Risultati provette Analisi 2 ingegneria prof. Anzellotti 11 gennaio 2014
Matricola Esito prima X
esito seconda Y
(X+2Y)/3 =
Z W=Max(Y,Z) suff seconda
suff prima
suff
entrambe suff se W>17
131247 17 11,3 17,0 0 0 0 0
135706 33 32 32,3 32,3 1 1 1 1 suff
135937 20 19 19,3 19,3 1 1 1 1 suff
136078 22 14,7 22,0 1 0 0 1 suff
136196 25 33 30,3 33,0 1 1 1 1 suff
136965 32 23,5 26,3 26,3 1 1 1 1 suff
137215 30,5 27 28,2 28,2 1 1 1 1 suff
140891 17 5,7 5,7 0 0 0 0
140970 26 14 18,0 18,0 0 1 0 1 suff
141115 28 29,5 29,0 29,5 1 1 1 1 suff
141252 31,5 10,5 10,5 0 1 0 0
141796 0,0 0,0 0 0 0 0
145276 21 37 31,7 37,0 1 1 1 1 suff
145370 36 33 34,0 34,0 1 1 1 1 suff
146543 28,5 21 23,5 23,5 1 1 1 1 suff
147157 18 12,0 18,0 1 0 0 1 suff
147412 25 24 24,3 24,3 1 1 1 1 suff
147707 11 7,3 11,0 0 0 0 0 0
147787 15 5,0 5,0 0 0 0 0
147913 19 20 19,7 20,0 1 1 1 1 suff
148262 21 22 21,7 22,0 1 1 1 1 suff
148268 36 36 36,0 36,0 1 1 1 1 suff
148328 18 12,0 18,0 1 0 0 1 suff
148695 22 14 16,7 16,7 0 1 0 0
148873 20 13,3 20,0 1 0 0 1 suff
149679 21,5 14,5 16,8 16,8 0 1 0 0
151097 20 6,7 6,7 0 1 0 0
151108 26 26 26,0 26,0 1 1 1 1 suff
151145 34 22,7 34,0 1 0 0 1 suff
151180 16 10,7 16,0 0 0 0 0
151332 27 25 25,7 25,7 1 1 1 1 suff
151546 25,5 17,0 25,5 1 0 0 1 suff
151627 16 10,7 16,0 0 0 0 0
152353 17 5,7 5,7 0 0 0 0
153473 27 18,0 27,0 1 0 0 1 suff
153644 20 13 15,3 15,3 0 1 0 0
153731 27 17 20,3 20,3 0 1 0 1 suff
154097 28 26 26,7 26,7 1 1 1 1 suff
154190 25 18,5 20,7 20,7 1 1 1 1 suff
154209 17 15 15,7 15,7 0 0 0 0
154218 15 24 21,0 24,0 1 0 0 1 suff
154234 30 23 25,3 25,3 1 1 1 1 suff
154446 32 32 32,0 32,0 1 1 1 1 suff
154480 29 23 25,0 25,0 1 1 1 1 suff
154481 26 16 19,3 19,3 0 1 0 1 suff
155076 34 31 32,0 32,0 1 1 1 1 suff
155107 25 20 21,7 21,7 1 1 1 1 suff
155183 28 22 24,0 24,0 1 1 1 1 suff
155189 22 14,7 22,0 1 0 0 1 suff
155323 13 8,7 13,0 0 0 0 0
155734 33 22 25,7 25,7 1 1 1 1 suff
156276 17 24,5 22,0 24,5 1 0 0 1 suff
157224 29,5 10 16,5 16,5 0 1 0 0
157278 36 34 34,7 34,7 1 1 1 1 suff
157279 26 22 23,3 23,3 1 1 1 1 suff
157305 29 23 25,0 25,0 1 1 1 1 suff
157321 20,5 13,7 20,5 1 0 0 1 suff
157381 32,5 28 29,5 29,5 1 1 1 1 suff
157391 17 20,5 19,3 20,5 1 0 0 1 suff
157399 24 27 26,0 27,0 1 1 1 1 suff
157468 22 7,3 7,3 0 1 0 0
157503 34 36 35,3 36,0 1 1 1 1 suff
157506 31 30 30,3 30,3 1 1 1 1 suff
157513 22 17 18,7 18,7 0 1 0 1 suff
157525 34 27 29,3 29,3 1 1 1 1 suff
157541 28 28 28,0 28,0 1 1 1 1 suff
157605 35 29,5 31,3 31,3 1 1 1 1 suff
157611 33 29 30,3 30,3 1 1 1 1 suff
157636 11 3,7 3,7 0 0 0 0
157735 26 22,5 23,7 23,7 1 1 1 1 suff
157768 20 34 29,3 34,0 1 1 1 1 suff
157789 30,5 29 29,5 29,5 1 1 1 1 suff
157823 28 25 26,0 26,0 1 1 1 1 suff
157829 25 29 27,7 29,0 1 1 1 1 suff
157831 31,5 28 29,2 29,2 1 1 1 1 suff
157875 35 28 30,3 30,3 1 1 1 1 suff
157887 28 24,5 25,7 25,7 1 1 1 1 suff
157900 30,5 20,3 30,5 1 0 0 1 suff
157903 25 18,5 20,7 20,7 1 1 1 1 suff
157909 36 32,5 33,7 33,7 1 1 1 1 suff
157910 23 24 23,7 24,0 1 1 1 1 suff
157913 35 32 33,0 33,0 1 1 1 1 suff
157917 33 33 33,0 33,0 1 1 1 1 suff
157927 30 33,5 32,3 33,5 1 1 1 1 suff
157932 30 24 26,0 26,0 1 1 1 1 suff
157939 24,5 13 16,8 16,8 0 1 0 0
157967 35 36 35,7 36,0 1 1 1 1 suff
157971 29 24 25,7 25,7 1 1 1 1 suff
157972 33 34 33,7 34,0 1 1 1 1 suff
157978 35 18 23,7 23,7 1 1 1 1 suff
157980 36 36 36,0 36,0 1 1 1 1 suff
157996 20 31,5 27,7 31,5 1 1 1 1 suff
158001 32,5 22,5 25,8 25,8 1 1 1 1 suff
158142 25 14 17,7 17,7 0 1 0 1 suff
158151 26 23,5 24,3 24,3 1 1 1 1 suff
158158 28 25 26,0 26,0 1 1 1 1 suff
158173 35 28 30,3 30,3 1 1 1 1 suff
158188 23,5 24 23,8 24,0 1 1 1 1 suff
158220 24 27,5 26,3 27,5 1 1 1 1 suff
158223 28 15 19,3 19,3 0 1 0 1 suff
158224 25 32 29,7 32,0 1 1 1 1 suff
158225 29 25 26,3 26,3 1 1 1 1 suff
158226 28 25 26,0 26,0 1 1 1 1 suff
158236 9 7 7,7 7,7 0 0 0 0
158237 31 35 33,7 35,0 1 1 1 1 suff
158238 32,5 32,5 32,5 32,5 1 1 1 1 suff
158254 35 25,5 28,7 28,7 1 1 1 1 suff
158255 29 32 31,0 32,0 1 1 1 1 suff
158281 34 39 37,3 39,0 1 1 1 1 suff
158286 30 29 29,3 29,3 1 1 1 1 suff
158289 31 28,5 29,3 29,3 1 1 1 1 suff
158349 35 25 28,3 28,3 1 1 1 1 suff
158359 28 12 17,3 17,3 0 1 0 1 suff
158364 33 30 31,0 31,0 1 1 1 1 suff
158367 33 27 29,0 29,0 1 1 1 1 suff
158373 36 26 29,3 29,3 1 1 1 1 suff
158374 18 24,5 22,3 24,5 1 1 1 1 suff
158384 14 13 13,3 13,3 0 0 0 0
158385 31 29 29,7 29,7 1 1 1 1 suff
158387 31 22 25,0 25,0 1 1 1 1 suff
158390 30 36 34,0 36,0 1 1 1 1 suff
158391 27 26,5 26,7 26,7 1 1 1 1 suff
158512 30 28,5 29,0 29,0 1 1 1 1 suff
158565 34 34 34,0 34,0 1 1 1 1 suff
158588 33,5 36 35,2 36,0 1 1 1 1 suff
158596 28 30,5 29,7 30,5 1 1 1 1 suff
158604 29,5 24 25,8 25,8 1 1 1 1 suff
158615 25 13 17,0 17,0 0 1 0 0
158627 33 28 29,7 29,7 1 1 1 1 suff
158664 23 35 31,0 35,0 1 1 1 1 suff
158681 26 14 18,0 18,0 0 1 0 1 suff
158714 35 33 33,7 33,7 1 1 1 1 suff
158731 24 23,5 23,7 23,7 1 1 1 1 suff
158740 15 11 12,3 12,3 0 0 0 0
158742 13 4,3 4,3 0 0 0 0
158759 36 36,5 36,3 36,5 1 1 1 1 suff
158767 24 29 27,3 29,0 1 1 1 1 suff
158902 30 33,5 32,3 33,5 1 1 1 1 suff
158907 33 35 34,3 35,0 1 1 1 1 suff
159013 36 35 35,3 35,3 1 1 1 1 suff
159014 25 16 19,0 19,0 0 1 0 1 suff
159093 31 29 29,7 29,7 1 1 1 1 suff
159139 29 29 29,0 29,0 1 1 1 1 suff
159189 28 11 16,7 16,7 0 1 0 0
159286 29 35 33,0 35,0 1 1 1 1 suff
159311 22 23,5 23,0 23,5 1 1 1 1 suff
159322 36 29 31,3 31,3 1 1 1 1 suff
159332 35 35 35,0 35,0 1 1 1 1 suff
159359 30 25,5 27,0 27,0 1 1 1 1 suff
159361 26 25 25,3 25,3 1 1 1 1 suff
159404 14 29 24,0 29,0 1 0 0 1 suff
159411 28,5 33 31,5 33,0 1 1 1 1 suff
159426 32 17,5 22,3 22,3 1 1 1 1 suff
159477 13 4,3 4,3 0 0 0 0
159486 35 28 30,3 30,3 1 1 1 1 suff
159487 34 35,5 35,0 35,5 1 1 1 1 suff
159517 31 32 31,7 32,0 1 1 1 1 suff
159521 21 25 23,7 25,0 1 1 1 1 suff
159527 28,5 23,5 25,2 25,2 1 1 1 1 suff
159536 27 28 27,7 28,0 1 1 1 1 suff
159556 24 16 18,7 18,7 0 1 0 1 suff
159563 22 30 27,3 30,0 1 1 1 1 suff
159610 27 9,0 9,0 0 1 0 0
159610 29,5 19,7 29,5 1 0 0 1 suff
159617 36 38 37,3 38,0 1 1 1 1 suff
159648 36 35 35,3 35,3 1 1 1 1 suff
159676 18 6,0 6,0 0 1 0 0
159719 29 32 31,0 32,0 1 1 1 1 suff
159743 28 18,7 28,0 1 0 0 1 suff
159861 32,5 22 25,5 25,5 1 1 1 1 suff
159863 5 1,7 1,7 0 0 0 0
159868 33 29 30,3 30,3 1 1 1 1 suff
159876 25 25 25,0 25,0 1 1 1 1 suff
159881 15 3 7,0 7,0 0 0 0 0
159908 30,5 25 26,8 26,8 1 1 1 1 suff
159918 29 30 29,7 30,0 1 1 1 1 suff
159920 28 36 33,3 36,0 1 1 1 1 suff
159941 35 35 35,0 35,0 1 1 1 1 suff
159946 16 13,5 14,3 14,3 0 0 0 0
159970 28 19 22,0 22,0 1 1 1 1 suff
159986 23 15,3 23,0 1 0 0 1 suff
160012 35 32 33,0 33,0 1 1 1 1 suff
160014 36 36,5 36,3 36,5 1 1 1 1 suff
160050 30 34 32,7 34,0 1 1 1 1 suff
160053 20 21 20,7 21,0 1 1 1 1 suff
160073 24 27 26,0 27,0 1 1 1 1 suff
160086 28 30 29,3 30,0 1 1 1 1 suff
160129 30 33,5 32,3 33,5 1 1 1 1 suff
160177 31 30 30,3 30,3 1 1 1 1 suff
160229 34 18 23,3 23,3 1 1 1 1 suff
160254 13 15 14,3 15,0 0 0 0 0
160269 24 32 29,3 32,0 1 1 1 1 suff
160270 36 34 34,7 34,7 1 1 1 1 suff
160369 29 32,5 31,3 32,5 1 1 1 1 suff
160385 16 19 18,0 19,0 1 0 0 1 suff
160387 26 24 24,7 24,7 1 1 1 1 suff
160425 36 25 28,7 28,7 1 1 1 1 suff
160431 32 27 28,7 28,7 1 1 1 1 suff
160462 24 23 23,3 23,3 1 1 1 1 suff
160494 24 8 13,3 13,3 0 1 0 0
160546 24 25 24,7 25,0 1 1 1 1 suff
160604 30 10,0 10,0 0 1 0 0
160616 18 14 15,3 15,3 0 1 0 0
160710 23 36 31,7 36,0 1 1 1 1 suff
160754 31 34 33,0 34,0 1 1 1 1 suff
160764 29 29 29,0 29,0 1 1 1 1 suff
160800 26 8,5 14,3 14,3 0 1 0 0
160904 28,5 26 26,8 26,8 1 1 1 1 suff
160918 21 28 25,7 28,0 1 1 1 1 suff
160989 35 23 27,0 27,0 1 1 1 1 suff
161029 20 16 17,3 17,3 0 1 0 1 suff
161059 27 26,5 26,7 26,7 1 1 1 1 suff
161185 10 3,3 3,3 0 0 0 0
161226 36 36 36,0 36,0 1 1 1 1 suff
161228 18,5 12,3 18,5 1 0 0 1 suff
161396 3 2,0 3,0 0 0 0 0
161401 30 34 32,7 34,0 1 1 1 1 suff
161645 25 16,5 19,3 19,3 0 1 0 1 suff
163135 27 14 18,3 18,3 0 1 0 1 suff
168105 26 29 28,0 29,0 1 1 1 1 suff
No
matricola 26 23 24,0 24,0 1 1 1 1 suff
170 180 151 183