• Non ci sono risultati.

optimization ship hydrodynamics swarm for problems Parameter synchronous selection in and asynchronous deterministicparticle Applied Soft Computing

N/A
N/A
Protected

Academic year: 2021

Condividi "optimization ship hydrodynamics swarm for problems Parameter synchronous selection in and asynchronous deterministicparticle Applied Soft Computing"

Copied!
22
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Applied

Soft

Computing

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a s o c

Parameter

selection

in

synchronous

and

asynchronous

deterministic

particle

swarm

optimization

for

ship

hydrodynamics

problems

Andrea

Serani

a,b

,

Cecilia

Leotardi

a

,

Umberto

Iemma

b

,

Emilio

F.

Campana

a

,

Giovanni

Fasano

c

,

Matteo

Diez

a,∗

aCNR-INSEAN,NationalResearchCouncil—MarineTechnologyResearchInstitute,Rome,Italy bDepartmentofMechanicalandIndustrialEngineering,RomaTreUniversity,Rome,Italy cDepartmentofManagement,Ca’FoscariUniversityofVenice,Venice,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13November2015 Receivedinrevisedform15July2016 Accepted12August2016

Availableonline20August2016 Keywords:

Simulation-baseddesign Derivative-freeoptimization Globaloptimization Particleswarmoptimization Shiphydrodynamicsoptimization

a

b

s

t

r

a

c

t

Deterministicoptimizationalgorithmsareveryattractivewhentheobjectivefunctionis computation-allyexpensiveandthereforethestatisticalanalysisoftheoptimizationoutcomesbecomestooexpensive. Amongdeterministicmethods,deterministicparticleswarmoptimization(DPSO)hasseveralattractive characteristicssuchasthesimplicityoftheheuristics,theeaseofimplementation,anditsoftenfairly remarkableeffectiveness.TheperformancesofDPSOdependonfourmainsettingparameters:the num-berofswarmparticles,theirinitialization,thesetofcoefficientsdefiningtheswarmbehavior,and(for box-constrainedoptimization)themethodtohandletheboxconstraints.Here,aparametricstudyof DPSOispresented,withapplicationtosimulation-baseddesigninshiphydrodynamics.Theobjectiveis theidentificationofthemostpromisingsetupforbothsynchronousandasynchronousimplementations ofDPSO.Theanalysisisperformedundertheassumptionoflimitedcomputationalresourcesandlarge computationalburdenoftheobjectivefunctionevaluation.Theanalysisisconductedusing100 analyt-icaltestfunctions(withdimensionalityfromtwotofifty)andthreeperformancecriteria,varyingthe swarmsize,initialization,coefficients,andthemethodfortheboxconstraints,resultinginmorethan 40,000optimizations.Themostpromisingsetupisappliedtothehull-formoptimizationofahighspeed catamaran,forresistancereductionincalmwaterandatfixedspeed,usingapotential-flowsolver.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Particleswarm optimization(PSO)wasoriginallyintroduced in [1], based on the social-behaviour metaphor of a flock of birds or a swarm of bees searching for food. PSO belongs to theclassofheuristicalgorithmsforsingle-objectiveevolutionary derivative-free global optimization. Derivative-free global opti-mizationapproachesareoftenpreferredtolocalapproacheswhen objectivesarenonconvexand/ornoisy,andwhenmultiplelocal optimacannotbeexcluded,asoftenencounteredin simulation-based design (SBD) optimization. Thecomputational burden of globaloptimizationtechniquesisusuallymuch largercompared tolocalmethods,sothattheaccuracyofthesolutionsoughtoften dependsontheavailablecomputationalresources.

Zhangetal.[2]presentsacomprehensivesurveyonthePSO variantsandtheirapplicationinseveralengineeringfields,suchas

∗ Correspondingauthor.

E-mailaddress:matteo.diez@cnr.it(M.Diez).

mechanicalorchemical. RecentapplicationsofPSO toshipSBD include medium-tohigh-fidelityhull-form andwaterjet design optimization of fast catamarans, by morphing techniques [3,4] andgeometrymodificationsbasedonKarhunen–Loèveexpansion (KLE)[5–7],andlow-tomedium-fidelityoptimizationof uncon-ventionalmulti-hullconfigurations[8].Whenglobaltechniquesare usedindesignoptimization,withCPU-timeexpensivesolvers,the optimizationprocessiscomputationallyexpensiveandits effec-tivenessandefficiencyremainanalgorithmicand technological challenge.Although complex SBD applicationsare oftensolved bymetamodels[9,10],theirdevelopmentandassessmentrequire benchmarksolutions,withsimulationsdirectlyconnectedtothe optimizationalgorithm.Thesesolutionsareachievedonlyif afford-ableandeffectiveoptimizationproceduresareavailable.

The original PSO makes use of random coefficients, aiming atsustaining thevarietyofthe swarmdynamics.Thisproperty impliesthatstatisticallysignificantresultscanbeobtainedonly throughextensivenumericalcampaigns.Suchanapproachcanbe tooexpensiveinSBDoptimizationforindustrialapplications,when CPU-time expensivecomputer simulations are used directlyas http://dx.doi.org/10.1016/j.asoc.2016.08.028

(2)

314 A.Seranietal./AppliedSoftComputing49(2016)313–334 analysistools.Furthermore,ifthedesignprobleminhandis

sched-uledwithinanaccurateprojectplanning,timeresourcesmightbe atightrequirementfortheoptimizationprocess.Forthese rea-sonsefficientdeterministicapproaches(suchasdeterministicPSO, DPSO)havebeendeveloped,andtheireffectivenessandefficiency inindustrialapplicationsinship hydrodynamicsproblemshave beenshown,includingcomparisonswithlocalmethods[11]and randomPSO[5].Moreover,theavailabilityofparallelarchitectures andhighperformancecomputing(HPC)systemshasofferedthe opportunitytoextendtheoriginalsynchronousimplementationof PSO(SPSO)toCPU-timeefficientasynchronousmethods(APSO), assessedontestfunctionsin[12],andappliedinseveral engineer-ingproblemssuchasmultidisciplinaryoptimizationofcommercial aircraft[13],biomechanics[14],andswarmrobotics[15].Using dis-tributedcomputing,synchronousimplementationsofPSOimply thatatiteration k+1thepositionandvelocityofanyparticleis updatedafterevaluatingthefunctionatalltheparticlespositions atiterationk.InanasynchronousimplementationofPSOthe posi-tionandvelocityofaparticleispossiblybasedonthefitnessvalue atasubsetofallparticlespositions.

The effectiveness and efficiency of PSO for box constrained optimization are significantly influenced by four main setting parameters:(a)thenumberofswarmparticlesinteractingduring theoptimization,(b)theinitializationoftheparticlesintermsof initiallocationandvelocity,(c)thesetofcoefficientsdefiningthe personalorsocialbehaviouroftheswarmdynamics,and(d)the methodtohandletheboxconstraints.Theseparametersandtheir effectsonPSOhavebeenstudiedbyanumberofauthors[16–18]. Morerecentlytheeffectsoftheparticleinitializationhavebeen studiedin[19,20],theeffectsofthecoefficientshavebeenshown in[21],whereasboundhandlingtechniqueshavebeenpresented in[22].AcomprehensivestudyonthePSOparameterselectionhas beenpresentedin[23]andapreliminaryassessmentofthe per-formancesofDPSO,varying(a),(b)and(c),ispresentedin[24]. Asurveyofapproachesforgeneralconstrainedoptimization prob-lemsinindustrialdesignandmultidisciplinarydesignoptimization maybefoundin[25],includingalsogeneralnonlinearconstraints. However,thediscussionontheapplicationofDPSOinSBD prob-lemsisstilllimited,lackingasystematicandcomparativeanalysis. Theobjectiveofthepresentworkistheidentificationofthemost effectiveandefficientparametersforbothsynchronousand asyn-chronousdeterministicparticleswarmoptimization(SDPSOand ADPSO),fortheiruseinSBDprocedures.Thefocusisonindustrial problems,directlyusingCPU-timeexpensiveanalyses.Thesemake thestatisticalanalysisoftheresultstooexpensiveandtherefore demandfordeterministicalgorithms.Due totheattractive fea-turesofDPSO(suchasthesimplicityoftheheuristics,theease ofimplementation, anditsoftenfairlyremarkableeffectiveness inindustrialproblems),thecurrentstudyislimitedtoDPSOand itsimplementations.AsystematiccomparisonofDPSOwithother deterministicandstochasticmethodsisbeyondthescopesofthe presentwork.

Theapproach includes a preliminaryparametric analysison 100analytical test functions[26–29]characterized bydifferent degreesofnon-linearitiesandnumberoflocalminima,with full-factorialcombinationof:(a)numberofparticles(usingapower oftwo times thenumber ofdesign variables); (b) initialization oftheparticlepositionandvelocity(usingHammersleysequence sampling(HSS)[30]);(c)setofcoefficients,chosenfromliterature [12,16,17,31,32];(d)inelasticandsemi-elasticwall-typeapproach forboxconstraints[22].Inorder tohandletheboxconstraints, wall-typeapproachesarepreferredinsteadofpenaltyapproaches orLagrangianfunctions,whichmightintroduceadditionalbiasin theanalysis.Thenumberofdesignvariablesrangesfromtwotofifty andthesimulationbudget(maximumnumberofobjectivefunction evaluations)isupto4096timesthenumberofdesignvariables.

Thepreliminaryparametricanalysisisconductedontwosubsets ofproblems,respectivelywithlessandmorethantendesign vari-ables.AIntelXeonE5-1620v23.70GHzisusedforthepreliminary tests.Threeabsolutemetricsaredefinedandappliedforthe evalua-tionofthealgorithmperformances,basedonthedistancebetween PSO-found solutions and analytical optima. Accordingwiththe numericaltests,themosteffectiveparameterchoiceamong(a), (b),(c),and(d)isidentified,basedontheassociatedrelative vari-abilityoftheresults.Then,themostpromisingsetupsforSDPSO andADPSOaredeterminedandappliedtoanindustrialproblem, namelyafastcatamaranhull-formoptimization,forcalmwaterand fixedspeed.TheobjectivefunctionistheratioRT/Wbetweenthe

totalresistance(RT)andtheshipweight(W).Thehull-form

modi-ficationisperformedusingaKLE-basedmorphingapproach[5–7], usingrespectivelyfour-andsix-dimensionaldesignspaces. Com-putersimulationsareperformedusingthepotentialflow(PF)solver CNR-INSEANWARP[33],onaclusterofIntelXeonE54622.80GHz. Eachfunctionevaluationtakesabout10minpernode. Addition-ally,theoptimizationresultsarecomparedwiththoseobtainedin earlierresearch,basedonahigh-fidelityURANSsolver[5].

2. PSOformulations

Considerthefollowingobjectivefunction:

f(x):RNdv−→R (1)

andtheglobaloptimizationproblem min

xLf(x), L⊂R

Ndv (2)

whereLisaclosedandboundedsubsetofRNdvandNdvisthe

num-berofdesignvariables.Theglobalminimizationoftheobjective functionf(x)requirestofindavectoraLsuchthat:

bL:f(a)≤f(b) (3)

Then,ais aglobalminimum forthefunctionf(x)over L.Since thesolutionofEq.(2)isingeneralanNP-hardproblem,theexact identificationofaglobalminimummightbeverydifficult. There-fore,solutionswithsufficientgoodfitness,providedbyheuristic procedures,areoftenconsideredacceptableforseveralpractical purposes.Amongdifferentheuristicprocedures,PSOisoftenthe methodofchoiceforitscapabilitytooutreachasuitable approxi-matesolutionwithinafewiterations.InPSO,thepositionsofthe particlesrepresentthecandidate solutionsand willbedenoted byxL,withassociatedfitnessf(x).Moreover,inthispaperthe compactsetLrepresentstheboxconstraints.

2.1. Originalformulation

TheoriginalformulationofthePSOalgorithm,aspresentedin [16],reads



vk+1i =wvk i +c1r k 1,i(xi,pb−xki)+c2r k 2,i(xgb−xki) xk+1i =xk i +vk+1i (4)

Theaboveequationsupdatevelocityandpositionoftheith parti-cleatthekthiteration,wherewistheinertiaweight;c1andc2are

respectivelythesocialandcognitivelearningrate;rk

1,iandr

k

2,iare

uniformlydistributedrandomnumbersin[0,1];xi,pbisthepersonal

bestpositioneverfoundbytheithparticleintheprevious itera-tionsandxgbistheglobalbestpositioneverfoundintheprevious

(3)

Fig.1.BlockdiagramsforparallelSDPSO(a)andADPSO(b).Thegreenboxesrepresentthefirstsetofparticlesevaluatedbythealgorithm[14].(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Anoverallconstrictionfactorisusedin[34–38],inplaceofthe inertiaweightw.Accordingly,thesysteminEq.(4)isrecastinthe followingequivalentform



vki+1=



vk i +c1r k 1,i(xi,pb−x k i)+c2r k 2,i(xgb−x k i)



xki+1=xk i +v k+1 i (5)

Inordertoprovidenecessary(butpossiblynotsufficient) condi-tionswhichavoiddivergenceofparticlestrajectories,thefollowing condition:

=



2





2−ϕ−



ϕ2





, whereϕ=c1+c2, ϕ>4 (6)

is indicated in [35], where setting the value of ϕ to 4.1, with =0.729,c1=c2=2.050issuggested[36].NotethatPSOschemes

includingboththeparameterswandhavebeenalsoproposed intheliterature.Furthermore,recentsurveysonPSOcoefficients, inthelightofpossibledivergenceofparticlestrajectories,canbe foundin[39,40].

2.2. Deterministicformulation

TwoessentialrequisitesinSBDproblemsaresurelyrepresented bytheefficiencyoftheoptimizationprocedureadopted,alongwith thepossibilitytoreplicatethesameprocedureondifferentsettings oftheproblem.In ordertocomplywithboththelatterfacts,a deterministicversion ofthePSO algorithm (namely DPSO)was formulatedin[11] bysettingrk

1,i=r

k

2,i=1inEq.(5).Ofcourse,

skippingrandomparametersdoesnotallowtoassessastatistical analysisoftheresultsonseveralpracticalproblems.Nevertheless, sinceSBDproblemsareusuallycomputationallyveryexpensive, andrepresentjustonestepwithinacomplexandformalproject plan,theuseofDPSOrevealedtobemandatorywithrespectto adoptingPSO.Ontheoverall,thefinalDPSOschemebecomes



vki+1=



vk i +c1(xi,pb−xki)+c2(xgb−xki)



xki+1=xk i +v k+1 i (7)

InthecontextofSBDforshipdesignoptimization,asmentioned inSection1,theformulationofEq.(7)wascomparedtotheoriginal in[5].DPSOisthereforeusedforallthesubsequentanalyses.

Usingtheaboveformulation,itispossibletoprovethatthe nec-essary(butpossiblynotsufficient)conditionswhichensurethatthe trajectoryofeachparticledoesnotdiverge[41],are



0<







<1 0<ω<2 (+1) (8) whereω=(c1+c2).Introducing ˇ= ω 2(+1) (9)

andassuming>0asusuallyintheliterature,theconditionsofEq. (8)reduceto



0<<1

0<ˇ<1 (10)

2.3. Synchronousandasynchronousimplementations

AsreportedinSection1,twodifferentimplementationsofDPSO are comparatively applied in this paper. In particular, the syn-chronousimplementationofDPSO(SDPSO)updatesthepersonal bests{xi,pb}andtheglobalbestxgb,alongwithparticlesvelocity

andposition,attheendofeachiteration.SDPSOispresentedasa pseudo-codeinAlgorithm1,andasablockdiagraminFig.1a.The synchronousupdateensuresanyparticleofaperfectandcomplete informationofitsneighborhood.However,synchronousupdateis acostlychoice[12],asaparticleneedstowaitforthewholeswarm tobeupdated,beforeitcanmovetoanewpositionandcontinueits search.Hence,thefirstparticleevaluatedmightbeidleforalong time,waitingforthewholeswarmtobeupdated.

Algorithm1. SDPSOpseudo-code

1: InitializeaswarmofNpparticles

2: while(k<Maxnumberofiterations)do

3: fori=1,Npdo

4: Evaluatef(xk

i)

5: endfor

6: Update{xi,pb},xgb

7: Updateparticlepositionsandvelocities{xk+1 i },{vk+1i }

8: endwhile

9: Outputthebestsolutionfound

Furthermore,in parallelarchitectures,if theamountof time required to evaluatethe objective function at each iteration is notuniform(e.g.,duetoiterativeprocess/convergenceof analy-sistools),thewall-clocktimeandCPU-timereservationofSDPSO maysignificantlyincrease.IncontrasttoSDPSO,theasynchronous implementationofPSO(namelyADPSO[12])updatespersonaland globalbests,alongwithparticlesvelocityandposition,assoonas

(4)

316 A.Seranietal./AppliedSoftComputing49(2016)313–334

Fig.2. ExamplesofinitializationsinL=[−0.5,0.5]×[−0.5,0.5]with32particles.(Forinterpretationofthereferencestocolourintext,thereaderisreferredtotheweb versionofthearticle.)

theinformationrequiredfortheirupdateisavailable,anda parti-cleisreadyforanewanalysis.Thereforeinthisversionaparticle’s position/velocityisupdatedusingpartialor“imperfect” informa-tionofitsneighborhood.I.e.,someinformationcomefromparticles withposition/velocityupdatedinthecurrentiteration,while par-tialinformationisprovidedbyparticleswhoseposition/velocity wasupdatedinthepreviousiterations.Thislastaspectcontributes todiversityintheswarm,whichisadesirabletrait.ADPSOis pre-sentedasapseudo-codeinAlgorithm2,andasablockdiagramin Fig.1b.

ThedifferencesbetweenADPSOandSDPSOaresummarizedin Table1.

Algorithm2. ADPSOpseudo-code 1: InitializeaswarmofNpparticles

2: while(k<Maxnumberofiterations)do

3: fori=1,Npdo

4: evaluatef(xk

i)

5: Update{xi,pb},xgb

6: Updateparticlepositionsandvelocities{xk+1 i },{vk+1i }

7: endfor

8: endwhile

9: Outputthebestsolutionfound

3. PSOsettingsandevaluationmetrics

ThechoiceofPSOparametersusedinthecurrentanalysisis definedinthefollowingsection.Theirfull-factorialcombinationis considered,resultinginatotalof420PSOsetups.

3.1. Numberofparticles

Thenumberofparticlesused(Np)isdefinedas

Np=2mNdv, withm∈N[1,7] (11)

thereforerangingfromNp=2NdvtoNp=128Ndv.

3.2. Particlesinitialization

In order toavoid possible undesired bias due to thechoice of the swarm initialization, parameters from the literature are investigatedinthecurrentstudy.Inparticular,theinitializationof

Table1

SynchronousandasynchronousDPSOcharacteristics.

SDPSO ADPSO

Update Attheendofeachiteration Assoonastheobjective functionisevaluated Information Thewholeswarmuses

informationfromthesame iteration

Aparticlecoulduse informationfromboth currentandprevious iterations

particles’locationandvelocityfollowsadeterministicand homo-geneous distribution,according withtheHammersley sequence sampling(HSS)[30].Specifically,letq={q1,...,qNdv−1}beavector

ofprimenumberswithqi /= qj,

i /= j.Anypositiveintegericanbe

expressedusingthesequence{qj}by

i=

r

k=0

akqkj (12)

whererisasuitableintegerandakisanintegerin[0,qj−1].Finally,

theithparticlelocationisdefinedas xi=



i Np ,q1(i),...,qNdv−1(i)

fori=0,1,2,...,Np−1 (13) whereqj(i)=

r k=0ak/qk+1j .

Eq.(13)isappliedtothreedifferentsub-domains,definedas: 1.entiredomainL(reddotsinFig.2a)

2.domainbounds(blutrianglesinFig.2b)

3.domainandbounds(reddotsandbluetrianglesinFig.2c). Ontheotherhand,theinitialvelocityisdefinedbyeitherthe fol-lowing:

• nullvelocity:

vi=0,

i∈[1,Np] (14)

• non-nullvelocity,basedoninitialparticleposition: vi=



2 Ndv

xil+u 2

(15) wherelandurepresentthelowerandupperboundforx, respec-tively[5].

Combininginitialpositionand velocitysettingsresultsinsix differentinitializations,summarizedinTable2.

3.3. Coefficientset

WithasimilarapproachusedinSection3.2,inthispaperthe authorsarefirstconsideringacomparisonamongdifferentsetups

Table2

Swarminitialization.

HSS,sub-domain v=0 v /=0

Domain A.0 A.1

Bounds B.0 B.1

(5)

Table3

Coefficientset.

IDset Name  c1 c2 ˇ

1 ShiandEberhart(1998) 0.729 2.050 2.050 0.864 2 CarlisleandDozier(2001) 0.729 2.300 1.800 0.864 3 Trelea(2003) 0.600 1.700 1.700 0.638 4 Clerc(2006) 0.721 1.655 1.655 0.693 5 PeriandTinti(2012) 0.754 2.837 1.597 0.953

ofDPSO,inordertofindapromisingconfiguration,tobeappliedfor thesolutionofanengineeringdesignproblem.Onthisguideline, ononehandinthispapertheauthorsarenotproposingtheirown setofpreferablePSOcoefficients.Ontheotherhand,afair com-parisonwithinapanelofdifferentDPSOcoefficientsetsrequiresto testoriginalsettingsfromtheliterature,withoutintroducingany hybridcombination/integrationamongthem.

Tothelatterpurpose,fivecoefficientsetsaretakenfrom liter-ature,asproposedbyseveralauthors.Thefirstsetistheoriginal byShiandEberhart[16],thesecondwassuggestedbyCarlisleand Dozier[12],thethirdwasproposedbyTrelea[17],thefourthisa furthersuggestionbyClerc[31],whereasthefifthwassuggestedby PeriandTinti[32].Theassociatednumericalvaluesareincludedin Table3,andtheyallsatisfyEq.(10).For possibleprosandcons ofeach coefficientsetchoice,thereadercanrefer totheabove references.

3.4. Boxconstraints

TheoriginalPSOprovidesanupdateofpositionandvelocityof particlesforunconstrainedproblems.Thus,incasepossible con-straintsarepresent,theoriginalformulationmightbeinadequate, evenincasesimpleboxconstraintsareconsidered.Thisimplies that,duringtheevolutionoftheswarm,simplyusingEq.(7)the particlescantraveloutsidethedomainbounds.Thiscanbeacritical issueinSBDproblems,whenthedomainboundscannotbeviolated duetophysical/geometrical/gridsconstraints.Abarrier(wall)ora penaltyapproachcanbeusedontheboundsoftheresearchspace, inordertoconfinetheparticles[25,42–44].Inparticular,theuse ofexactorsequentialpenaltyfunctionsmaybeinadequateinthe currentwork,foratleastacoupleofreasons:

• only box constraintsare used (i.e.simple) or inequality con-straints,whichhavebeenhandledintheliteratureofPSOand otherheuristicsinaspecificway(seeAlgorithms3and4inthis section);

• the use of general penalty approaches described in [25] is expectedtobeappealingwhenhighlynonlinearconstraintsare

involved.Moreover,acorrectimplementationofthelatter meth-odsdefinitelyrequiresafinetuningofthepenaltyparameters involved,includingtheiriterativeupdate.

Thus,accordingwiththeabovemotivations,andinordertoavoid thepossiblebiasintroducedbythepenaltyparameterupdate(see also [45] for details), herein theapproach presented in [22] is applied,sinceitisspecificallydesignedforthecurrentconstrained problems,intheframeworkofPSOliterature.

Specifically,theparticlesareconfinedwithinLusingan inelas-ticwall-typeapproach(IW).Ifaparticleisfoundtoviolateoneof theboundsinthetransitionfromkthto(k+1)thPSOiteration,itis placedontheboundsettingtozerotheassociatedvelocity compo-nent(seeFig.3a).Thisapproachhelpsthealgorithmtoexplorethe domainbounds.TheIWapproachisimplementedinAlgorithm3. Algorithm3. Inelasticwall-typeapproach(IW)

1: fori=1,numberofparticlesdo

2: forj=1,numberofvariablesdo

3: ifxk i,j>ujthen 4: xk i,j=uj,vki,j=0 5: else[ifxk i,j<lj] 6: xk i,j=lj,vki,j=0 7: endif 8: endfor 9: endfor

TheuseofIWhassomelimitations:intheunlikelyeventthatall theparticlestendtoleavethedomainfromthesamehyper-corner, theIWsetsallvelocitiestozeroandthePSOprogressmaystop pre-maturely.Forthisreason,asemi-elasticwall-typeapproach(SEW) isalsousedinthiswork.Specifically,incasetheparticleposition violatesaboundconstraint,thentheparticlepositionismodified inordertomakethatconstraintactive(i.e.theparticleismoved ontheboundaryofthatconstraint),whiletheassociated veloc-itycomponentisdefinedasinthefollowingAlgorithm4(seealso Fig.3b).

Algorithm4. Semi-elasticwall-typeapproach(SEW)

1: fori=1,numberofparticlesdo

2: forj=1,numberofvariablesdo

3: ifxk i,j>ujthen 4: vk i,j=−v k i,j/[␹(c1+c2)] 5: else[ifxk i,j<lj] 6: vk i,j=−vki,j/[␹(c1+c2)] 7: endif 8: endfor 9: endfor

Observethatthedampingfactor[(c1+c2)]−1inAlgorithm4is

usedtoconfinetheparticleinthefeasibledomain.

(6)

318 A.Seranietal./AppliedSoftComputing49(2016)313–334 3.5. NumberoffunctionevaluationsandPSOiterations

ThemaximumnumberoffunctionevaluationsNfeval(evaluation

budget)inthepresentworkisdefinedas

Nfeval=2nNdv, wheren∈N[7,12] (16)

andthereforerangesfrom128Ndvto4096Ndv.Asaconsequence,

accordingwiththesettinginEq.(11),thenumberofPSOiterations Niterperformedisgivenas

Niter= Nfeval Np = 2nN dv 2mN dv = 2n−m (17) 3.6. Evaluationmetrics

Threeabsoluteperformancecriteriaareusedtoassessthe algo-rithms,whicharedefinedasfollows[24]:

x=









1 Ndv Ndv

j=1



x j,min−xj,min Rj



2 , f = fmin−fmin f max−fmin , t=



2 x+2f 2 (18)

wherexrepresentsanormalizedEuclideandistancebetweenthe

minimumpositionfoundbythealgorithm(xmin)andthe

analyt-icalminimumposition(x

min), andRj=|uj−lj|istherangeofthe

jthvariable.fistheassociatednormalizeddistanceintheimage

space,wherefministheminimumfoundbythealgorithm,f

minis

theanalyticalminimum,andf

maxistheanalyticalmaximumofthe

functionf(x)inthedomainL.tisacombinationofxandfand

isusedforanoverallassessment.

Additionally,therelative variability2

r,k [29]for eachmetric

x, f,t (Eq. (18)) is usedto assessthe impactof each

set-tingparameterskonthealgorithms’performance.LetPbeaset

of|P|problems,definingthealgorithm’ssettingparameter vec-torass=[s1,s2,...,sS]T ∈RS,therelativeperformancevariability

associatedtoitskthcomponentis 2 r,k= 2 k

|S| k=12k (19) where k2= 1 |˝|

ω∈˝ [ ˆk(ω)] 2 −



1 |˝|

ω∈˝ ˆ k(ω)



2 (20)

with˝containingthepositionsωassumedbytheparametersk,

ˆ k(ω)= 1 |B|

s∈B ¯ (s), B={s:sk=ω} (21) and ¯ (s)=|P|1

p∈P [(s)]p (22) 4. Optimizationproblems 4.1. Analyticaltestfunctions

One hundred analytical test functions are used in the pre-liminary numerical experience, including a wide variety of problems,suchascontinuousanddiscontinuous,differentiableand

non-differentiable,separableandnon-separable,scalableand non-scalable,unimodalandmultimodal,withdimensionalityranging fromtwo tofifty [26–29,46].The numericalexperience is con-ducted setting apart problems withrespectively less and more than 10 design variables, as summarized in Appendix A (see TablesA.10andA.11).

4.2. Hull-formSBDoptimizationofahigh-speedcatamaran Thehigh-speedDelftcatamaran[3]isusedasSBDtest prob-lem.Thisisaninternationalbenchmarkgeometryusedforboth experimentalandnumericalstudies,includingcapabilitiesofCFD predictionsforcomplexflowswithassociatedvalidationandglobal shapeoptimizationforcalmwaterandwaveconditions.Forthe currentproblem,theobjectivefunctionf(x)isdefinedas

f(x)= RT

W (23)

whereRTis thetotal resistanceatFroudenumber(Fr)equalto

0.5incalmwater,andWistheweightforcemodulus.Geometry modificationshave tofit inabox, definedbymaximumoverall length,beam,and draught.Twofeasibledesign spacesare con-sidered.Thefirstincludesoveralldimensionbounds,whereasthe secondincludesoveralldimensionboundsand,inaddition, con-stantlengthbetweenperpendiculars(LBP)[5].Modificationsofthe parenthullareperformedusinghigh-dimensionalfree-form defor-mation(FFD)and95%-confidencedimensionalityreductionbased onKLEasshownin[6].Fourvariablesareusedforthefirstdesign spaceandsixforthesecond,referredtointhefollowingas4Dand 6Dspace,respectively.Newdesignsgareproducedas

g(x)=

1− Ndv

j=1 xj

g0+ Ndv

j=1 xjgj (24)

where−1≤xj≤1,

j∈[1,Ndv]arethedesignvariables;Ndv=4for

thefirstdesignspace,whereasNdv=6forthesecond;g0isthe

orig-inalgeometryandgjarethegeometriesassociatedtothedesign

spaceprincipal directions (oreigenmodes), asprovided by KLE fordimensionalityreduction.Fordetails,thereaderisreferredto [5,6].

SimulationsareconductedusingtheWARP(WAveResistance Program)code,developedatCNR-INSEAN.Waveresistance com-putationsarebasedonlinearpotentialflowtheoryanddetailsof equations,numericalimplementation,andvalidationofthe numer-icalsolveraregivenin[33].Thefrictionalresistanceisestimated usingaflat-plateapproximation,basedonlocalReynoldsnumber [47].Themodelisfreetosinkandtrim(2degreesoffreedom). Simulationsareperformedfortherightdemi-hull,sincethe prob-lemissymmetricalwithrespecttothexz-plane.Thefreesurface isdiscretizedasfollows:20×1panelsontheinner-upstream sub-domain,20×40ontheouter-upstream,20×1ontheinner-hull, 20×40ontheouter-hull,80×1ontheinner-downstream,80×2 onthetransom-downstream,80×40ontheouter-downstream; thebody is discretizedby125×50 panels (see Fig.4).Domain boundsaredefinedby1LBPupstream,4LBPdownstreamand2LBP sideways.

Sincetheanalyticalsolutionoftheoptimizationproblemisnot available,thealgorithmperformanceisevaluatedconsideringthe objectivereductionanditsconvergence.Thedesignsolutionsare finallycomparedwithearlieroptimizationresultsproducedusing ahigh-fidelityCFDsolver[5].

(7)

X Y Z hull body X Y Z outer hull outer upstream outer downstream inner downstream innerhull inner upstream

Fig.4.Panel-gridfortheCNR-INSEANWARPpotential-flowcode.

5. Numericalresults

5.1. TestfunctionsandDPSOparametersguidelineidentification Resultsonthe100analyticaltestfunctionsarepresentedinthe followingsectionsandusedtodefinetheguidelinesforSDPSOand ADPSO,adoptedlaterfortheSBDproblem.

5.1.1. SDPSO

Figs.5and7showtheperformancesofSDPSOversusthe bud-getoffunctionevaluations(Nfeval/Ndv),intermsofx,f,t,for

Ndv<10and≥10respectively.Averagevaluesarepresented,

condi-tionaltonumberofparticles,particleinitialization,coefficientset, andwall-typeapproach,respectively.Figs.6and8showtherelative variance2

rofx,f,tforNdv<10and≥10respectively,retained

byeachoftheaforementionedparameters.Theparticles initial-izationis foundthemostsignificantparametertoaffectSDPSO performance,especiallyforNdv≥10,whereasthecoefficientsset

(selectedherein)andthewall-typeapproachareshowntobethe leastrelevant.Tables4and5showthefivebestperformingsetups foreachx,f,andt,forNdv<10and≥10respectively,varying

thebudgetoffunctionevaluations.Averagevaluesandstandard deviationsforallSDPSOsetupsarealsoprovided.

5.1.2. ADPSO

Generally,ADPSOresultsarefoundsimilartoSDPSO. Specifi-cally,Figs.9and11showtheperformancesofADPSOversusthe budgetoffunctionevaluations,intermsofx,f,t,forNdv<10

and≥10respectively. Averagevaluesarepresented,conditional tonumberofparticles,particleinitialization,coefficientsset,and wall-typeapproachrespectively.Figures10and12showthe rela-tivevariance2

r ofx,f,t forNdv<10and≥10respectively,

retainedby each of the aforementionedparameters. The parti-cleinitializationisagainthemostsignificantparametertoaffect ADPSOperformance,especiallyforlowbudgetsandNdv≥10.The

coefficientsetand thewall-typeapproachareshown tohave a limited effect ontheperformance, compared toother parame-ters.Tables6and7summarizethefivebestperformingsetupsfor eachx,f,andt,for Ndv<10and ≥10,respectively,varying

thebudgetoffunctionevaluations.Overallaveragesandstandard deviationsforallADPSOsetupsarealsoincluded.

5.1.3. Suggestedguidelines

ThemostpromisingsetupsareselectedfromTables4–7,inorder todefineareasonableandrobustguidelinefortheuseofSDPSOand ADPSO.ThesearesummarizedinTable8.

Figs.13and14showtheperformanceofthesuggestedsetups, forSDPSOandADPSOandNdv<10and≥10,respectively.Average

performance, standard deviation, and best performing setup amongallcombinationsisalsoshownforeachbudget.The guide-linesetups(“Guide”)are foundalwaysvery closeorcoincident tothe“Best”.Inaddition,itmaybenotedhowADPSOisalways equivalentorslightlybetterthanSDPSO.

5.2. High-speedcatamaranSBDoptimization

A preliminarysensitivityanalysisfor each design variableis shown in Fig. 15 showing f(%) compared to the parent hull. Changesinfrevealareductionoftheobjectivefunctioncloseto 9%forthe4Ddesignspaceandcloseto10%forthe6D.Forthe cur-rentstudy,alldesignvariablesaredeemedrequiredforthehull formoptimization,eachoneprovidingasignificantvariationofthe designobjective.Accordingly,thesensitivityanalysisisnotapplied fordimensionalityreduction.

TheoptimizationisperformedwithbothSDPSOandADPSO,as pertheguidelinesuggestedinTable8.SDPSOandADPSOiterations areshowninFig.16,revealingaquitefastconvergence.Itmaybe notedthatthefinalconfigurationforthefirstdesignspace(4D)is fairlyclose(exceptforthesecondvariable)tothatobtainedusing metamodelsanda URANSsolverin[5],usedhereforreference (Fig.17a).Fortheseconddesignspace(6D)thedifferencesaremore significant(Fig.17b).Asageneralresult,onecanalsoobservebythe optimizationresults(seeTable9)thatSDPSOandADPSOwithboth IWandSEWleadtoareductionoftheobjectivefunctioncloseto 20%,forthe4Ddesignspace,andgreaterthan20%forthe6Ddesign space.Furthermore,theoptimumconfigurationleadstoa consid-erablereductionofwave’selevationcomparedtotheoriginalshape (Figs.18and19).Therearenotsignificantdifferencesbetweenthe resultsobtainedbySDPSOandADPSO,exceptforSDPSOwithIWfor the6Ddesignspace.InthiscasetheIWapproachinducesthe opti-mizationtostopafter6iterations.AsshowninFig.17,differences inoptimaldesignvariablesaremainlyduetoIWorSEW.

6. Discussion

TheanalysesofSDPSOandADPSOperformancesonthe ana-lyticaltestfunctionshaveshowntheimportanceoftheparticle initializationespeciallyforproblemswithahighnumberofdesign variables. In particular, the initialization on the only domain boundary is alwaystheworst and should beavoided, whereas the use of a non-null initial velocity is always advisable (see Figs.5b,7b,9band11b).

Thenumber ofparticles becomes moderatelyrelevantwhen thebudgetoffunctionevaluationsincreases,speciallyfor prob-lems with a smaller number of variables. More in detail,

(8)

320 A.Seranietal./AppliedSoftComputing49(2016)313–334

Fig.5.SDPSOaverageperformanceforNdv<10.

Fig.6. Relativevariance2

(9)

Fig.7. SDPSOaverageperformanceforNdv≥10.

Fig.8.Relativevariance2

(10)

322 A. Serani et al. / Applied Soft Computing 49 (2016) 313–334 Table4

BestperformingsetupsforSDPSO,Ndv<10.

Nfeval/Ndv Average(STD) BestSDPSO

x f t NNdvp Init Coef Wall x

Np

Ndv Init Coef Wall f

Np

Ndv Init Coef Wall t

128 0.193(0.078) 0.155(0.078) 0.205(0.081)

32 A.1 3 SEW 0.099 4 C.1 4 IW 0.033 4 C.1 4 SEW 0.086

4 C.1 4 SEW 0.102 4 C.0 4 SEW 0.034 4 C.1 4 IW 0.086

4 C.1 4 IW 0.106 2 A.1 4 SEW 0.035 2 A.1 4 SEW 0.091

4 C.1 3 IW 0.106 4 C.1 4 SEW 0.036 4 C.0 4 SEW 0.098

32 A.1 3 IW 0.107 2 A.1 4 IW 0.046 2 A.1 4 IW 0.100

256 0.178(0.076) 0.134(0.079) 0.185(0.081)

32 A.1 3 SEW 0.079 4 C.1 4 SEW 0.031 4 C.1 4 IW 0.082

64 A.1 3 SEW 0.082 4 C.1 4 IW 0.032 4 C.1 4 SEW 0.082

32 A.1 3 IW 0.092 4 C.0 4 SEW 0.032 16 A.1 3 SEW 0.086

64 A.1 3 IW 0.092 2 A.1 4 SEW 0.035 32 A.1 3 SEW 0.089

64 A.0 4 SEW 0.097 16 A.1 3 SEW 0.042 2 A.1 4 SEW 0.091

512 0.167 (0.077) 0.119 (0.080) 0.170 (0.082)

64 A.1 4 IW 0.070 4 C.1 4 SEW 0.031 32 A.1 3 SEW 0.068

32 A.1 3 SEW 0.072 4 C.1 4 IW 0.032 64 A.1 3 IW 0.071

64 A.1 2 IW 0.072 4 C.0 4 SEW 0.032 64 A.1 3 SEW 0.073

64 A.1 3 IW 0.074 2 A.1 4 SEW 0.035 64 A.1 4 IW 0.078

64 A.1 3 SEW 0.076 32 A.1 3 SEW 0.036 4 C.1 4 IW 0.081

1024 0.161 (0.078) 0.109 (0.083) 0.161 (0.085)

64 A.1 4 IW 0.063 64 A.1 3 SEW 0.021 64 A.1 3 SEW 0.052

64 A.1 3 SEW 0.063 32 A.1 3 SEW 0.021 64 A.1 4 IW 0.054

64 A.1 2 IW 0.065 64 A.0 4 IW 0.023 32 A.1 3 SEW 0.056

64 A.1 2 SEW 0.066 64 A.1 3 IW 0.023 64 A.1 3 IW 0.057

32 A.1 3 SEW 0.070 32 A.0 4 SEW 0.023 64 A.1 4 SEW 0.062

2048 0.157(0.080) 0.103(0.085) 0.154(0.088)

64 A.1 2 IW 0.053 64 A.1 3 SEW 0.020 64 A.1 2 IW 0.045

64 A.1 4 IW 0.059 64 A.1 4 SEW 0.020 64 A.1 4 IW 0.049

64 A.1 3 SEW 0.061 64 A.1 4 IW 0.020 64 A.1 3 SEW 0.050

64 A.1 2 SEW 0.063 64 A.0 4 SEW 0.020 64 A.1 2 SEW 0.052

64 A.1 3 IW 0.067 32 A.0 4 SEW 0.021 64 A.1 3 IW 0.055

4096 0.156(0.081) 0.100(0.086) 0.152(0.089)

64 A.1 2 IW 0.049 128 A.1 3 IW 0.020 64 A.1 2 IW 0.042

64 A.1 4 IW 0.058 128 C.1 3 SEW 0.020 64 A.1 4 IW 0.048

64 A.1 2 SEW 0.059 64 A.1 2 IW 0.020 64 A.1 2 SEW 0.049

64 A.1 3 SEW 0.060 128 C.1 4 SEW 0.020 64 A.1 3 SEW 0.050

128 C.1 4 IW 0.064 64 C.0 4 SEW 0.020 128 C.1 4 IW 0.053 Av. 0.169 (0.077) 0.120 (0.079) 0.171 (0.082)

32 A.1 3 SEW 0.076 4 C.1 4 SEW 0.032 4 C.1 4 SEW 0.081

64 A.1 3 SEW 0.078 4 C.1 4 IW 0.032 4 C.1 4 IW 0.081

64 A.1 2 IW 0.078 4 C.0 4 SEW 0.033 32 A.1 3 SEW 0.082

64 A.1 4 IW 0.079 2 A.1 4 SEW 0.035 64 A.1 3 SEW 0.082

(11)

A. Serani et al. / Applied Soft Computing 49 (2016) 313–334 323

BestperformingsetupsforSDPSO,Ndv≥10.

Nfeval/Ndv Average(STD) BestSDPSO

x f t NNdvp Init Coef Wall x

Np

Ndv Init Coef Wall f

Np

Ndv Init Coef Wall t

128 0.390 (0.101) 0.274 (0.150) 0.368 (0.128)

4 A.1 4 SEW 0.261 4 A.1 4 SEW 0.118 4 A.1 4 SEW 0.221

2 A.1 4 SEW 0.266 8 A.1 3 SEW 0.121 2 A.1 2 IW 0.224

8 A.1 3 SEW 0.267 4 A.1 3 SEW 0.122 2 A.1 4 SEW 0.225

4 A.1 3 SEW 0.267 2 A.1 4 SEW 0.122 8 A.1 3 SEW 0.227

8 C.1 3 SEW 0.268 4 C.1 4 SEW 0.122 4 A.1 3 SEW 0.227

256 0.379(0.102) 0.256(0.148) 0.354(0.128)

4 A.1 4 SEW 0.257 8 A.1 3 SEW 0.107 4 A.1 4 SEW 0.214

8 A.1 3 SEW 0.260 4 A.1 4 SEW 0.111 8 A.1 3 SEW 0.216

16 A.1 3 SEW 0.260 4 C.1 4 SEW 0.113 8 C.1 4 SEW 0.219

8 C.1 4 SEW 0.261 8 C.1 4 SEW 0.114 8 C.1 3 SEW 0.220

8 C.1 3 SEW 0.261 8 C.1 3 SEW 0.115 2 A.1 2 IW 0.220

512 0.367(0.103) 0.240(0.147) 0.340(0.128)

32 A.1 3 SEW 0.250 16 A.1 3 SEW 0.100 16 A.1 3 SEW 0.208

16 A.1 3 SEW 0.253 8 A.1 3 SEW 0.104 32 A.1 3 SEW 0.212

16 A.1 4 SEW 0.253 8 C.1 4 SEW 0.106 8 C.1 4 SEW 0.212

8 C.1 4 SEW 0.255 16 C.1 3 SEW 0.107 8 A.1 3 SEW 0.213

64 A.1 3 SEW 0.255 32 A.1 3 SEW 0.109 4 A.1 4 SEW 0.213

1024 0.361 (0.104) 0.230 (0.148) 0.332 (0.129)

64 A.1 3 SEW 0.242 32 A.1 3 SEW 0.095 32 A.1 3 SEW 0.200

32 A.1 3 SEW 0.244 16 A.1 3 SEW 0.097 64 A.1 3 SEW 0.204

16 A.1 4 SEW 0.246 32 C.1 3 SEW 0.099 16 A.1 4 SEW 0.205

32 A.1 4 SEW 0.247 16 C.1 4 SEW 0.101 16 A.1 3 SEW 0.205

16 A.1 3 SEW 0.250 64 A.1 3 SEW 0.103 32 A.1 4 SEW 0.207

2048 0.357 (0.105) 0.223 (0.149) 0.326 (0.130)

64 A.1 3 SEW 0.235 32 A.1 3 SEW 0.092 64 A.1 3 SEW 0.194

32 A.1 4 SEW 0.240 64 A.1 3 SEW 0.092 32 A.1 3 SEW 0.198

32 A.1 3 SEW 0.242 32 C.1 3 SEW 0.096 32 A.1 4 SEW 0.199

64 A.1 4 SEW 0.245 16 A.1 3 SEW 0.097 16 A.1 4 SEW 0.203

16 A.1 4 SEW 0.245 64 C.1 3 SEW 0.097 64 A.1 4 SEW 0.204

4096 0.354(0.105) 0.220(0.150) 0.323(0.131)

64 A.1 3 SEW 0.233 64 A.1 3 SEW 0.090 64 A.1 3 SEW 0.191

128 A.1 3 SEW 0.239 32 A.1 3 SEW 0.092 128 A.1 3 SEW 0.196

128 A.1 4 SEW 0.239 128 C.1 3 SEW 0.094 64 A.1 4 SEW 0.197

64 A.1 4 SEW 0.239 64 C.1 4 SEW 0.094 128 A.1 4 SEW 0.197

32 A.1 4 SEW 0.239 64 C.1 3 SEW 0.094 64 A.1 4 IW 0.197

Av. 0.368(0.102) 0.240(0.147) 0.340(0.128)

32 A.1 3 SEW 0.254 8 A.1 3 SEW 0.107 16 A.1 3 SEW 0.214

16 A.1 3 SEW 0.256 16 A.1 3 SEW 0.108 4 A.1 4 SEW 0.215

4 A.1 4 SEW 0.257 4 A.1 4 SEW 0.111 32 A.1 3 SEW 0.216

16 A.1 4 SEW 0.257 8 C.1 4 SEW 0.112 8 A.1 3 SEW 0.216

(12)

324 A.Seranietal./AppliedSoftComputing49(2016)313–334

Fig.9. ADPSOaverageperformanceforNdv<10.

Fig.10.Relativevariance2

(13)

Fig.11.ADPSOaverageperformanceforNdv≥10.

Fig.12.Relativevariance2

(14)

326 A. Serani et al. / Applied Soft Computing 49 (2016) 313–334 Table6

BestperformingsetupsforADPSO,Ndv<10.

Nfeval/Ndv Average(STD) BestADPSO

x f t NNdvp Init Coef Wall x

Np

Ndv Init Coef Wall f

Np

Ndv Init Coef Wall t

128 0.191(0.078) 0.155(0.076) 0.205(0.080)

4 C.1 4 IW 0.095 4 C.1 3 IW 0.023 4 C.1 4 IW 0.075

4 C.1 4 SEW 0.097 4 C.1 4 IW 0.024 4 C.1 4 SEW 0.084

8 A.1 3 IW 0.100 4 C.0 3 IW 0.034 4 C.1 3 IW 0.087

8 A.1 3 SEW 0.107 4 C.0 4 SEW 0.039 4 C.0 3 IW 0.094

2 A.1 4 SEW 0.110 4 C.0 4 IW 0.039 4 C.0 4 SEW 0.096

256 0.176(0.075) 0.134(0.076) 0.185(0.079)

4 C.1 4 IW 0.085 4 C.1 4 IW 0.021 4 C.1 4 IW 0.068

32 A.1 3 SEW 0.092 4 C.1 3 IW 0.023 4 C.1 4 SEW 0.080

4 C.1 4 SEW 0.093 4 C.0 4 IW 0.031 4 C.1 3 IW 0.085 8 A.1 3 IW 0.096 4 C.0 3 IW 0.033 4 C.0 4 SEW 0.087 32 A.1 4 IW 0.097 4 C.0 4 SEW 0.034 4 C.0 3 IW 0.090 512 0.163 (0.073) 0.118 (0.077) 0.168 (0.078) 32 A.1 4 IW 0.073 4 C.1 4 IW 0.020 4 C.1 4 IW 0.065

64 A.1 3 SEW 0.080 4 C.1 3 IW 0.023 16 A.0 4 IW 0.074

4 C.1 4 IW 0.082 16 A.0 4 IW 0.024 4 C.1 4 SEW 0.078

32 C.1 4 IW 0.084 4 C.0 4 IW 0.031 32 A.1 3 SEW 0.079

32 A.1 3 SEW 0.084 4 C.0 3 IW 0.033 64 A.1 3 SEW 0.082

1024 0.156 (0.075) 0.107 (0.079) 0.157 (0.081) 32 A.1 4 IW 0.064 4 C.1 4 IW 0.020 32 A.1 4 IW 0.057

64 A.1 3 SEW 0.071 16 A.0 4 IW 0.021 64 A.1 3 SEW 0.059

64 A.1 4 SEW 0.072 4 C.1 3 IW 0.023 4 C.1 4 IW 0.065

32 A.0 4 SEW 0.077 64 A.1 3 SEW 0.024 64 A.0 3 SEW 0.067

64 A.0 4 IW 0.077 64 A.0 3 SEW 0.024 64 A.0 4 SEW 0.067

2048 0.151(0.076) 0.100(0.082) 0.150(0.083)

64 A.1 4 SEW 0.064 4 C.1 4 IW 0.020 64 A.1 4 SEW 0.053

32 A.1 4 IW 0.064 32 C.1 4 SEW 0.021 32 A.1 4 IW 0.056

64 A.1 3 SEW 0.070 16 A.0 4 IW 0.021 64 A.1 3 SEW 0.057

64 A.1 1 IW 0.073 64 A.0 4 IW 0.022 64 A.0 4 IW 0.059

64 A.0 4 SEW 0.074 32 A.1 2 IW 0.022 64 A.0 4 SEW 0.060

4096 0.150(0.077) 0.097(0.083) 0.147(0.085)

64 A.1 4 SEW 0.063 128 A.1 4 SEW 0.020 64 A.1 4 SEW 0.052

32 A.1 4 IW 0.064 4 C.1 4 IW 0.020 32 A.1 4 IW 0.056

64 A.1 3 SEW 0.069 32 A.1 2 IW 0.021 64 A.1 3 SEW 0.056

64 A.1 1 IW 0.070 32 C.1 4 SEW 0.021 64 A.1 1 IW 0.057

128 A.0 2 SEW 0.072 16 A.0 4 IW 0.021 64 A.0 4 IW 0.059

Av. 0.164 (0.073) 0.119 (0.076) 0.169 (0.078) 32 A.1 4 IW 0.079 4 C.1 4 IW 0.021 4 C.1 4 IW 0.067 4 C.1 4 IW 0.084 4 C.1 3 IW 0.023 4 C.1 4 SEW 0.080

64 A.1 3 SEW 0.089 4 C.0 4 IW 0.033 32 A.1 4 IW 0.085

32 A.1 3 SEW 0.090 4 C.0 3 IW 0.033 4 C.1 3 IW 0.085

(15)

A. Serani et al. / Applied Soft Computing 49 (2016) 313–334 327

BestperformingsetupsforADPSO,Ndv≥10.

Nfeval/Ndv Average(STD) BestADPSO

x f t NNdvp Init Coef Wall x

Np

Ndv Init Coef Wall f

Np

Ndv Init Coef Wall t

128 0.386 (0.100) 0.268 (0.146) 0.363 (0.125)

4 A.1 4 SEW 0.253 4 A.1 3 SEW 0.112 4 A.1 4 SEW 0.213

2 A.1 4 SEW 0.255 2 C.1 4 SEW 0.113 2 A.1 4 SEW 0.216

4 C.1 4 SEW 0.256 4 A.1 4 SEW 0.114 4 C.1 4 SEW 0.217

4 C.1 2 SEW 0.257 2 A.1 1 IW 0.115 2 A.1 2 IW 0.218

2 A.1 2 SEW 0.260 4 C.1 4 SEW 0.117 4 A.1 3 SEW 0.220

256 0.374(0.101) 0.249(0.143) 0.349(0.125)

4 A.1 4 SEW 0.246 4 A.1 4 SEW 0.100 4 A.1 4 SEW 0.202

4 C.1 4 SEW 0.250 8 A.1 3 SEW 0.108 4 C.1 4 SEW 0.209

4 C.1 2 SEW 0.252 4 C.1 4 SEW 0.109 8 C.1 4 SEW 0.212

8 C.1 4 SEW 0.252 4 A.1 3 SEW 0.110 4 C.1 2 IW 0.213

2 A.1 4 SEW 0.254 8 C.1 3 SEW 0.110 2 A.1 4 SEW 0.215

512 0.361(0.101) 0.232(0.141) 0.333(0.124)

8 C.1 4 SEW 0.245 8 C.1 4 SEW 0.098 4 A.1 4 SEW 0.200

4 A.1 4 SEW 0.245 4 A.1 4 SEW 0.099 8 C.1 4 SEW 0.200

16 A.1 4 SEW 0.246 16 A.1 3 SEW 0.103 16 A.1 4 SEW 0.206

4 C.1 4 SEW 0.249 8 A.1 3 SEW 0.104 8 A.1 4 SEW 0.206

16 C.1 4 SEW 0.250 8 A.1 4 SEW 0.104 4 C.1 4 SEW 0.207

1024 0.354 (0.101) 0.221 (0.142) 0.324 (0.125)

32 A.1 4 SEW 0.237 8 C.1 4 SEW 0.095 16 A.1 4 SEW 0.197

16 A.1 4 SEW 0.239 16 A.1 4 SEW 0.097 8 C.1 4 SEW 0.198

16 C.1 4 SEW 0.242 16 C.1 4 SEW 0.097 16 C.1 4 SEW 0.199

32 A.1 4 IW 0.243 4 A.1 4 SEW 0.099 32 A.1 4 SEW 0.200

8 C.1 4 SEW 0.243 16 A.1 3 SEW 0.099 4 A.1 4 SEW 0.200

2048 0.349 (0.102) 0.214 (0.143) 0.317 (0.126)

32 A.1 4 SEW 0.228 32 A.1 4 SEW 0.091 32 A.1 4 SEW 0.187

64 A.1 3 SEW 0.233 32 C.1 4 SEW 0.093 64 A.1 3 SEW 0.194

16 A.1 4 SEW 0.238 64 A.1 3 SEW 0.095 16 A.1 4 SEW 0.195

32 A.1 4 IW 0.239 16 C.1 4 SEW 0.095 32 A.1 4 IW 0.196

16 C.1 4 SEW 0.239 16 A.1 4 SEW 0.095 16 C.1 4 SEW 0.196

4096 0.346(0.103) 0.210(0.144) 0.314(0.127)

32 A.1 4 SEW 0.227 64 C.1 4 SEW 0.088 32 A.1 4 SEW 0.186

64 A.1 3 SEW 0.231 32 A.1 4 SEW 0.089 64 A.1 3 SEW 0.190

128 A.1 3 SEW 0.236 64 A.1 3 SEW 0.092 64 A.1 4 IW 0.193

64 A.1 4 IW 0.236 32 C.1 4 SEW 0.092 128 A.1 3 SEW 0.193

64 A.1 4 SEW 0.237 64 A.1 4 SEW 0.092 64 A.1 4 SEW 0.193

Av. 0.362(0.100) 0.232(0.141) 0.333(0.124)

4 A.1 4 SEW 0.246 4 A.1 4 SEW 0.101 4 A.1 4 SEW 0.203

8 C.1 4 SEW 0.248 8 C.1 4 SEW 0.104 8 C.1 4 SEW 0.206

16 A.1 4 SEW 0.249 8 A.1 3 SEW 0.108 4 C.1 4 SEW 0.209

32 A.1 4 SEW 0.250 4 C.1 4 SEW 0.109 16 A.1 4 SEW 0.211

(16)

328 A.Seranietal./AppliedSoftComputing49(2016)313–334

Table8

SuggestedguidelineforSDPSOandADPSO.

Ndv Np/Ndv Initialization Coefficientsset Wall-type

SDPSO <10≥10 44 C.1A.1 44 IW/SEWSEW

ADPSO <10≥10 44 C.1A.1 44 IW/SEWSEW

Fig.13. PerformanceofsuggestedguidelinesusingSDPSO.

Figs. 5a, 7a,9a, and 11a showthat a higher number of parti-clesperformsbetterwithahighbudgetoffunctionevaluations. Thiscanbeexplainedrecallingtherelationbetweenthenumber ofparticles and thenumber ofiterations, fora fixedbudget of

functionevaluations.Ontheonehand,alownumberofparticles requires alarger numberof iterations,providing a fast conver-gence butpossibly alsoa faststagnation. On theotherhand, a highnumber ofparticlesrequiresa lowernumberofiterations,

(17)

Fig.15.Sensitivityanalysis.

Fig.16.ConvergenceofSDPSOandADPSO.

(18)

330 A.Seranietal./AppliedSoftComputing49(2016)313–334 Table9

SBDresults.

Wall-type RT[N] W[N] f[–] f[%]

Designspace Original 50.15 852.5 5.88e−2 –

4D

SDPSO IW 39.92 850.9 4.69e−2 −20.24 SEW 40.36 850.6 4.67e−2 −20.57 ADPSO IWSEW 39.8540.68 851.1851.7 4.68e−24.71e−2 −20.41−19.90

6D

SDPSO IWSEW 39.4134.29 849.1835.4 4.64e−24.10e−2 −21.10−30.27 ADPSO IWSEW 34.3134.08 835.5830.8 4.11e−24.09e−2 −30.10−30.30

(19)

Fig.19.6DSBDresults.

providingaslowerconvergenceandpossiblydelayingstagnation. Thisisthereasonwhythenumberofparticlesshouldbe deter-mined considering theavailable budget, that is usually low in theSBDcontext,especiallywhenCPU-timeexpensivesolversare used.

The coefficient set and the wall-type approach seem to be the less relevant parameters. Nevertheless, it can be said that Clerc’scoefficients(=0.721,c1=c2=1.655[31])andtheSEW-type approacharethemosteffectiveandefficientchoicesforbothSDPSO andADPSO(seeFigs.5c,7c,11c,5d,7d,9d,and11d).Moreover,the

useofSEWissuggestedinordertopreventanearlystopofthe swarmparticledynamics,asshownforthe6Ddesignspaceofthe navalengineeringproblem.

The asynchronous mechanism of ADPSO shows equivalent or slightly better performance (in terms of number of objec-tive function evaluations and objective reduction) compared to SDPSO, probably due to the diversity in the information update. This aspect of ADPSO provides a further interesting opportunityfortheexploitationofparallelarchitecturesin HPC systems.

(20)

332 A.Seranietal./AppliedSoftComputing49(2016)313–334 7. Conclusions

A guideline for an effective and efficient useof SDPSO and ADPSO,in a computationalframeworkcharacterizedby limited resources,has been suggested. A parametric analysis hasbeen performedvaryingthe numberof particles,theinitialization of theswarm, the setof coefficients, and the wall-type approach fortheboxconstraints.Theassessmentisbasedon100 analyt-ical test functions (with dimensionality from two to fifty) and three differentabsoluteperformance criteria. Allpossible com-binationsofDPSOparametersledto420optimizationsforeach function.ThemostpromisingDPSOsetupshavebeendiscussed, identified, and successfully applied to a ship SBD optimization problem, namely thehull-form optimization of the high-speed Delftcatamaran,advancingincalmwateratfixedspeed,usinga potential-flowsolver.Theoptimizationaimedatthereductionof theratiobetweenthetotalresistanceandtheshipweight,using four-andsix-dimensionaldesignspaces.

Theparticlesinitializationhasbeenfoundthemostsignificant parameterfortheDPSOperformance,especiallyforanumberof designvariablesNdv≥10andlowbudgetsoffunctionevaluations.

Conversely,thecoefficientssetandthewall-typeapproachhave beenfoundhavinga little influenceon theDPSO performance, comparedtotheotherparameters.

Forproblemswithlessthen10variables,thesuggestedSDPSO andADPSOsetupsfollow:(a)numberofparticlesNp equalto4

timesthenumberofdesignvariables;(b)particleinitializationwith HSSdistributionondomainandboundswithnon-nullvelocity;(c)

setof coefficientsproposedin[31],i.e.,=0.721,c1=c2=1.655;

(d)inelasticandsemi-elasticwall-typeapproach,forSDPSOand ADPSOrespectively.

Forproblemswithmorethen10designvariables,thesuggested setupsforSDPSOandADPSOfollow:(a)number ofparticlesNp

equalto4timesthenumberofdesignvariables;(b)particles ini-tialization includingHSS distribution on domainwith non-null velocity;(c)setofcoefficientsproposedin[31];(d)semi-elastic wall-typeapproach.

Theperformanceoftheguidelinesuggestedforthetest func-tions are very close or coincident to the best setup for each evaluation budget, among all 420configurations available (see “Guide”and“Best”inFigs.13and14).Finally,theguidelinesetups haveprovedtoperformwellonboththe4Dand6DshipSBD opti-mizationproblems.

Acknowledgments

Thepresent researchissupportedby theUS Officeof Naval Research,NICOPGrantN62909-15-1-2016,underthe administra-tionofDr.Woei-MinLinandDr.Ki-HanKim,andbytheItalian Flagship Project RITMARE, coordinated by the Italian National ResearchCouncilandfundedbytheItalianMinistryofEducation. AppendixA. Listoftestfunctions

TablesA.10andA.11summarizetheanalytical testfunctions withNdv<10andNdv≥10,respectively,usedinthecurrentwork.

TableA.10

AnalyticaltestfunctionswithNdv<10.

fp Name Dimension Bounds Optimum

Ndv [l,u]j,...,Ndv f

min

f1,2 5nloc.minima(Levy) 2,5 [−5,5]Ndv 0.000

f3,4 10nloc.minima(Levy) 2,5 [−5,5]Ndv 0.000

f5,6 15nloc.minima(Levy) 2,5 [−5,5]Ndv 0.000

f7 Ackley 2 [−5,4]Ndv 0.000 f8,9 Alpine 2,5 [−9,7]Ndv 0.000 f10 Beale 2 [−4.5,4.5]Ndv 0.000 f11 Booth 2 [−10,10]Ndv 0.000 f12 Bukinn.6 2 [−15,−5]×[−3,3] 0.000 f13 Colville 4 [−10,10]Ndv 0.000 f14,15 CosineMixture 2,4 [−1,0.5]Ndv −0.100·Ndv f16,17 Dixon-Price 2,5 [−1,1]Ndv 0.000 f18 Easom 2 [−100,100]Ndv −1.000 f19,20 Exponential 2,4 [−9,7]Ndv −1.000 f21 Freudenstein-Roth 2 [−5,5]Ndv 0.000 f22 Goldstein-Price 2 [−2,2]Ndv 3.000 f23,24 Griewank 2,5 [−9,7]Ndv 0.000 f25 Hartmann.3 3 [0,1]Ndv −3.860 f26 Hartmann.6 6 [0,1]Ndv −3.320 f27 Matyas 2 [−9,7]Ndv 0.000 f28,29 MultiModal 2,5 [−1,0.5]Ndv 0.000 f30 Powell 8 [−4,5]Ndv 0.000 f31 Quartic 2 [−10,10]Ndv −0.352 f32 Rosenbrock 2 [−30,30]Ndv 0.000 f33 Schaffern.2 2 [−100,90]Ndv 0.000 f34 Schaffern.6 2 [−100,90]Ndv 0.000 f35 Schubertpenalty1 2 [−10,10]Ndv −186.731 f36 Schubertpenalty2 2 [−10,10]Ndv −186.731 f37 Shekeln.5 4 [0,10]Ndv −10.153 f38 Shekeln.7 4 [0,10]Ndv −10.403 f39 Shekeln.10 4 [0,10]Ndv −10.536

f40 Six-HumpCamelBack 2 [−2.5,2.5]×[−1.5,1.5] −1.032

f41 Sphere 2 [−5,4]Ndv 0.000

f42,43 Styblinski-Tang 2,4 [−5,5]Ndv −39.166·N

dv

f44 TestTubeHolder 2 [−10,10]Ndv −10.872

f45 Three-HumpCamelBack 2 [−5,4]Ndv 0.000

f46 Treccani 2 [−5,4]Ndv 0.000

f47 Tripod 2 [−100,100]Ndv 0.000

f48 Vincent 5 [0.25,10]Ndv −Ndv

f49 Xin-SheYangn.2 5 [−2,]Ndv 0.000

(21)

TableA.11

AnalyticaltestfunctionswithNdv≥10.

fp Name Dimension Bounds Optimum

Ndv [l,u]j,...,Ndv fmin

f1,2 5nloc.minima(Levy) 10,20 [−5,5]Ndv 0.000

f3,4 10nloc.minima(Levy) 10,20 [−5,5]Ndv 0.000

f5,6 15nloc.minima(Levy) 10,20 [−5,5]Ndv 0.000

f7,8,9 Ackley 10,30,50 [−5,4]Ndv 0.000 f10,11 Alpine 10,20 [−9,7]Ndv 0.000 f12,13,14 Dixon-Price 10,25,50 [−1,1]Ndv 0.000 f15,16 Griewank 10,20 [−9,7]Ndv 0.000 f17,18,19 Mishran.11 10,25,50 [−10,9]Ndv 0.000 f20,21 MultiModal 10,20 [−1,0.5]Ndv 0.000 f22,23,24 Pathological 10,25,50 [−100,90]Ndv 0.000 f25 Paviani 10 [2.0001,9.9999]Ndv −45.778 f26,27 Powell 16,24 [−4,5]Ndv 0.000 f28,29,30 Rastrigin 10,30,50 [−5.12,5.12]Ndv 0.000 f31,32,33 Rosenbrock 10,25,50 [−30,30]Ndv 0.000 f34,35,36 Schwefel 10,25,50 [−500,500]Ndv −0.100·N dv f37,38,39 Trigonometricn.2 10,25,50 [−500,500]Ndv 1.000 f40,41 Vincent 15,30 [0.25,10]Ndv −Ndv f42,43,44 Xin-SheYangn.2 10,25,50 [−2,]Ndv 0.000 f45,46,47 Xin-SheYangn.4 10,25,50 [−10,10]Ndv −1.000 f48,49,50 Zacharov 10,25,50 [−5,10]Ndv 0.000 References

[1]J.Kennedy,R.Eberhart,Particleswarmoptimization,in:Proceedingsofthe FourthIEEEConferenceonNeuralNetworks,Piscataway,NJ,1995,pp. 1942–1948.

[2]Y.Zhang,S.Wang,G.Ji,Acomprehensivesurveyonparticleswarm optimizationalgorithmanditsapplications,Math.Probl.Eng.(2015).

[3]M.Kandasamy,D.Peri,Y.Tahara,W.Wilson,M.Miozzi,S.Georgiev,E. Milanov,E.F.Campana,F.Stern,Simulationbaseddesignoptimizationof waterjetpropelledDelftcatamaran,Int.Shipbuild.Prog.60(1)(2013) 277–308.

[4]X.Chen,M.Diez,M.Kandasamy,E.F.Campana,F.Stern,Designoptimization ofthewaterjet-propelledDelftcatamaranincalmwaterusingURANS,design ofexperiments,metamodelsandswarmintelligence,in:Proceedingsof12th InternationalConferenceonFastSeaTransportation(FAST2013),Amsterdam, TheNetherlands,2013.

[5]X.Chen,M.Diez,M.Kandasamy,Z.Zhang,E.F.Campana,F.Stern,High-fidelity globaloptimizationofshapedesignbydimensionalityreduction,metamodels anddeterministicparticleswarm,Eng.Optim.47(4)(2015)473–494.

[6]M.Diez,E.F.Campana,F.Stern,Design-spacedimensionalityreductionin shapeoptimizationbyKarhunen–Loèveexpansion,Comput.MethodsAppl. Mech.Eng.283(2015)1525–1544.

[7]M.Diez,A.Serani,E.F.Campana,S.Volpi,F.Stern,Designspace dimensionalityreductionforsingle-andmulti-disciplinaryshape optimization,in:AIAA/ISSMOMultidisciplinaryAnalysisandOptimization (MA&O),AVIATION2016,WashingtonDC,USA,June13–17,2016.

[8]B.Rosenthal,D.Kring,Optimaldesignofaliftingbodyswath,in:Proceedings of12thInternationalConferenceonFastSeaTransportation(FAST2013), Amsterdam,TheNetherlands,2013.

[9]S.Volpi,M.Diez,N.Gaul,H.Song,U.Iemma,K.K.Choi,E.F.Campana,F.Stern, Developmentandvalidationofadynamicmetamodelbasedonstochastic radialbasisfunctionsanduncertaintyquantification,Struct.Multidiscip. Optim.51(2)(2015)347–368.

[10]M.Diez,S.Volpi,A.Serani,F.Stern,E.F.Campana,Simulation-baseddesign optimizationbysequentialmulti-criterionadaptivesamplinganddynamic radialbasisfunctions,in:EUROGEN2015,InternationalConferenceon EvolutionaryandDeterministicMethodsforDesign,Optimizationand ControlwithApplicationstoIndustrialandSocietalProblems,Glasgow,UK, September,2015.

[11]E.F.Campana,G.Liuzzi,S.Lucidi,D.Peri,V.Piccialli,A.Pinto,Newglobal optimizationmethodsforshipdesignproblems,Optim.Eng.10(4)(2009) 533–555.

[12]A.Carlisle,G.Dozier,Anoff-the-shelfPSO,in:ProceedingoftheWorkshopon ParticleSwarmOptimization,2001,pp.1–6.

[13]G.Venter,J.Sobieszczanski-Sobieski,Aparallelparticleswarmoptimization algorithmacceleratedbyasynchronousevaluations,in:Proceedingsofthe 6thWorldCongressesofStructuralandMultidisciplinaryOptimization,Rio deJaneiro,Brazil,2005.

[14]B.Koh,A.George,R.Haftka,B.Fregly,Parallelasynchronousparticleswarm optimization,Int.J.Numer.MethodsEng.67(2006)578–595.

[15]N.A.A.Aziz,Z.Ibrahim,Asynchronousparticleswarmoptimizationforswarm robotics,Proc.Eng.41(2012)951–957.

[16]Y.Shi,R.Eberhart,Parameterselectioninparticleswarmoptimization,in: ProceedingsofEvolutionaryProgrammingVII(EP98),1998,pp.591–600.

[17]I.Trelea,Theparticleswarmoptimizationalgorithm:convergenceanalysis andparameterselection,Inf.Process.Lett.85(2003)317–325.

[18]R.Poli,J.Kennedy,T.Blackwell,Particleswarmoptimization,SwarmIntell.1 (1)(2007)33–57.

[19]A.Engelbrecht,Particleswarmoptimization:velocityinitialization,in:2012 IEEECongressonEvolutionaryComputation,2012,pp.1–8.

[20]P.Cazzaniga,M.S.Nobile,D.Besozzi,Theimpactofparticlesinitializationin PSO:parameterestimationasacaseinpoint,in:2015IEEEConferenceon ComputationalIntelligenceinBioinformaticsandComputationalBiology (CIBCB),2015,pp.1–8.

[21]J.C.Bansal,P.K.Singh,M.Saraswat,A.Verma,S.S.Jadon,A.Abraham,Inertia weightstrategiesinparticleswarmoptimization,in:2011ThirdWorld CongressonNatureandBiologicallyInspiredComputing(NaBIC),2011,pp. 633–640.

[22]S.Helwig,J.Branke,S.Mostaghim,Experimentalanalysisofboundhandling techniquesinparticleswarmoptimization,IEEETrans.Evol.Comput.17(2) (2013)9–24.

[23]A.RezaeeJordehi,J.Jasni,Parameterselectioninparticleswarmoptimisation: asurvey,J.Exp.Theor.Artif.Intell.25(4)(2013)527–542.

[24]A.Serani,M.Diez,C.Leotardi,D.Peri,G.Fasano,U.Iemma,E.F.Campana,On theuseofsynchronousandasynchronoussingle-objectivedeterministic particleswarmoptimizationinshipdesignproblems,in:Proceedingsofthe 1stInternationalConferenceinEngineeringandAppliedSciences Optimization,Kos,Greece,June4–6,2014.

[25]E.F.Campana,G.Fasano,D.Peri,PenaltyfunctionapproachesforShip MultidisciplinaryDesignOptimization,Eur.J.Ind.Eng.6(2012)765–784.

[26]S.Lucidi,M.Piccioni,Randomtunnelingbymeansofacceptance-rejection samplingforglobaloptimization,J.Optim.TheoryAppl.62(2)(1989) 255–277.

[27]E.F.Campana,G.Fasano,A.Pinto,Dynamicanalysisfortheselectionof parametersandinitialpopulation,inparticleswarmoptimization,J.Global Optim.48(3)(2010)347–397.

[28]M.Jamil,X.-S.Yang,Aliteraturesurveyofbenchmarkfunctionsforglobal optimisationproblems,Int.J.Math.Model.Numer.Optim.4(2013).

[29]E.F.Campana,M.Diez,U.Iemma,G.Liuzzi,S.Lucidi,F.Rinaldi,A.Serani, Derivative-freeglobalshipdesignoptimizationusingglobal/local hybridizationoftheDIRECTalgorithm,Optim.Eng.17(1)(2015) 127–156.

[30]T.T.Wong,W.S.Luk,P.A.Heng,SamplingwithHammersleyandHalton points,J.Graph.Tools2(2)(1997)9–24.

[31]M.Clerc,StagnationAnalysisinParticleSwarmOptimizationorWhat HappensWhenNothingHappens.Tech.rep.,2006 http://hal.archives-ouvertes.fr/hal-00122031.

[32]D.Peri,F.Tinti,Amultistartgradient-basedalgorithmwithsurrogatemodel forglobaloptimization,Commun.Appl.Ind.Math.3(1)(2012).

[33]P.Bassanini,U.Bulgarelli,E.F.Campana,F.Lalli,Thewaveresistanceproblem inaboundaryintegralformulation,Surv.Math.Ind.4(1994)151–194.

[34]Y.Shi,R.Eberhart,Amodifiedparticleswarmoptimizer,in:IEEEInternational ConferenceonEvolutionaryComputation,Anchorage,Alaska,1998.

[35]M.Clerc,Theswarmandthequeen:towardsadeterministicandadaptive particleswarmoptimization,in:Proceedingsofthe1999Congresson EvolutionaryComputation,1999,CEC99,vol.3,1999,pp.1951–1957.

[36]R.Eberhart,Y.Shi,Comparinginertiaweightsandconstrictionfactorin particleswarmoptimization,in:CongressonEvolutionaryComputing,vol.1, 2000,pp.84–88.

[37]R.Eberhart,Y.Shi,Particleswarmoptimization:developmentsapplications andresources,in:Proceedingsofthe2001CongressonEvolutionary Computation,2001,pp.81–86.

(22)

334 A.Seranietal./AppliedSoftComputing49(2016)313–334 [38]M.Clerc,J.Kennedy,Theparticleswarm:explosion,stabilityandconvergence

inamulti-dimensionalcomplexspace,IEEETrans.Evol.Comput.6(1)(2002) 58–73.

[39]C.W.Cleghorn,A.P.Engelbrecht,Ageneralizedtheoreticaldeterministic particleswarmmodel,SwarmIntell.8(1)(2014)35–59.

[40]C.W.Cleghorn,A.P.Engelbrecht,Particleswarmvariants:standardized convergenceanalysis,SwarmIntell.9(2)(2015)177–203.

[41]M.Diez,A.Serani,C.Leotardi,E.F.Campana,D.Peri,U.Iemma,G.Fasano,S. Giove,AProposalofPSOParticles’InitializationforCostlyUnconstrained OptimizationProblems:ORTHOinitLectureNotesinComputerScience,vol. 8794,SpringerInternationalPublishing,2014,pp.126–133.

[42]K.Deb,Anefficientconstrainthandlingmethodforgeneticalgorithms, Comput.MethodsAppl.Mech.Eng.186(2–4)(2000)311–338.

[43]M.Clerc,ConfinementsandBiasesinParticleSwarmOptimization.Tech.rep., 2006http://clerc.maurice.free.fr/pso.

[44]D.Bratton,J.Kennedy,Definingastandardforparticleswarmoptimization, in:Proc.IEEESwarmIntell.,2007,pp.120–127.

[45]M.Corazza,G.Fasano,R.Gusso,ParticleSwarmOptimizationwith non-smoothpenaltyreformulation,foracomplexportfolioselection problem,Appl.Math.Comput.224(2013)611–624.

[46]A.Levy,A.Montalvo,S.Gomez,A.Galderon,TopicsinGlobalOptimization LectureNotesinMathematics,vol.909,Springer-Verlag,1981.

[47]H.Schlichting,K.Gersten,Boundary-LayerTheory,Springer-Verlag,Berlin, 2000.

Riferimenti

Documenti correlati

A derivative-free global design optimization of the DTMB 5415 model has been shown, using local hybridizations by line search methods of two well-known global algorithms,

To this purpose, we introduce a novel approach, combining ant colony optimization (ACO) and naïve Bayes classifier (NBC) that is, the naïve Bayes ant colony optimization (NACO)

FIGURE 7 | Levels of (A) IL-16 and (B) TREM-1 present in the inflammatory fluids of mice receiving single or double injection of IL-1β or IL-17 into the air pouch.. The

These results provide insights into the microbial community of Corvina withered berries and reveal relevant variations attributable to environmental withering conditions.

The new Green Deal launched by Commission President, Ursula von der Leyen, as an integral part of the strategy to implement the UN Agenda for 2030, aims to make Europe the

The distance females travel during excursions was significantly greater than the diameter of an average male home range, while travel speed decreased as the female progressed

This research aimed to develop a procedure for the com- parison of the effects of the different sampling strategies (synchronous, asynchronous, equally spaced and random)