• Non ci sono risultati.

10. Global Example

N/A
N/A
Protected

Academic year: 2021

Condividi "10. Global Example"

Copied!
17
0
0

Testo completo

(1)

10. Global Example

0 4 2 3 5 1

Figure 10.1 – Global example.

Building of the groups

There are six groups; the links for each group are: • Group 0 link: (0 1) (2 3) • Group 1 link: (0 2) (4 3) • Group 2 link: (1 0) (3 2) • Group 3 link: (2 0) (3 4) • Group 4 link: (3 5) • Group 5 link: (5 3) 0 4 2 3 5 1 Group 0

(2)

0 4 2 3 5 1 Group 1 0 4 2 3 5 1 Group 2 0 4 2 3 5 1 Group 3 0 4 2 3 5 1 Group 4

(3)

0 4 2 3 5 1 Group 5 Figure 10.2 – Groups. Frame features:

• 50 minislots per frame. • 1 minislot = 50 bytes.

The nodes divide frames in six groups. Each group has eight minislots. One slot for each group is for preamble

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

( 0 1 ) ( 2 3 ) ( 0 2 ) ( 4 3 ) ( 1 0 ) ( 3 2 ) ( 2 0 ) ( 3 4 ) ( 3 5 ) ( 5 3 ) 24 Figure 10.3 – Groups.

(4)

Flows 0 4 2 3 5 1 Flow A Flow F Flow E Flo w C Flow D Flow B Figure 10.4 – Flows. Flow A

• packet dimension: 75 bytes • packet period: 20 ms Nodes compute: • Link 0-2 Æ group 1 • M = [ 75 * 10 / 20 ]sup = 38 bytes • B = [ 38 / 50 ]sup = 1 minislot 0 2 PATH RSV CNF minislot 9 Figure 10.5 – Flow A.

frame minislot byte used flow assigned sign preamble

8 YES

9 38 A NO

x

(5)

11 12 13 14 15 Table 10.1 – Flow A. 0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A

Figure 10.6 – Node 0.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A

Figure 10.7 – Node 2.

Flow B

• packet dimension: 100 bytes • packet period: 10 ms Nodes compute: • Link 2-0 Æ group 3 • M = [ 100 * 10 / 10]sup = 100 bytes • B = [ 100 / 50 ]sup = 2 minislots • Link 0-1 Æ group 0 • M = [ 100 * 10 / 10 ]sup = 100 bytes • B = [ 100 / 50 ]sup = 2 minislots

(6)

Figure 10.8 – Flow B. 0 2 PATH minislots 1-2 minislots 25-26 1 PATH RSV RSV CNF

frame minislot Byte

used

flow assigned

sign preamble minislot Byte used flow assigned sign preamble 8 YES 24 YES 9 38 A NO 25 50 B NO 10 26 50 B NO 11 27 12 28 13 29 14 30 x 15 31 Table 10.3 – Node 2.

frame minislot Byte used

flow assigned

sign preamble minislot Byte

used flow assigned sign preamble 0 YES 24 YES 1 50 B NO 25 50 B NO 2 50 B NO 26 50 B NO 3 27 4 26 5 29 6 30 7 31 8 YES 9 38 A NO 10 11 12 13 x 14

(7)

15

Table 10.4 – Node 0.

frame minislot Byte used flow assigned sign preamble

0 YES 1 50 B NO 2 50 B NO 3 4 5 6 x 7 Table 10.5 – Node 1. 0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A B

Figure 10.9 – Node 2.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A B

B

Figure 10.10 – Node 0.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

B

(8)

Flow C et dimension: 125 bytes odes compute: roup 1 = 125 bytes frame • pack • packet period: 10 ms N • Link 4-3 Æ g • M = [ 125 * 10 / 10 ]sup • B = [ 125 / 50 ]sup = 3 minislots Figure 10.12 – Flow C. 4 3 PATH RSV CNF minislots 9-10-11

minislot Byte used flow assigned sign Preamble

8 YES 9 50 C NO 10 50 C NO 11 25 C NO 12 13 14 x 15

T ble 10.6 – Nodes 3 and 4. a

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

C

(9)

Flow D t dimension: 200 bytes odes compute: roup 0 = 67 bytes Link 3-5 Æ group 4 = 67 bytes ame • packe • packet period: 30 ms N • Link 2-3 Æ g • M = [ 200 * 10 / 30 ]sup • B = [ 67 / 50 ]sup = 2 minislots • • M = [ 200 * 10 / 30 ]sup • B = [ 67 / 50 ]sup = 2 minislots Figure 10.14 – Flow D.

fr minislot Byte flow

ed

sign

used assign

preamble minislot Byte flow

ed sign preamble used assign 0 YES 32 YES 1 50 D NO 33 50 B NO 2 17 D NO 34 50 B NO 3 35 4 36 5 37 6 38 7 39 8 YES 9 38 A O N 10 11 12 x 13 3 2 PATH CNF RSV PATH 5 RSV minislots 33-34 minislots 1-2

(10)

14 15 Table 10.7 – Node 2. ame fr minislot Byte used flow assigned

sign preamble minislot Byte

used flow assigned sign preamble 0 YES 32 YES 1 50 D NO 33 50 D NO 2 17 D NO 34 17 D NO 3 35 4 36 5 37 6 38 7 39 8 YES 9 5 x 0 C NO 10 0 5 C NO 11 25 C NO 12 13 14 15 Table 10.8 – Node 3.

frame minislot Byte used flow assigned sign preamble

32 YES 33 50 D NO 34 17 D NO 35 36 37 38 x 39 Table 10.9 Node 5 – 0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A B

D

Figure 10.15 – Node 2.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D C D

(11)

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D

(12)

Flow E et dimension: 105 bytes odes compute: roup 2 = 105 bytes ame • pack • packet period: 10 ms N • Link 3-2 Æ g • M = [ 105 * 10 / 10 ]sup • B = [ 105 / 50 ]sup = 3 minislots Figure 10.18 – Flow E.

fr minislot Byte used flow assigned sign minislot Byte used flow assigned sign

0 YES 16 YES 1 50 D NO 17 50 E NO 2 17 D NO 18 50 E NO 3 19 5 E NO 4 20 5 21 6 22 7 23 8 YES 32 YES 9 50 C NO 33 50 D NO 10 50 C NO 34 17 D NO 11 25 C NO 35 12 36 13 37 14 39 x 15 40 Table 10.10 – e 3. ame Nod

fr minislot Byte flow

ed

sign

used assign

preamble minislot Byte flow

ed sign preamble used assign 0 YES 16 YES 1 50 D NO 17 50 E NO 2 17 D NO 18 50 E NO 3 19 5 E NO 4 20 5 21 6 22 x 7 23 3 2 PATH RSV CNF minislots 17-18-19

(13)

8 YES 24 YES 9 38 A NO 25 50 B NO 10 26 50 B NO 11 27 12 28 13 29 14 30 15 31 Tabl 10.11 – Noe de 2. 0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D C E D

Figure 10.19 – Node 3.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D A E B

(14)

Flow F: t dimension: 75 bytes odes compute: roup 2 p = 75 bytes 4 minislots ame • packe • packet period: 10 ms N • Link 3-2 Æ g • M = [ 75 * 10 / 10 ]su • CAC: 105 + 75 <= 550 OK • B = [ ( 105 + 75 ) / 50 ]sup = Figure 10.21 – Flow F.

fr minislot Byte flow

ed

sign

used assign

preamble minislot Byte flow

ed sign preamble used assign 0 YES 16 YES 1 50 D NO 17 50 E NO 2 17 D NO 18 50 E NO 3 19 50 E,F YES 4 20 30 F NO 5 21 6 22 7 23 8 YES 32 YES 9 50 C NO 33 50 D NO 10 50 C NO 34 17 D NO 11 25 C NO 35 12 36 13 37 14 38 x 15 39 Tab e 10.12 – N 3. ame l ode

fr minislot Byte flow

ed

sign

used assign

preamble minislot Byte flow

ed sign preamble used assign 0 YES 16 YES 1 50 D NO 17 50 E NO 2 17 D NO 18 50 E NO 3 19 50 E,F YES x 4 20 30 F NO 3 2 PATH RSV CNF minislot 20

(15)

5 21 6 22 7 23 8 YES 32 YES 9 38 A NO 33 50 B NO 10 34 50 B NO 11 35 12 36 13 37 14 38 15 39 Ta le 10.13 – Nb ode 2. 0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D C E F D

Figure 10.22 – Node 3.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D A E F B

(16)

Global vision

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

A B

B

Figure 10.24 – Node 0.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

B

Figure 10.25 – Node 1.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D A E F B

Figure 10.26 – Node 2.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D C E F D

Figure 10.27 – Node 3.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

C

(17)

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24

D

Figure 10.29 – Node 5.

0 8 16 32 40 48

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

24 D E F A B B C C D

Figura

Figure 10.1 – Global example.
Figure 10.6 – Node 0.
Table 10.4 – Node 0.
Figure 10.13 – Nodes 3 and 4.
+7

Riferimenti

Documenti correlati

What is more important, the level of predicate argument structure containing information relative to Theta-roles - which is derivative on lexical forms

Theorem 7.2 shows that for divisible torsion-free abelian groups the situation is in some sense similar to that of free abelian groups described in Theorem 2.7: in both cases

MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells.. Regulation

Three important questions that are often asked, pertaining to subgroup structure of a given group G, are a) to decide if non-abelian free groups embed into G, b) to decide

The analysis of the mechanisms for determining the price of the contract in the discipline in general reveals that in case of non-determination expressed in the price,

A first consequence of Theorem A is that the graph ∆(G) cannot contain any pentagon as an induced subgraph; this follows from the fact that the vertices of such an induced

ridicola, perché non è ben chiusa sul palato( sembra che la lingua non abbia la forza di chiudere l’aria), così che la (t) Inglese sembra un po’ una “ci”…ma gli

As for the value of Resistance to Uniaxial Compressive Strenght, the survey refers to the results obtained by the compressive press, being it a direct test; the instrument