64
Biblography
[1] http://en.wikipedia.org/wiki/List_of_causes_of_death_by_rate
[2] M.R. Cowie, D.A. Wood, A.J.S. Coats, S.G. Thompson, V. Suresh, P.A. Poole-Wilson et al. Heart, 83 (5) (2000), pp. 505–510
[3] http://www.acorncv.com/patients_families/heart_failure.cfm
[4] M.K. Baig, N. Mahon, W.J. McKenna, A.L.P. Caforio, R.O. Bonow, G.S. Francis et al. The pathophysiology of advanced heart failure. Heart Lung, 28 (2) (1999), pp. 87–101
[5]J.B. Young, R.M. Mills Clinical Management of Heart Failure Professional Communications, Caddo, Okla (2004)
[6] F.Y. Chen, L.H. Cohn Cardiol. Rev. The surgical treatment of heart failure. A new frontier: Nontransplant surgical alternatives in heart failure, 10 (6) (2002), pp. 326–333
[7] M. Loebe, E. Soltero, V. Thohan, J.A. Lafuente, G.P. Noon Curr. Opin. Cardiol. New surgical therapies for heart failure, 18 (3) (2003), pp. 194–198
[8] N.M. Hawkins, M.C. Petrie, M.R. MacDonald, K.J. Hogg, J.J.V. McMurray Eur. Heart J. Selecting patients for cardiac resynchronization therapy: Electrical or mechanical dyssynchrony?, 27 (11) (2006), pp. 1270– 1281
[9]C. Martinez, A. Tzur, H. Hrachian, J. Zebede, G.A. Lamas Am. J. Geriat. Cardiol. Pacemakers and defibrillators: recent and ongoing studies that impact the elderly., 15 (2) (2006), pp. 82–87
[10] S.K. Kohli, P. Elliott Br. J. Hosp. Med. Cardiac resynchronization therapy: The procedure and progress so far, 66 (8) (2005), pp. 469–473
[11] M. Packer J. Card. Fail. The impossible task of developing a new treatment for heart failure, 8 (4) (2002), pp. 193–196
64 [12] P. Zammaretti, M. Jaconi Curr. Opin. Biotechnol. Cardiac tissue engineering: Regeneration of the wounded heart, 15 (5) (2004), pp. 430–434
[13] Alpert JS, Thygesen K, Antman E, Bassand JP.30 Myocardial infarction redefined--a consensus
document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.
[14] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21(24):2529-2543.
[15] Kretlow JD, Mikos AG. From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering. AIChE Journal 2008;54(12):3048-3067.
[16] Liu C, Xia Z, Czernuszka JT. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design 2007;85(7):1051-1064.
[17] Moroni L, De Wijn JR, Van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science-Polymer Edition 2008;19(5):543-572.
[18] Babensee JE, Anderson JM, McIntire LV, Mikos AG. Host response to tissue engineered devices. Advanced Drug Delivery Reviews 1998 Aug;33(1-2):111-139.
[19] Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29(20):2941-2953.
[20]Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition 2001;12:107-124.
[21] Ito Y, Zheng J, Imanishi Y. Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors. Biomaterials 1997 Feb;18(3):197-202.
[22] Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15-23.
[23] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research 2001;55(2):141-150.
64 [24] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-5491.
[25] Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Annals of Biomedical Engineering 2004 Dec;32(12):1728-1743.
[26] Dunn GA, Heath JP. A new hypothesis of contact guidance in tissue cells. Experimental Cell Research 1976;101(1):1-14.
[27] Falconnet D, Csucs G, Michelle Grandin H, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 006;27(16):3044-3063.
[28] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 1999;20(6):573-588.
[29] Papenburg BJ, Vogelaar L, Bolhuis-Versteeg LAM, Lammertink RGH, Stamatialis D, Wessling M. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials
2007;28(11):1998-2009.
[30] Sajal Manubhai Patel and Michael J. Pikal Emerging Freeze-Drying Process Development and Scale-up Issues
[31] Prof.dr.‐ing. M. Wessling, Dr.D.Stamatialis, Prof.dr.K.Boller, Prof.dr.C.A.van Blitterswijk, Prof.dr.D.W. Grijpma, Prof.D.Kaplan, Prof.A. Boccaccini, Prof.dr.R.A Bank - DESIGN STRATEGIES FOR TISSUE
ENGINEERING SCAFFOLDS
[32] R Rai, M Tallawi, A Grigore, A R Boccaccini - Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS)
[33]
http://en.wikipedia.org/wiki/Polyvinyl_alcohol
[34] Zhaobin Qiu, So Fujinami, Motonori Komura, Ken Nakajima, Takayuki Ikehara, Toshio Nishi - Structure and Properties of Biodegradable Polymer-Based Blends