical Sciences National Technical University of Athens...

[r]

Transform the diagram in the normal form making use of the rules of reduction 3.. Add algebraically all the responses from

Containment measures to control infection, such as the isolation of patients, handwashing, wearing gloves, and an adequate use of face shield, plus a wise evaluation of the