• Non ci sono risultati.

Units: mol, cm, s, cal Reactiona Forward Backward A Ea A Ea N + N O)kf 1* kr1 N2+ O 3.30· 1012 0.3 0 6.17· 109 0.4 74884 N + O2 kf 2

N/A
N/A
Protected

Academic year: 2021

Condividi "Units: mol, cm, s, cal Reactiona Forward Backward A Ea A Ea N + N O)kf 1* kr1 N2+ O 3.30· 1012 0.3 0 6.17· 109 0.4 74884 N + O2 kf 2"

Copied!
8
0
0

Testo completo

(1)

Appendix A

The UDF code, needed to calculate the residence time ⌧ in JHC burner (Section 2.2), is reported below.

DEFINE_SOURCE( rt_source , c , t , dS , eqn ) {

r e a l source=C_R( c , t ) ; dS [ eqn ] = 0 . 0 ;

return source ; }

DEFINE_DIFFUSIVITY( rtd_diff , c , t , i ) {

return C_R( c , t ) ∗ 1 . 0 e 05+C_MU_EFF( c , t ) / 1 . 0 ; }

(2)

Table B.1: Kinetic parameters applied to New model in JHC conditions, using Glarborg [19] detailed kinetic scheme. Units: mol, cm, s, cal

Reactiona Forward Backward

A Ea A Ea

N + N O)kf 1*

kr1

N2+ O 3.30· 1012 0.3 0 6.17· 109 0.4 74884 N + O2

kf 2

)*

kr2

N O + O 6.40· 109 1 6280 6.36· 105 1.1 37980 CO2+ N )kf 22*

kr22

N O + CO 1.90· 1011 0 20237 2.16· 103 0.9 26372 N H + H)kf 17*

kr17

N + H2 3.00· 1013 0 0 5.66· 1010 0.1 24228 N2O + M )kf 4*

kr4

N2+ O + M 4.0· 1014 0 56100 1.07· 103 1.1 15654 N2O + H )kf 18*

kr18

N2+ OH 3.30· 1010 0 4729 2.96· 101 1.3 66092 N2O + C)kf 23*

kr23

N2+ CO2 3.20· 1011 0 20237 8.25· 108 0.1 107481 N H + N O)kf 15*

kr15

N2O + H 2.90· 1014 0.4 0 6.42· 1017 1.5 35932 N2+ OH)kf 50*

kr50

N2+ HO2 1.30· 10 2 4.7 36561 3.91· 10 8 5.3 62719 N2O + O)kf 6*

kr6

N O + N O 6.60· 1013 0 26630 1.00· 106 0.9 61961

kf 8

* 13 9

(3)

Appendix B.

Reactiona Forward Backward

A Ea A Ea

HN O + H)kf 28*

kr28

N O + H2 4.50· 1011 0.7 655 7.66· 106 1.2 54457 H + N O + M)kf 31*

kr31

HN O + M 4.00· 1020 1.8 0 1.40· 1019 1.9 49824 N O + HCO)kf 32*

kr32

CO + HN O 7.20· 1012 0 0 2.93· 1010 0.1 34525 H + N O + N2

kf 49

)*

kr49

N2+ HN O 7.00· 1019 1.5 0 2.46· 1018 1.7 49824 N O + HO2

kf 33

)*

kr33

N O2+ OH 2.10· 1012 0 480 1.93· 1010 0.07 7195 N O2+ CH3

kf 34

)*

kr34

N O + CH3O 1.50· 1013 0 40000 2.11· 1010 0.05 17704 N O2+ H )kf 35*

kr35

N O + OH 1.32· 1014 0 360 3.13· 106 0.83 29175 N O2+ H2

kf 36

)*

kr36

HON O + H 3.00· 1013 0 29000 2.98· 1013 0.86 3883 N O + OH + M)kf 37*

kr37

HON O + M 2.40· 1013 0 0 5.83· 1027 3.86 49694 HON O + OH )kf 46*

kr46

N O2+ H2O 4.00· 1012 0 0 5.18· 107 0.7 40471 N O2+ CH2O)kf 47*

kr47

HON O + HCO 8.00· 102 2.7 13730 1.07 2.4 1819 N O2+ HCO)kf 48*

kr48

HON O + CO 1.23· 1023 3.4 2355 8.25· 1021 3.6 65566 N H2+ H2

kf 40

)*

kr40

N H3+ H 1.42 2.9 5077 6.40· 105 2.4 10171 N H3+ OH )kf 41*

kr41

N H2+ H2O 2.00· 106 2 566 5.76· 101 2.4 10827 N H3+ O)kf 51*

kr51

N H2+ OH 9.40· 106 1.9 6460 1.18· 101 2.4 0 N H2+ OH)kf 52*

kr52

H2O + N H 4.00· 106 2 1000 6.76· 103 2.1 28375 CH3+ M )kf 43*

kr43

CH2O + H + M 6.00· 1012 0 0 5.40· 1011 0.5 2600 CH3+ HO2

kf 44

)*

kr44

CH3O + OH 8.00· 1012 0 0 1.27· 1011 0.2 24499 CH3+ O2

kf 45

)*

kr45

CH3O + O 2.90· 1013 0 30480 4.72· 1012 0.5 2621

a k = AT exp( Ea/RT ).

(4)

Reactiona Forward Backward

A Ea A Ea

N + N O)kf 1*

kr1

N2+ O 3.30· 1012 0.3 0 6.20· 109 0.41 74884 N + O2

kf 2

)*

kr2

N O + O 6.40· 109 1 6280 6.36· 105 1.09 37980 CO2+ N)kf 22*

kr22

N O + CO 1.19· 1011 0 3400 2.16· 103 0.91 26372 N H + H)kf 17*

kr17

N + H2 3.00· 1013 0 0 5.66· 1010 0.11 24228 N2O + M )kf 4*

kr4

N2+ O + M 1.40· 1016 0 66100 3.74· 104 1.09 25654 N2O + H )kf 18*

kr18

N2+ OH 3.30· 1010 0 4729 2.66· 101 1.30 66497 N2O + CO)kf 23*

kr23

N2+ CO2 2.70· 1011 0 20237 6.96· 108 0.09 107481 N H + N O)kf 15*

kr15

N2O + H 4.32· 1014 0.5 0 9.56· 1017 1.60 35932 N N H + O)kf 8*

kr8

N O + N H 5.00· 1013 0 0 1.61· 109 0.36 10963 N N H + O2

kf 21

)*

kr21

HO2+ N2 6.67· 1013 0 0 4.82· 1010 0.20 55425 N N H)kf 7*

kr7

N2+ H 1.10· 106 0 0 2.09· 103 0.35 6450 N N H + O2

kf 20

)*

kr20

N2+ H + O2 5.00· 1013 0 0 9.45· 106 0.35 6450 N H2+ H )kf 24*

kr24

N H + H2 4.00· 1013 0 3650 5.24· 109 0.20 15670 N H + O2

kf 25

)*

kr25

HN O + O 4.60· 105 2.00 6500 5.07· 103 1.75 8626 N H + O2

kf 26

)*

kr26

N O + OH 1.30· 107 1.50 100 1.23· 102 1.68 54616 N H2+ OH)kf 27*

kr27

N H + H2O 4.00· 106 2 1000 7.52· 103 2.06 27970 HN O + H)kf 28*

kr28

N O + H2 4.40· 1011 0.72 650 7.48· 106 1.17 54452 N O + CH4

kf 29

)*

kr29

HN O + CH3 5.00· 1011 0 50000 6.31· 107 0.10 5292

(5)

Appendix B.

Reactiona Forward Backward

A Ea A Ea

N O + OH + M)kf 37*

kr37

HON O + M 2.40· 1013 0 0 5.83· 1027 3.86 49694 HON O + CH3

kf 38

)*

kr38

N O2+ CH4 8.10· 105 1.87 5504 3.79· 102 2.39 32110 N O2+ HO2

kf 39

)*

kr39

HON O + O2 6.31· 108 1.25 5000 9.85· 107 0.76 34534 N H2+ H2

kf 40

)*

kr40

N H3+ H 1.58· 105 2.00 3954 7.05· 104 1.50 9048 N H3+ OH)kf 41*

kr41

N H2+ H2O 1.19· 107 2.00 4067 3.84· 102 2.35 13924 N H2+ CH4

kf 42

)*

kr42

N H3+ CH3 7.68· 104 2.00 6420 7.58· 101 1.85 10023 CH3+ M )kf 43*

kr43

CH2O + H + M 6.00· 1011 0 18000 5.68· 1016 2.25 9845 CH3+ HO2

kf 44

)*

kr44

CH3O + OH 6.00· 1012 0 0 7.75· 1010 0.12 25380 CH3+ O2

kf 45

)*

kr45

CH3O + O 4.00· 1012 0 27000 6.51· 1011 0.48 0

a k = AT exp( Ea/RT ).

(6)

Table C.1: Kinetic parameters applied to New model in pilot-scale burner conditions, using Glarborg [19] detailed kinetic scheme. Units: mol, cm, s, cal

Reactiona Forward Backward

A Ea A Ea

N + N O)kf 1*

kr1

N2+ O 3.30· 1012 0.3 0 6.17· 109 0.4 74884 N + O2

kf 2

)*

kr2

N O + O 6.40· 109 1 6280 6.36· 105 1.1 37980 N + OH )kf 3*

kr3

N O + H 3.80· 1013 0 0 1.10· 1014 0.0 4750 N2O + M )kf 4*

kr4

N2+ O + M 4.0· 1014 0 56100 1.07· 103 1.1 15654 N2O + O)kf 6*

kr6

N O + N O 6.60· 1013 0 26630 1.00· 106 0.9 61961 N N H + O)kf 9*

kr9

N2O + H 1.10· 1014 0 0 1.47· 1016 0.0 46100 N H + N O)kf 15*

kr15

N2O + H 2.90· 1014 0.4 0 6.42· 1017 1.5 35932 N2O + H )kf 18*

kr18

N2+ OH 3.30· 1010 0 4729 2.96· 101 1.3 66092 N N H)kf 7*

kr7

N2+ H 1.10· 107 0 0 1.89· 103 0.35 6450 N N H + O)kf 8*

kr8

N O + N H 5.00· 1013 0 0 1.61· 109 0.4 10963

kf 20

* 13 6

(7)

Appendix C.

Reactiona Forward Backward

A Ea A Ea

N H + N O)kf 58*

kr58

N2+ OH 2.20· 1012 0.07 512 4.37· 1010 0.04 97296 N H + OH)kf 59*

kr59

N + H2O 5.00· 1011 0.5 2000 1.21· 1010 0.48 41583 N H2+ H2

kf 40

)*

kr40

N H3+ H 1.42 2.9 5077 6.40· 105 2.4 10171 N H3+ OH)kf 41*

kr41

N H2+ H2O 2.00· 106 2 566 5.76· 101 2.4 10827 N H3+ O)kf 51*

kr51

N H2+ OH 9.40· 106 1.9 6460 1.18· 101 2.4 0 N H2+ O)kf 65*

kr65

HN O + H 6.60· 1014 0.5 0 1.76· 1014 0.96 29482 HN O + H)kf 28*

kr28

N O + H2 4.50· 1011 0.7 655 7.66· 106 1.2 54457 N O + HCO)kf 32*

kr32

CO + HN O 7.20· 1012 0 0 2.93· 1010 0.1 34525 H + N O + N2

kf 49

)*

kr49

N2+ HN O 7.00· 1019 1.5 0 2.46· 1018 1.7 49824 H + N O + N2

kf 63

)*

kr63

N2+ HN O 1.30· 107 1.9 950 7.89· 109 0.31 69157 H + N O + N2

kf 64

)*

kr64

N2+ HN O 1.00· 1013 0 0 9.57· 107 0.41 51985 N O2+ H2

kf 36

)*

kr36

HON O + H 3.00· 1013 0 29000 2.98· 1013 0.86 3883 N O + OH + M)kf 37*

kr37

HON O + M 2.40· 1013 0 0 5.83· 1027 3.86 49694 HON O + OH )kf 46*

kr46

N O2+ H2O 4.00· 1012 0 0 5.18· 107 0.7 40471 HON O + O)kf 62*

kr62

N O2+ OH 1.20· 1013 0 5961 6.79· 106 0.83 29260 N O + HO2

kf 33

)*

kr33

N O2+ OH 2.10· 1012 0 480 1.93· 1010 0.07 7195 N O2+ H)kf 35*

kr35

N O + OH 1.32· 1014 0 360 3.13· 106 0.83 29175 N O + O + M )kf 60*

kr60

N O2+ M 1.30· 1015 0.75 0 9.55· 1018 2.0 73398 N O2+ O)kf 61*

kr61

N O + O2 1.10· 1014 0.52 0 3.37· 107 0.42 45324

a k = AT exp( Ea/RT ).

The concentrations of the intermediate species, involved in the new compre- hensive model developed for NOx evaluation in pilot-scale burner conditions of Chapter 3, are listed below.

[N ] =kr1[O][N2] + kr2[N O][O] + kr3[N O][H] + kf 53[CH][N O]

kf 1[N O] + kr2[O2] + kf 3[OH] + kr53[HCO] (C.1)

[N2O] =kr4[O][N2][M ] + kr18[N2][OH] + kr6[N O][N O] + kf 15[N H][N O] + kf 9[N N H][O]

kf 4[M ] + kf 18[H] + kf 6[O] + kr9[H] (C.2)

(8)

[HN O] = [N O](kr28[H2] + kr63[H2O] + kf 32[HCO] + kf 49[H][N2] + kr64[OH]) + kf 57[N H][OH]

kf 28[H] + kf 63[OH] + kr32[CO] + kr49[N2] + kf 64[O] + kr57[H] (C.4)

[N O2] =[N O](kf 60[O][M ] + kr35[OH] + kr61[O2] + kf 33[HO2]

kr60[M ] + kf 35[H] + kf 61[O] + kr33[OH] (C.5)

[HON O] = [N O2](kr36[H2] + kr46[H2O] + kr62[OH]) + kf 37[N O][OH][M ]

kf 36[H] + kf 38[CH3] + kr39[O2] + kr37[M ] (C.6)

[N H2] =[N H3](kr40[H] + kf 41[OH] + kf 52[O]) + [N H](kr27[H2O] + kr66[H2]) + kr65[HN O][H]

kf 40[H2] + kr41[H2O] + kr52[OH] + kf 27[OH] + kf 66[H] + kf 65[O] (C.7)

[N N H] =[N2](kr7[H] + kr20[H][O2] + kr21[HO2] + kr54[H2O] + kr55[H2] + kr56[OH]) + kr8[N H][N O]

kf 7+ kf 20[O2] + kf 21[O2] + kf 54[OH] + kf 55[H] + kf 56[O] + kf 8[O] (C.8)

Riferimenti

Documenti correlati

Belgium (French Community – in some schools since the 2017/18 school year), Estonia, France and Finland (with some flexibility in this matter at upper secondary level) are the

[r]

Utilizzando le tavole si ricava che i quantili della distribuzione normale standardizzata corrispondenti al 25-esimo e al 90-esimo percentile sono -0,67 e 1,28.. Quindi i

b) Indicata con F T(x) la funzione di frequenza cumulata per le automobili tedesche, la percentuale richiesta può essere ottenuta da Sotto ipotesidi uniformità, e Allora,

The WHO Traditional Medicine Strategy 2014-2023 will help health care leaders to develop solutions that contribute to a broader vision of improved health and patient autonomy.

[r]

[r]

Si pu` o assegnare un insieme enumerando i suoi elementi (nel caso questo sia possibile), oppure tramite una propriet` a caratteristica, ovvero una propriet` a che verificano tutti