• Non ci sono risultati.

Forn ≥ 1, prove that  r + rA r − rA n

N/A
N/A
Protected

Academic year: 2021

Condividi "Forn ≥ 1, prove that  r + rA r − rA n"

Copied!
1
0
0

Testo completo

(1)

Problem 11900

(American Mathematical Monthly, Vol.123, March 2016) Proposed by G. Apostolopoulos (Greece).

LetABC be a triangle and let r be the radius of its incircle. The circle with radius rAis externally tangent to the incircle and internally tangent to sides AB and AC of ABC. Define rB and rC

similarly. Forn ≥ 1, prove that

 r + rA

r − rA

n

+ r + rB

r − rB

n

+ r + rC

r − rC

n

≥ 3 · 2n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let I be the center of the incircle and let IA the center of the circle with radius rA. Then IA is on the angle-bisector AI and |IAI| = rA+ r. Hence

rA

|AI| − (r + rA)= r

|AI| ⇒ rA

r = |AI| − r

|AI| + r ⇒ r + rA

r − rA

= |AI|

r . Since xn si convex, it follows that

 r + rA

r − rA

n

+ r + rB

r − rB

n

+ r + rC

r − rC

n

≥ 3 |AI| + |BI| + |CI|

3r

n

and it suffices to show that (|AI| + |BI| + |CI|)/(3r) ≥ 2. Now r

|AI| = sin(A/2) =

r(s − b)(s − c) bc and similar formulas hold for r/|BI| and r/|CI|. Hence

|AI| + |BI| + |CI|

3r ≥ |AI||BI||CI|

r3

1/3

=

 abc

(s − a)(s − b)(s − c)

1/3

= 4R r

1/3

≥ 2.

because abc = 4KR, (s − a)(s − b)(s − c) = K2/s, K = sr, and R ≥ 2r (Euler’s inequality). 

Riferimenti

Documenti correlati

Archimede) è i 2/3 dell’area del rettangolo che

In fact, knowing what the shape of the canonical form will be (see the textbook, or simply the text of the present exercise), from the fact that for x + y − z + 2t = 0 (which defines

(b) If the answer is yes, show an example of such a vector

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. Solution. 51 in

Landy, A generalization of Ceva’s theorem to higher

The usual elementary definition of tangent line to the graph of a function leads to the following unlikely situation: in the xy −plane there exists a set G which admits tangent at

The definition is the same as that for an ordinary function, and is best explained using limits:. Let a ∈

TF (T rap F lag ) - pone il p ro c e ss o re ne lla m oda lit àsingle-step per il debuggerin questa modalità, la CPU genera automaticamen teun interrupt interno dopo