• Non ci sono risultati.

Sommario ii

N/A
N/A
Protected

Academic year: 2021

Condividi "Sommario ii"

Copied!
6
0
0

Testo completo

(1)

Contents

Abstract i

Sommario ii

Acknowledgement iii

Ringraziamenti iv

List of notations vi

Contents ix

List of figures xi

List of tables xii

1 Introduction 1

1.1 Background . . . . 1

1.2 System Overview . . . . 3

1.3 Thesis Outline . . . . 4

2 Acoustic Positioning Systems 5 2.1 Principles of Sound Propagation . . . . 5

2.2 Conventional Systems . . . . 8

2.2.1 Ultra Short or Super Short Baseline . . . . 8

2.2.2 Short Baseline . . . . 9

2.2.3 Positioning Modes for USLB/SBL . . . . 10

Transponder . . . . 10

Free Running Pinger . . . . 10

2.2.4 Long Baseline . . . . 10

2.2.5 Positioning Modes for LBL . . . . 10

Direct Ranging . . . . 11

Intelligent Acoustic Remote . . . . 11

Relay . . . . 11

Pseudo Ranging . . . . 12

vii

(2)

CONTENTS

2.3 Latest Architecture Developments . . . . 12

2.3.1 System Integration . . . . 12

2.3.2 Inverted architecture . . . . 12

2.4 G.I.B. System . . . . 13

3 Instantaneous Positioning Algorithms 16 3.1 Trilateration . . . . 16

3.1.1 3D Trilateration . . . . 16

3.1.2 2D Trilateration . . . . 18

Weighted Trilateration . . . . 19

3.2 Maximum Likelihood Estimation . . . . 21

3.2.1 MLE: Squared ranges . . . . 22

3.2.2 MLE: Pure ranges . . . . 23

3.2.3 Stepsize: Armijo rule . . . . 24

3.2.4 Simulation Results . . . . 24

3.3 Cramer-Rao Lower Bound . . . . 31

3.3.1 Buoy Geometry . . . . 32

3.3.2 Algorithm Comparison . . . . 32

4 Filtering Methods 36 4.1 Linear Estimation Problem . . . . 36

4.1.1 The Discrete Kalman Filter . . . . 37

4.1.2 Uncertainty Ellipsoid . . . . 37

4.1.3 Alternative formulation . . . . 38

4.1.4 Example . . . . 39

Linear system . . . . 39

4.2 Nonlinear Estimation Problem . . . . 40

4.2.1 Extended Kalman Filter . . . . 41

4.2.2 EKF Design . . . . 43

Nonlinear System . . . . 43

Jacobians . . . . 44

Simulation Results . . . . 44

5 Initialization and Outlier rejection algorithms 47 5.1 Initialization algorithm . . . . 47

5.2 Outlier Rejection . . . . 49

6 Graphical User Interface 51 7 Experimental Results 54 7.1 Experimental scenario . . . . 54

7.2 Results analysis . . . . 54

viii

(3)

CONTENTS

8 Conclusions and future work 64

8.1 Conclusions . . . . 64 8.2 Future work . . . . 65

Bibliography 66

A MLE: Gradient and Hessian derivation 69

A.1 MLE: Squared ranges . . . . 69 A.2 MLE: Pure ranges . . . . 71

B Chi-Square distribution 74

C Coordinate Transformations 76

C.1 Earth Model . . . . 76 C.2 ECEF coordinates from Longitude and Latitude . . . . 77 C.3 NED coordinates from ECEF coordinates . . . . 78

ix

(4)

List of Figures

1.1 Multipaths propagation. . . . . 2

1.2 The G.I.B. system. . . . . 3

2.1 Typical variable characteristics . . . . 6

2.2 Typical sound velocity profile . . . . 6

2.3 Sound propagation in isovelocity water . . . . 7

2.4 Sound propagation in positive gradient water . . . . 7

2.5 Sound propagation in negative gradient water . . . . 7

2.6 Layer Depth Phenomenon . . . . 8

2.7 Ultra Short Baseline . . . . 9

2.8 Short Baseline . . . . 9

2.9 Long Baseline and Direct Ranging . . . . 11

2.10 USBL/INS integration scheme, from [16] . . . . 13

2.11 Inverted USBL, from [32] . . . . 13

2.12 Inverted LBL, from [32] . . . . 14

2.13 GIB system . . . . 14

2.14 GIB pinger (up), GIB buoy (left) and GIB central unit (right) . . . . 15

2.15 Buoy deployment . . . . 15

3.1 Step size determination by Armijo Rule. . . . . 25

3.2 Gradient and pure ranges. . . . . 26

3.3 Newton and pure ranges. . . . . 27

3.4 Gradient and squared ranges. . . . . 28

3.5 Newton and squared ranges. . . . . 29

3.6 Local and global minimums for pure ranges log-likelihood function. . . . . . 30

3.7 Local and global minimums for squared ranges log-likelihood function. . . . . 30

3.8 Configuration of 4 buoys in square shape. . . . . 33

3.9 Configuration of 4 buoys in rhombus shape. . . . . 33

3.10 Configuration of 3 buoys in triangle shape. . . . . 34

3.11 Algorithm accuracy compared with CRLB. . . . . 35

4.1 Gaussian probability density for K = 2. . . . . 38

4.2 Kalman Filter simulation results. . . . . 40

4.3 Uncertainty ellipsoid graph. . . . . 41

x

(5)

LIST OF FIGURES

4.4 Ranges components. . . . . 43

4.5 EKF simulation results. . . . . 45

4.6 State error evolutions. . . . . 46

5.1 Integration of EKF, initialization and outlier rejection procedures. . . . . 50

6.1 GUI logical scheme. . . . . 52

6.2 Read Binary Data block. . . . . 53

7.1 Experimental trajectory. . . . . 56

7.2 Times of Arrival of acoustic pulses at each buoy. . . . . 57

7.3 Details of TOA at buoys. . . . . 58

7.4 State vector evolution. . . . . 59

7.5 Experimental trajectory of second set of data. . . . . 60

7.6 Detailed of TOA validation in the time range [300 − 340]. . . . . 61

7.7 Times of Arrival of acoustic pulses at each buoy (second set of data). . . . . 62

7.8 State vector evolution (second set of data) . . . . 63

B.1 χ

2

distribution. . . . . 74

C.1 Earth shape model. . . . . 76

C.2 ECEF coordinate frame with z-axis along Earth’s rotation axis. . . . . 78

xi

(6)

List of Tables

3.1 MLE: Simulation parameters . . . . 26

4.1 Kalman Filter Matrices . . . . 40

4.2 EKF: Simulation parameters . . . . 45

7.1 Experimental filter parameters . . . . 54

B.1 Table of critical values of χ

2

distribution. . . . . 75

C.1 WGS-84 ellipsoid constants. . . . . 77

xii

Riferimenti

Documenti correlati

La Ferro Murano, riuscendo a combinare l’originalità artigiana alla larga produzione in serie, è stata riconosciuta come la realtà più progredita del distretto, sicuramente per

2) Facendo riferimento al problema precedente, a Paolo viene offerta un´alternativa all. ´investimento precedente : investire il capitale in regime di capitalizzazione semplice del

Dopo averne calcolato il dominio, si determinino le equazioni degli asintoti delle seguenti funzioni.

L’integrale è improprio per la presenza dell’estremo 12 che annulla il denominatore.. Dunque l’area è

The definition of food and wine tourism identifies the figure of the food and wine tourist: the person who is willing to move from their place of residence in order

drift to have infinite activation (that particle would still be activated with positive probability but, if it is mortal, it will almost surely activate only a finite number

È dato log32 @ 1,5; applica le proprietà del logaritmo di un prodotto o di un quoziente e completa la seguente tabella per determinare, senza usare la calcolatrice, i logaritmi

Esistono tabelle che riportano i limiti di accettazione corretti da utilizzare nel caso in cui si stimino i parametri dalle osservazioni: il problema è che però