• Non ci sono risultati.

Test matrice 8x8 - PFM1

N/A
N/A
Protected

Academic year: 2021

Condividi "Test matrice 8x8 - PFM1"

Copied!
41
0
0

Testo completo

(1)

Test matrice 8x8 - PFM1

•  Aggiornamenti sui test con domande…

•  Happy ending (o quasi!)…

•  operando la matrice con conversione di tutti i 64 pixel si osservano strani effetti (slide 1-22)

•  se si opera solo 1 pixel ed il resto della matrice non converte troviamo risultati simili a quelli ottenuti sul chip di test con singolo canale (PV/

BG) (slide 23-24)

•  la conversione di tutta la matrice induce robaccia probabilmente nella zona ADC! (slide 25-30)

•  Continueremo l’indagine per confermare questi effetti

G. Rizzo PixFEL meeting – June, 18 2015 1

PixFEL, June 25-2015

G. Rizzo-F. Morsani - Universita & INFN Pisa

(2)

Riassunto indagini precedenti (1)

•   Problemi dei registri di configurazione

•   Possibile configurare iniezione solo nei primi 7 pixel della col0

•   Implementata seq con “4 slot standard” seguita da lettura su bus parallelo di ogni pixel della matrice in sequenza.

–  Se 2 trigger successivi sono ravvicinati si osservano valori di ADC piu’ alti e molto rumore e strani picchi

–  Per questo decidiamo di lavorare con separazione tra 2 trigger di 8 ms –  Osserviamo pero’ che il gain e’ molto basso ~1/10 di quello atteso

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 2

•   Passiamo a prove fatte con filtro usato come buffer (8ms tra 2 conversioni successive)

–  Noise dell’ADC circa 0.5-1 ADC nei canali buoni, ma 20% dei canali leggono 1023 e molti altri hanno varie patologie

•  Decidiamo poi di implementare la stessa seq usata con successon sul test del canale singolo a PV/BG da

Daniele/Massimo (seq_pv)

(3)

Riassunto indagini precedenti (2)

•  La seq_pv ha le 4 slot temporali con 50 ns int. time per baseline e sign integration, ~200 ns (?) per signal settling and reset phase. 200 ns clock conversion.

•   Il trigger di start conversion 100 ns dopo la slot di signal integration (S0 chiuso).

•   Per operare la matrice PFM1 la seq_pv e’ seguita da ciclo di lettura (la cui durata dipende dal clk readout)

•  Inizialmente operiamo con seq_pv + lettura con separazione tra 2 conversioni successive di 8 ms (come in precedenza)

–  Il segnale iniettato si vede con guadagno molto basso come nella nostra sequenza precedente

•   Per caso (errore fortunato) operiamo la matrice con 2 seq_pv consecutive (2 trigger e 2 iniezioni ravvicinate) seguite da lettura e a quel punto si osserva il segnale con gain molto piu’ alto.

•  Test successivi spiegati nel seguito e riassunto delle domande nate da questi test nelle prossima slides

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 3

(4)

2xSeq_PV + lettura

G. Rizzo-F. Morsani 4

A 10 bit Resolution Readout Channel with Dynamic Range Compression for X-ray Imaging at FELs

Daniele Comotti

∗†

, on behalf of the PixFEL Collaboration

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy

INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy

Abstract—This work is about the experimental characteriza- tion of the first prototype of a readout channel for silicon pixel detectors developed by the PixFEL collaboration in view of future X-ray Free Electron Laser applications. The circuit, fabricated in a 65 nm CMOS technology by TSMC, has been designed to deal with a maximum input signal of 10

4

photons with energy from 1 keV to 10 keV, by exploiting a non-linear technique implemented at front-end level. Moreover, it has been envisioned for operations compliant with the demanding frame rates of FEL facilities, of the order of a few MHz. This paper presents results of measurements performed on the building blocks of the readout processor, along with a summary of the overall characteristics of the complete readout channel.

S

UMMARY

In the last years, X-ray Free Electron Lasers (X-FELs) have become the predominant tool for investigating the extremely small and fast phenomena taking place at the nanometer scale and the complex structure of organic and inorganic materials. The properties of the X-ray beam structure at FELs as well as the experiment specifications set very severe requirements for the electronic instrumentation performing coherent X-ray diffraction imaging. One of the most challenging tasks is to cover the wide input dynamic range of 10

4

photons with an energy from 1 keV to 10 keV while preserving single photon resolution at small signals and providing a resolution better than the Poisson limit over the entire input range. This is typically achieved by means of a non-linear characteristic in the detector chain.

!"

#$%$#&$'()

*$+$,%- ,%-

./

0 0

1

#2&$)

#&0345 678

!&

!#

!9

!:

!;

3&

3*

!"#$%

!"#$!$!"&$% '"!$!$!"($%

<./!!5

8=>?@($!(AB454C($6DEF4G4(?$H45=$

IJA>D4K$B4@A>F$KLDE?(BB4LA

)05L0.

8LAC(?B4LA M>5(I$4A5(@?>5L? #&0345$!6"$678 8N

OP6

&2Q$) 1

0

Fig. 1. Schematic diagram of the readout channel with dynamic signal compression developed for the PixFEL project.

For this purpose, several solutions are currently under investigation in the instrumentation developed for applications to experiments at FEL facilities. The signal compression can be carried out either at the sensor level, as in the case of the DSSC device [1], or at the front-end level, with multiple switching gains, as achieved in the LPD [2] or in the AGIPD [3] detectors. In the framework of the DSSC collaboration, signal compression at the front-end level with a single channel have been also proposed [4] [5].

This work is about the first experimental results of a novel read-out processor designed for applications at future X-FEL facilities [6]. The design has been carried out in the framework of the PixFEL project [7], funded by INFN. The long term goal of the collaboration is the development of a 100 µm pitch, four side buttable tile based on planar active edge fully depleted P/N pixel sensors for large area X-ray imagers. The main specifications of the read-out channel, fabricated in a 65 nm CMOS technology by TSMC, are the capability of handling a maximum input signal of 10

4

photons at both 1 keV and 10 keV, as above-mentioned, the compliance with both a burst mode operation up to 4.5 MHz and a continuous mode operation up to 15 kHz, and an in-pixel 10-bit resolution Analog-to-Digital (ADC) conversion. As depicted in Fig. 1, the front-end electronics consists of three stages. The input signal is detected by a Charge Sensitive Amplifier (CSA), integrating a MOS transistor in the feedback network arranged in such a

way that the gain depends on the bi-linear characteristic of the •  Ad ogni trigger l’uscita del filtro e’

chiusa su un DAC FINO al trigger successivo, senza sample & hold.

•  Quel DAC segue tutto quello che succede in uscita al filtro in quella finestra?

•  Con la seq qui sotto (2xseq_pv) seguita da lettura NON si vede il segnale iniettato

•  Da qui abbiamo capito meglio il

funzionamento dei 2 DAC interleaved

PixFEL Meeting – June 24

st

2015

Da qui lettura DAC2 non leggo mai DAC1 Reset

Inject

Trigger S0

DAC2 sampling DAC1 sampling

DAC2 conv

DAC1 conv 1 us /div

(5)

2xSeq_PV + lettura

5 G. Rizzo-F. Morsani

A 10 bit Resolution Readout Channel with Dynamic Range Compression for X-ray Imaging at FELs

Daniele Comotti

∗†

, on behalf of the PixFEL Collaboration

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy

INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy

Abstract—This work is about the experimental characteriza- tion of the first prototype of a readout channel for silicon pixel detectors developed by the PixFEL collaboration in view of future X-ray Free Electron Laser applications. The circuit, fabricated in a 65 nm CMOS technology by TSMC, has been designed to deal with a maximum input signal of 10

4

photons with energy from 1 keV to 10 keV, by exploiting a non-linear technique implemented at front-end level. Moreover, it has been envisioned for operations compliant with the demanding frame rates of FEL facilities, of the order of a few MHz. This paper presents results of measurements performed on the building blocks of the readout processor, along with a summary of the overall characteristics of the complete readout channel.

S

UMMARY

In the last years, X-ray Free Electron Lasers (X-FELs) have become the predominant tool for investigating the extremely small and fast phenomena taking place at the nanometer scale and the complex structure of organic and inorganic materials. The properties of the X-ray beam structure at FELs as well as the experiment specifications set very severe requirements for the electronic instrumentation performing coherent X-ray diffraction imaging. One of the most challenging tasks is to cover the wide input dynamic range of 10

4

photons with an energy from 1 keV to 10 keV while preserving single photon resolution at small signals and providing a resolution better than the Poisson limit over the entire input range. This is typically achieved by means of a non-linear characteristic in the detector chain.

!"

#$%$#&$'()

*$+$,%- ,%-

./

0 0

1

#2&$)

#&0345 678

!&

!#

!9

!:

!;

3&

3*

!"#$%

!"#$!$!"&$% '"!$!$!"($%

<./!!5

8=>?@($!(AB454C($6DEF4G4(?$H45=$

IJA>D4K$B4@A>F$KLDE?(BB4LA

)05L0.

8LAC(?B4LA M>5(I$4A5(@?>5L? #&0345$!6"$678 8N

OP6

&2Q$) 1

0

Fig. 1. Schematic diagram of the readout channel with dynamic signal compression developed for the PixFEL project.

For this purpose, several solutions are currently under investigation in the instrumentation developed for applications to experiments at FEL facilities. The signal compression can be carried out either at the sensor level, as in the case of the DSSC device [1], or at the front-end level, with multiple switching gains, as achieved in the LPD [2] or in the AGIPD [3] detectors. In the framework of the DSSC collaboration, signal compression at the front-end level with a single channel have been also proposed [4] [5].

This work is about the first experimental results of a novel read-out processor designed for applications at future X-FEL facilities [6]. The design has been carried out in the framework of the PixFEL project [7], funded by INFN. The long term goal of the collaboration is the development of a 100 µm pitch, four side buttable tile based on planar active edge fully depleted P/N pixel sensors for large area X-ray imagers. The main specifications of the read-out channel, fabricated in a 65 nm CMOS technology by TSMC, are the capability of handling a maximum input signal of 10

4

photons at both 1 keV and 10 keV, as above-mentioned, the compliance with both a burst mode operation up to 4.5 MHz and a continuous mode operation up to 15 kHz, and an in-pixel 10-bit resolution Analog-to-Digital (ADC) conversion. As depicted in Fig. 1, the front-end electronics consists of three stages. The input signal is detected by a Charge Sensitive Amplifier (CSA), integrating a MOS transistor in the feedback network arranged in such a way that the gain depends on the bi-linear characteristic of the

•  Ad ogni trigger l’uscita del filtro e’ chiusa su un DAC FINO al trigger successivo!

•   Con la seq qui sotto (2xseq_pv) seguite da lettura si vede il segnale iniettato

PixFEL Meeting – June 24

st

2015

Reset Inject

Trigger S0

Da qui lettura DAC2, non leggo mai DAC1 DAC2 sampling

DAC1 sampling

DAC2 conv

DAC1 conv

(6)

2xSeq_PV + lettura

G. Rizzo-F. Morsani PixFEL Meeting – June 24 PixFEL Meeting – June 24

stst

2015 2015 6

Reset Inject

Trigger S0

Da qui lettura DAC2

•   La conclusione dei test precedenti e’ che con la seq. usata il segnale letto e’ quello che si trova all’uscita del filtro

immediatamente prima del trigger.

–  Legato ai 2 DAC interleaved, ma interpretato meglio ora.

•   Quindi il tempo efficace per caricare il DAC in effetti e’ solo quello dalla seconda apertura di S0 al trigger, e non tutto l’intervallo di tempo dal trigger precendente.

DAC2 sampling DAC1 sampling

DAC2 conv DAC1 conv

8 ms tra una lettura e la successiva

Da qui lettura

DAC2

(7)

1a no inj, 2a inj, lettura

•  Con la sequenza precendente (2 trigger seguiti da una lettura) si

campiona sempre sullo stesso DAC e si vede molto noise e strani picchi.

•  Tutti I plot della matrice:

•  http://www.pi.infn.it/~rizzo/pixfel_PFM1/seq_pv_2trg_1noinj_2inj.pdf

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 7

data

600 610 620 630 640 650

0 5 10 15 20 25 30 35 40 45

data {row == 0 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 632.4 RMS 9.176 data {row == 0 && col == 0 && event%2 != 0}

data

705 710 715 720 725 730 735

0 5 10 15 20 25 30 35 40 45

data {row == 1 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 723.2 RMS 5.301 data {row == 1 && col == 0 && event%2 != 0}

data

605 610 615 620 625 630

0 10 20 30 40 50

data {row == 2 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 619.4 RMS 3.575 data {row == 2 && col == 0 && event%2 != 0}

data

725 730 735 740 745 750

0 20 40 60 80 100 120 140

data {row == 3 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 737.3 RMS 3.112 data {row == 3 && col == 0 && event%2 != 0}

data

705 710 715 720 725 730 735

0 10 20 30 40 50 60 70

data {row == 4 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 717.3 RMS 4.202 data {row == 4 && col == 0 && event%2 != 0}

data 592 594 596 598 600 602 604 606 608 610 612 0

10 20 30 40 50 60

data {row == 5 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 601 RMS 3.175 data {row == 5 && col == 0 && event%2 != 0}

data

620 625 630 635 640 645 650 655

0 10 20 30 40 50 60 70 80

data {row == 6 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 637.1 RMS 4.784 data {row == 6 && col == 0 && event%2 != 0}

data

930 932 934 936 938 940 942

0 10 20 30 40 50 60 70 80 90

data {row == 7 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 936.5 RMS 2.097 data {row == 7 && col == 0 && event%2 != 0}

Pix 0 0 Pix 0 1

(8)

1a inj, 2a no inj, lettura

•  Si vede molto noise e strani picchi anche quando prima del secondo trigger non inietto.

•  Tutti I plot della matrice:

•  http://www.pi.infn.it/~rizzo/pixfel_PFM1/seq_pv_2trg_1inj_2noinj.pdf

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 8

data

830 840 850 860 870 880

0 10 20 30 40 50 60

data {row == 0 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 857.5 RMS 9.265 data {row == 0 && col == 0 && event%2 != 0}

data

945 950 955 960 965 970

0 20 40 60 80 100 120 140 160

data {row == 1 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 959.9 RMS 3.767 data {row == 1 && col == 0 && event%2 != 0}

data 832 834 836 838 840 842 844 846 848 850 852

0 10 20 30 40 50 60

data {row == 2 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 842.8 RMS 3.471 data {row == 2 && col == 0 && event%2 != 0}

data 956 958 960 962 964 966 968 970 972 974

0 10 20 30 40 50 60 70 80

data {row == 3 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 966 RMS 3.265 data {row == 3 && col == 0 && event%2 != 0}

data

935 940 945 950 955 960

0 10 20 30 40 50

data {row == 4 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 947 RMS 3.946 data {row == 4 && col == 0 && event%2 != 0}

data

832 834 836 838 840 842 844 846 848

0 20 40 60 80 100

data {row == 5 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 839.7 RMS 2.387 data {row == 5 && col == 0 && event%2 != 0}

data

875 880 885 890 895 900 905 910

0 10 20 30 40 50

data {row == 6 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 891.9 RMS 6.177 data {row == 6 && col == 0 && event%2 != 0}

data

924 926 928 930 932 934 936 938

0 10 20 30 40 50 60 70 80 90

data {row == 7 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 930.5 RMS 2.235 data {row == 7 && col == 0 && event%2 != 0}

Pix 0 0 Pix 0 1

(9)

3xseq_pv

•   Costruita una sequenza con 3 trigger (3xseq_pv) seguiti da una lettura per campionare su entrambi i DAC.

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 9

(10)

Reset Inject

Trigger S0

Da qui lettura DAC1

DAC2 sampling

DAC1 sampling

DAC2 conv

DAC1 conv

DAC1 sampling

DAC2 sampling

DAC1 conv

3xseq_pv

10 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato e si campionano entrambi i DAC

PixFEL Meeting – June 24

st

2015

•  Da notare che ogni evento letto non e’ mai affetto da possibili induzioni provenienti dalla lettura, che si effettua in un evento che non viene mai mandato in lettura (e’ campionato e convertito ma non letto).

•   Gli effetti di noise (induzione?) possono pero’ venire dall’attivita’ della conversione dell’evento precedente.

Reset Inject

Trigger S0

Da qui lettura DAC2

DAC1 sampling

DAC2 sampling

DAC1 conv

DAC2 conv

DAC2 sampling

DAC1 sampling

DAC2 conv

(11)

Primo ciclo 3 seq_pv con 1 lettura

11 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato e si campionano entrambi i DAC

PixFEL Meeting – June 24

st

2015

Reset Inject

Trigger S0

Da qui lettura DAC1 DAC2 sampling

DAC1 sampling

DAC2 conv DAC1 conv

DAC1 sampling DAC2 sampling

DAC1 conv

(12)

12 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato e si campionano entrambi i DAC

PixFEL Meeting – June 24

st

2015

Reset Inject

Trigger S0

Da qui lettura DAC2 DAC1 sampling

DAC2 sampling

DAC1 conv DAC2 conv

DAC2 sampling DAC1 sampling

secondo ciclo 3 seq_pv con 1 lettura

DAC2 conv

(13)

3xseq_pv

13 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato e si campionano entrambi i DAC

•  Il noise e’ molto alto ed eventi pari e dispari (2 DAC diversi) hanno valori molto diversi tra loro , sia nei pixel iniettati col0 (0-6) sia non iniettati (tutti gli altri)

•  Effetto simile (2 DAC diversi visto a PV e mostrato da Daniele in slide 2 del 5 giugno. NON CAPITO

PixFEL Meeting – June 24

st

2015

data

600 610 620 630 640 650

0 10 20 30 40 50 60 70 80

data {row == 0 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 617 RMS 10.24 data {row == 0 && col == 0 && event%2 == 0}

data 690 695 700 705 710 715 720 725 730 735 0

10 20 30 40 50

data {row == 1 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 715.1 RMS 6.854 data {row == 1 && col == 0 && event%2 == 0}

data 606 608 610 612 614 616 618 620 622 624 626 628

0 10 20 30 40 50 60

data {row == 2 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 612.3 RMS 3.427 data {row == 2 && col == 0 && event%2 == 0}

data

720 725 730 735 740 745

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 734.9 RMS 3.341 data {row == 3 && col == 0 && event%2 == 0}

data

700 705 710 715 720 725

0 5 10 15 20 25 30 35 40 45

data {row == 4 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 713.1 RMS 4.772 data {row == 4 && col == 0 && event%2 == 0}

data

585 590 595 600 605 610

0 10 20 30 40 50 60

data {row == 5 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 597.4 RMS 3.587 data {row == 5 && col == 0 && event%2 == 0}

data 620 625 630 635 640 645 650 655 660 665 0

5 10 15 20 25 30 35

data {row == 6 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 637.5 RMS 8.16 data {row == 6 && col == 0 && event%2 == 0}

data

928 930 932 934 936 938 940 942 944

0 10 20 30 40 50 60 70

data {row == 7 && col == 0 && event%2 == 0}

htemp

Entries 505 Mean 936.8 RMS 3.005 data {row == 7 && col == 0 && event%2 == 0} data

650 660 670 680 690 700 710

0 10 20 30 40 50

data {row == 0 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 679.4 RMS 11.39 data {row == 0 && col == 0 && event%2 != 0}

data

720 725 730 735 740 745

0 20 40 60 80 100 120 140

data {row == 1 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 733.1 RMS 4.005 data {row == 1 && col == 0 && event%2 != 0}

data

635 640 645 650 655 660 665 670

0 5 10 15 20 25

data {row == 2 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 652.4 RMS 7.248 data {row == 2 && col == 0 && event%2 != 0}

data

640 645 650 655 660 665 670 675

0 5 10 15 20 25 30 35 40 45

data {row == 3 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 659.8 RMS 4.815 data {row == 3 && col == 0 && event%2 != 0}

data

640 645 650 655 660 665 670

0 10 20 30 40 50

data {row == 4 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 654.5 RMS 4.704 data {row == 4 && col == 0 && event%2 != 0}

data

645 650 655 660 665 670 675 680

0 10 20 30 40 50 60 70 80 90

data {row == 5 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 665 RMS 6.77 data {row == 5 && col == 0 && event%2 != 0}

data

585 590 595 600 605

0 10 20 30 40 50 60 70 80 90

data {row == 6 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 592.8 RMS 3.338 data {row == 6 && col == 0 && event%2 != 0}

data

946 948 950 952 954 956 958

0 20 40 60 80 100

data {row == 7 && col == 0 && event%2 != 0}

htemp

Entries 504 Mean 951.8 RMS 1.939 data {row == 7 && col == 0 && event%2 != 0}

Pix 0 0

DAC1 Pix 0 0

DAC2

(14)

3xseq_pv

14 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato e si campionano entrambi i DAC , con valori molto diversi!

•  Plot Senza separare eventi pari e dispari (primi 7 pixel iniettati, 8 NO)

PixFEL Meeting – June 24

st

2015

data

600 620 640 660 680 700

0 10 20 30 40 50 60 70 80

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 648.2 RMS 33.01

data {row == 0 && col == 0}

data

690 700 710 720 730 740

0 20 40 60 80 100 120 140

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 724.1 RMS 10.63

data {row == 1 && col == 0}

data

610 620 630 640 650 660 670

0 10 20 30 40 50 60

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 632.4 RMS 20.84

data {row == 2 && col == 0}

data

640 660 680 700 720 740

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 697.4 RMS 37.76

data {row == 3 && col == 0}

data 640 650 660 670 680 690 700 710 720 730 0

10 20 30 40 50

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 683.8 RMS 29.68

data {row == 4 && col == 0}

data

600 620 640 660 680

0 10 20 30 40 50 60 70 80 90

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 631.2 RMS 34.2

data {row == 5 && col == 0}

data 580 590 600 610 620 630 640 650 660 0

10 20 30 40 50 60 70 80 90

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 615.2 RMS 23.23

data {row == 6 && col == 0}

data

930 935 940 945 950 955 960

0 20 40 60 80 100

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 944.3 RMS 7.906

data {row == 7 && col == 0}

(15)

3xseq_pv

15 G. Rizzo-F. Morsani

•  Con la seq qui sotto (3xseq_pv) seguite da lettura si vede il segnale iniettato ma si campionano entrambi i DAC

•  Plot Senza separare eventi pari e dispari (primi 7 pixel iniettati, 8 NO)

•   Si vedono valori dei 2 DAC molto diversi

•  Zoologia molto varia sulla matrice (next slide)

PixFEL Meeting – June 24

st

2015

data

600 620 640 660 680 700

0 10 20 30 40 50 60 70 80

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 648.2 RMS 33.01

data {row == 0 && col == 0}

data

690 700 710 720 730 740

0 20 40 60 80 100 120 140

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 724.1 RMS 10.63

data {row == 1 && col == 0}

data

610 620 630 640 650 660 670

0 10 20 30 40 50 60

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 632.4 RMS 20.84

data {row == 2 && col == 0}

data

640 660 680 700 720 740

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 697.4 RMS 37.76

data {row == 3 && col == 0}

data 640 650 660 670 680 690 700 710 720 730 0

10 20 30 40 50

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 683.8 RMS 29.68

data {row == 4 && col == 0}

data

600 620 640 660 680

0 10 20 30 40 50 60 70 80 90

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 631.2 RMS 34.2

data {row == 5 && col == 0}

data 580 590 600 610 620 630 640 650 660 0

10 20 30 40 50 60 70 80 90

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 615.2 RMS 23.23

data {row == 6 && col == 0}

data

930 935 940 945 950 955 960

0 20 40 60 80 100

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 944.3 RMS 7.906

data {row == 7 && col == 0}

(16)

3xseq_pv

16 G. Rizzo-F. Morsani

•  Zoologia molto varia sulla matrice pixel non iniettati in col 6

PixFEL Meeting – June 24

st

2015

data 840 860 880 900 920 940 960 980 1000 1020 0

100 200 300 400 500 600

data {row == 0 && col == 6}

htemp

Entries 1008 Mean 986.6 RMS 52.46 data {row == 0 && col == 6}

data

920 930 940 950 960 970

0 20 40 60 80 100 120 140

data {row == 1 && col == 6}

htemp

Entries 1008 Mean 947.5 RMS 13.75 data {row == 1 && col == 6}

data

900 910 920 930 940 950 960

0 50 100 150 200 250

data {row == 2 && col == 6}

htemp

Entries 1008 Mean 933.2 RMS 25.32 data {row == 2 && col == 6}

data 1021 1021.5 1022 1022.5 1023 1023.5 1024 1024.5 1025

0 200 400 600 800 1000

data {row == 3 && col == 6}

htemp

Entries 1008 Mean 1023 RMS 0 data {row == 3 && col == 6}

data 900 910 920 930 940 950 960 970 980 990

0 10 20 30 40 50 60 70

data {row == 4 && col == 6}

htemp

Entries 1008 Mean 949 RMS 25.49 data {row == 4 && col == 6}

data 1021 1021.5 1022 1022.5 1023 1023.5 1024 1024.5 1025

0 200 400 600 800 1000

data {row == 5 && col == 6}

htemp

Entries 1008 Mean 1023 RMS 0 data {row == 5 && col == 6}

data

830 840 850 860 870 880 890

0 50 100 150 200 250

data {row == 6 && col == 6}

htemp

Entries 1008 Mean 851.7 RMS 21.58 data {row == 6 && col == 6}

data

920 930 940 950 960

0 50 100 150 200 250 300 350 400

data {row == 7 && col == 6}

htemp

Entries 1008 Mean 940.8 RMS 18.05 data {row == 7 && col == 6}

•  http://www.pi.infn.it/~rizzo/pixfel_PFM1/seq_pv_3inj_all.pdf

•  http://www.pi.infn.it/~rizzo/pixfel_PFM1/seq_pv_3inj_even.pdf

•  http://www.pi.infn.it/~rizzo/pixfel_PFM1/seq_pv_3inj_odd.pdf

(17)

3xseq_pv

17 G. Rizzo-F. Morsani

•  Guardo solo pix 0 0 con sep tra 2 letture di 8 ms, 20 us, 10 us

PixFEL Meeting – June 24

st

2015

data

620 640 660 680 700 720

0 200 400 600 800 1000 1200 1400

data {row == 0 && col == 0}

htemp

Entries 32769

Mean 653.8

RMS 28.04

data {row == 0 && col == 0}

data

620 640 660 680 700

0 5 10 15 20 25 30 35 40 45

data {row == 0 && col == 0}

htemp

Entries 1008 Mean 652.4 RMS 29.36

data {row == 0 && col == 0}

data

690 700 710 720 730 740 750

0 10 20 30 40 50 60 70

data {row == 1 && col == 0}

htemp

Entries 1008 Mean 725.4 RMS 15.77

data {row == 1 && col == 0}

data

610 620 630 640 650 660 670

0 10 20 30 40 50 60 70

data {row == 2 && col == 0}

htemp

Entries 1008 Mean 635.8 RMS 22.27

data {row == 2 && col == 0}

data

650 660 670 680 690 700 710 720

0 20 40 60 80 100 120

data {row == 3 && col == 0}

htemp

Entries 1008 Mean 684.4 RMS 21.46

data {row == 3 && col == 0}

data

640 660 680 700 720 740

0 10 20 30 40 50 60

data {row == 4 && col == 0}

htemp

Entries 1008 Mean 690.7 RMS 36.88

data {row == 4 && col == 0}

data

600 610 620 630 640 650 660 670

0 20 40 60 80 100 120 140

data {row == 5 && col == 0}

htemp

Entries 1008 Mean 631.8 RMS 26.38

data {row == 5 && col == 0}

data

590 600 610 620 630 640 650

0 10 20 30 40 50 60 70 80

data {row == 6 && col == 0}

htemp

Entries 1008 Mean 614.4 RMS 18.8

data {row == 6 && col == 0}

data

925 930 935 940 945 950 955 960 965

0 50 100 150 200 250 300 350

data {row == 7 && col == 0}

htemp

Entries 1008 Mean 945 RMS 14.33

data {row == 7 && col == 0}

data

600 620 640 660 680 700

0 10 20 30 40 50 60 70 80

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 648.2 RMS 33.01

data {row == 0 && col == 0}

data

690 700 710 720 730 740

0 20 40 60 80 100 120 140

data {row == 1 && col == 0}

htemp

Entries 1009

Mean 724.1 RMS 10.63

data {row == 1 && col == 0}

data

610 620 630 640 650 660 670

0 10 20 30 40 50 60

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 632.4 RMS 20.84

data {row == 2 && col == 0}

data

640 660 680 700 720 740

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 697.4 RMS 37.76

data {row == 3 && col == 0}

data 640 650 660 670 680 690 700 710 720 730 0

10 20 30 40 50

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 683.8 RMS 29.68

data {row == 4 && col == 0}

data

600 620 640 660 680

0 10 20 30 40 50 60 70 80 90

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 631.2 RMS 34.2

data {row == 5 && col == 0}

data

580 590 600 610 620 630 640 650 660

0 10 20 30 40 50 60 70 80 90

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 615.2 RMS 23.23

data {row == 6 && col == 0}

data

930 935 940 945 950 955 960

0 20 40 60 80 100

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 944.3 RMS 7.906

data {row == 7 && col == 0}

(18)

Schema 2xseq_pv + lettura

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 18

! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #

!

!"$

!"&

!"(

!"*

#

#"$

,-./01µ23

45406789780:;<8=>/01:3

$!09?0@0#0A/:

'!09?0@0#0A/:

#!!09?0@0#0A/:

B->C=<

DC8/>E=8-;C F=2/<-C/0DC8/>E=8-;C 5=9=G-8=CG/

4<-99-C> H/2/8

Fig. 2: Transient response of the FCF measured with a 1 MHz operation for an input signal of 20 ph (blue) and 80 ph (red).

MOS channel capacitance [6]. The dimensions of the device have been set in order to achieve a gain of 1 mV/ph for small input signals and 25 µV/ph for large input signals, with a transition occurring at about 250 mV. Hence, the maximum output voltage of the stage is about 500 mV for 104ph. In order to be able to detect either 1 keV and 10 keV input signals, the feedback network integrates an additional switch which scales the equivalent feedback capacitance by a factor of 10. A standard component of an optimum channel for charge signal processing is the shaping stage. Since FEL facilities generate events with a known repetition rate, a time-variant filter has been adopted in this work. Moreover, a time-variant solution entails some advantages in terms of noise rejection, time to return to base and sample & hold circuitry, with respect to continuous time solutions. The shaping stage proposed in this work is based on the Flip Capacitor Filter (FCF) architecture [8], implementing a Correlated Double Sampling (CDS) technique to achieve, with a single gated integrator stage and a flipped feedback capacitor, a trapezoidal weighting function. The CSA output voltage is first converted into a current by means of a transconductor stage enhanced with an additional network improving the linearity. The output current is then integrated by the FCF according to the time configu- ration of the switches. During the first phase, the baseline is integrated. Then, the feedback capacitance is flipped and in the subsequent phase the signal is integrated. Finally, the reset of the stage is carried out. The time-variant shaping stage has been designed in order to amplify the CSA output signal by a factor of 1.6 with an integration time of 50 ns, thus leading to a gain of 1.6 mV/ph and 40 µV/ph, respectively for small and large input signals. Fig. 2 depicts the measured transient response of the FCF for different input signals at 1 keV, with a 1 MHz operation. A preliminary output characteristic measured with an integration time of 50 ns is presented in Fig. 3, where the two linear regions of high and low gain can be noticed. The last stage of the read-out channel is a

! #!!! $!!! %!!! &!!! '!!! (!!! )!!! *!!! +!!! #!!!!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

DC9780B->C=<019?0@0#0A/:3

45406789780:;<8=>/01:3

$! &! (! *! #!!

!

!"!'

!"#

!"#'

Fig. 3: Measured characteristic at the output of the FCF for 1 keV input signals. The inset shows the characteristic in the first 100 photons input region.

10-bit Successive Approximation Register (SAR) ADC. The ADC sensitivity has been chosen in order to ensure a single photon detection for small input signals and a resolution higher than the Poisson noise in the expected 800 mV input range.

Hence, one ADC bin has been assigned to 800 µV, thus leading to 2 bin/ph in the first signal region and a resolution better than 20 ph/bin in the overall input range. The expected power consumption of the entire channel is about 350 µW.

The final paper will present the results, achieved with the first test structures, of the input-output characteristic of the single blocks and the entire channel. Moreover, an analysis aimed to assess the single photon resolution of the front-end electronics will be carried out, in order to prove the suitability of the proposed solution for next generation X-FEL facilities.

REFERENCES

[1] M. Porro et al., “Expected performance of the DEPFET sensor with signal compression: A large format X-ray imager with mega-frame readout capability for the European XFEL,” Nucl. Instrum. Methods A, vol. 624, no. 2, pp. 509 – 519, 2010.

[2] H. Graafsma, “Requirements for and development of 2 dimensional X- ray detectors for the european X-ray Free Electron Laser in Hamburg,”

JINST, vol. 4, no. 12, p. P12011, 2009.

[3] B. Henrich et al., “The adaptive gain integrating pixel detector AGIPD a detector for the european XFEL,” Nucl. Instrum. Methods A, vol. 633, Supplement 1, no. 0, pp. S11 – S14, 2011.

[4] F. Erdinger et al., “A novel signal compression circuit for charge collecting pixel detectors,” in Nuclear Science Symposium Conference Record (NSS/MIC), 2014 IEEE, Nov 2014.

[5] C. Fiorini et al., “A simple technique for signal compression in high dynamic range, high speed X-ray pixel detectors,” Nuclear Science, IEEE Transactions on, vol. 61, no. 5, pp. 2595–2600, Oct 2014.

[6] M. Manghisoni et al., “Novel active signal compression in low-noise analog readout at future X-ray FEL facilities,” Journal of Instrumentation, vol. 10, no. 04, p. C04003, 2015.

[7] L. Ratti et al., “Pixfel: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs,” Nucl. Instrum. Methods A, 2015.

[8] L. Bombelli, C. Fiorini, S. Facchinetti, M. Porro, and G. D. Vita, “A fast current readout strategy for the XFEL DEPFET detector,” Nucl. Instrum.

Methods A, vol. 624, no. 2, pp. 360 – 366, 2010.

!"#$%

#&'%

()%

"(!%

*+,%%-./012%3%

*+,%%-456%3%

*+,%%-./012%3%

*+,%%-456%3%

!"#"$

7/829:52%

;0282<=% 8215/92%>%)%

!%7/829:52% 8215/92%>%#&'% 8215/92%>%)%

!%7/829:52% 8215/92%>%#&'%

?%@8%

6/0:/7:92%@/%

-:0-/%7/829:52%

Lettura

Seq_pv

Seq_pv Seq_pv Seq_pv

(19)

Riassunto domande

•   Abbiamo capito meglio il funzionamento dei 2 DAC interleaved, anche se ci sembra che il DAC abbia per caricarsi solo il tempo dalla seconda apertura dell’S0 all’istante del trigger.

•   Si capisce che il motivo per cui non si osservava il segnale nella nostra vecchia seq. erano gli 8 ms tra la lettura e l’inizio del campionamento dell’evento letto.

–   In realta’ anche in quel caso il segnale letto e’ arrivato al DAC solo

~200 ns prima (quando si chiude la seconda volta S0) anche se il DAC stava campionando l’uscita del filtro da 8 ms prima. Quindi perche’ non si vede??? Il DAC non ha avuto il tempo di scaricarsi che era una

ipotesi….

•   Non si capisce perche’ questo avvenga

•   Nella configurazione in cui l’evento e’ letto dopo 3xseq_pv il segnale iniettato ha gain ragionevole, MA c’e’ molto rumore (da induzione durante la conversione precedente?) e I 2 DAC hanno valori molto diversi. PERCHE’?

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 19

(20)

Test successivi fatti con 1 solo pixel letto (ma tutta la matrice converte)

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 20

(21)

Seq_pv con 1 pix letto (loop)

•  Inseriamo lettura di 1 pix a fine end conv, nella seq_pv

•  Lettura di ogni evento in loop, inj in ogni seq.

•  Dovrebbe essere identica alla seq di Daniele, MA:

–  Stanno convertendo tutti I pixel della matrice e non un singolo canale

–  nell’evento letto ci puo’ essere induzione, oltre che dalla conversione, anche dalla lettura.

•  Continuano a vedersi i 2 DAC molto diversi, a PV non succede con questa seq, ma li c’e’ un canale singolo

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 21

Read ena pix ij

End_conv

Trigger S0

1 us /div

(22)

Seq_pv con 1 pix letto (loop)

•   Inseriamo lettura di 1 pix a fine end conv nella seq_pv

•   Lettura di ogni evento in loop

•   Continuano a vedersi i 2 DAC molto diversi.

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 22

pix 00 DAC1 + DAC2

data

620 640 660 680 700 720

0 200 400 600 800 1000 1200 1400 1600 1800

data {row == 0 && col == 0}

htemp

Entries 32769

Mean 662.3 RMS 32.67

data {row == 0 && col == 0}

data 590 600 610 620 630 640 650 660 670 680 0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

data {row == 6 && col == 0}

htemp

Entries 32769

Mean 629.1

RMS 29.01

data {row == 6 && col == 0}

Pix 60 DAC1 + DAC2

(23)

data

580 585 590 595 600 605 610

0 1000 2000 3000 4000 5000 6000

data {row == 0 && col == 0}

htemp

Entries 32769 Mean 594 RMS 2.955

data {row == 0 && col == 0}

Seq_pv con 1 pix letto (loop) e solo pix0 che converte resto della matrice che non converte

•  Per avvicinarci ancora di piu’ alla situazione del test di canale singolo fatto a PV/

BG usiamo la feature della matrice che permette di operare pixel su cmd0 o cmd1.

•  Solo pix00 operato su cmd1 e gli altri pixel su cmd0 e non li facciamo convertire.

•   La situaziome migliora decisamente!

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 23

pix 00 con tutta la matrice che converte

data

620 640 660 680 700 720

0 200 400 600 800 1000 1200 1400 1600 1800

data {row == 0 && col == 0}

htemp

Entries 32769

Mean 662.3 RMS 32.67

data {row == 0 && col == 0}

pix 00 che converte in solitaria,

Dx ) 100 mV injected à Noise 3 ADC ma dovuto a injection Sx) No inj à Noise intriseco 0.7-1 ADC

data

825 826 827 828 829 830 831 832 833

0 2000 4000 6000 8000 10000

data {row == 0 && col == 0}

htemp

Entries 32769

Mean 829.6

RMS 1.071

data {row == 0 && col == 0}

(24)

Seq_pv con 1 pix letto (loop) e solo pix0 che converte resto della matrice che non converte

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 24

pix 00 che converte in solitaria, No inj à Noise intriseco 0.7-1 ADC

data

825 826 827 828 829 830 831 832 833

0 2000 4000 6000 8000 10000

data {row == 0 && col == 0}

htemp

Entries 32769

Mean 829.6

RMS 1.071

data {row == 0 && col == 0}

data

826 827 828 829 830 831 832 833

0 1000 2000 3000 4000 5000 6000 7000

data {row == 0 && col == 0 && event%2 != 0}

htemp

Entries 16384 Mean 830.3

RMS 0.7738 data {row == 0 && col == 0 && event%2 != 0}

data

825 826 827 828 829 830 831 832

0 1000 2000 3000 4000 5000 6000 7000

data {row == 0 && col == 0 && event%2 == 0}

htemp

Entries 16385

Mean 829

RMS 0.9488 data {row == 0 && col == 0 && event%2 == 0}

(25)

Test FCF as buff con stessa Vref_FCF dei test precedenti

•  Riproviamo a fare test con filtro come buffer per capire dove sono queste induzioni.

•  Prove fatte con separazione di 8 ms e 30 us tra 2 conversioni (clock conv. 400 ns)

•  Con 8 ms di sep I 2 ADC hanno piu’ o meno lo stesso valore, noise ADC 05-1 ADC, vari pixel congelati a 1023

–  http://www.pi.infn.it/~rizzo/pixfel_PFM1/

chip2_64pix_FCFasBUF_VREF_FCF10_887mV_clkconv_2p5MHz_8ms_all.pdf

•  Con 30 us di sep I 2 ADC sono molto separati e molto piu’ rumorosi ed I pixel prima congelati a 1023 mostrano tutto lo spettro di valori possibili!

–  http://www.pi.infn.it/~rizzo/pixfel_PFM1/

chip2_64pix_FCFasBUF_VREF_FCF10_887mV_clkconv_2p5MHz_30us_all.pdf

•  QUESTA SEMBRA UNA INDICAZIONE CHE I PROBLEMI DI INDUZIONE CHE VEDIAMO SULLA MATRICE, SE CONVERTE TUTTA INSIEME SONO LEGATI ALL’ADC?

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 25

840 860 880 900 920 940 960 980 1000 1020

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

data:row:col {event%2 == 0}

htemp Entries 32273 Mean x 3.499 Mean y 3.5 RMS x 2.292 RMS y 2.291

data:row:col {event%2 == 0}

800 850 900 950 1000

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

data:row:col {event%2 != 0}

htemp Entries 32256 Mean x 3.5 Mean y 3.5 RMS x 2.291 RMS y 2.291

data:row:col {event%2 != 0}

(26)

Test FCF as buff con stessa Vref_FCF dei test precedenti

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 26

data 835 836 837 838 839 840 841 842 843 844 845

0 50 100 150 200 250 300 350 400

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 839 RMS 2.148

data {row == 0 && col == 0}

data

840 845 850 855 860 865 870 875

0 50 100 150 200 250

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 855.3 RMS 12.15

data {row == 1 && col == 0}

data 836 836.5 837 837.5 838 838.5 839 839.5 840 840.5 841

0 100 200 300 400 500 600 700

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 838.2 RMS 0.5476

data {row == 2 && col == 0}

data

840 842 844 846 848 850 852

0 50 100 150 200 250 300 350 400

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 844.5 RMS 3.624

data {row == 3 && col == 0}

data

848 850 852 854 856 858 860 862 864

0 50 100 150 200 250 300 350 400 450

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 856.3 RMS 6.581

data {row == 4 && col == 0}

data 839 839.5 840 840.5 841 841.5 842 842.5 843

0 100 200 300 400 500 600 700 800

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 840.9 RMS 0.4774

data {row == 5 && col == 0}

data 843 843.5 844 844.5 845 845.5 846 846.5 847 847.5 848

0 100 200 300 400 500

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 845.5 RMS 0.5955

data {row == 6 && col == 0}

data 836 837 838 839 840 841 842 843 844 845 846

0 50 100 150 200 250

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 841 RMS 2.33

data {row == 7 && col == 0}

data

860 880 900 920 940 960

0 20 40 60 80 100 120

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 899.8 RMS 39.63

data {row == 0 && col == 0}

data

860 880 900 920 940 960 980 1000

0 20 40 60 80 100 120 140 160 180 200

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 964.6 RMS 26.98

data {row == 1 && col == 0}

data

835 840 845 850 855 860 865 870 875 880

0 50 100 150 200 250 300

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 850.6 RMS 10.98

data {row == 2 && col == 0}

data

860 880 900 920 940 960 980

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 923.8 RMS 55.21

data {row == 3 && col == 0}

data

860 880 900 920 940 960 980

0 20 40 60 80 100 120 140 160 180 200

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 919.3 RMS 55.69

data {row == 4 && col == 0}

data

840 850 860 870 880 890 900 910

0 20 40 60 80 100 120 140

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 870.7 RMS 24.28

data {row == 5 && col == 0}

data

840 850 860 870 880

0 20 40 60 80 100 120

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 857.4 RMS 17.22

data {row == 6 && col == 0}

data

860 880 900 920 940 960

0 20 40 60 80 100

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 941.5 RMS 20.42

data {row == 7 && col == 0}

pix 00 DAC1 – DAC2 8 ms sep pix 00 DAC1 – DAC2 30 us sep

(27)

Test FCF as buff con stessa Vref_FCF dei test precedenti

G. Rizzo-F. Morsani PixFEL Meeting – June 24

st

2015 27

data

832 833 834 835 836 837 838 839

0 50 100 150 200 250 300 350

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 835.2 RMS 1.142

data {row == 0 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 1 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 2 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 3 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 4 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 5 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 6 && col == 0}

data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 200 400 600 800 1000

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 0 RMS 0

data {row == 7 && col == 0}

pix 00 DAC1 – DAC2 30 us sep, con

tutta la matrice che converte pix 00 DAC1 – DAC2 30 us sep, che converte in solitaria

data

860 880 900 920 940 960

0 20 40 60 80 100 120

data {row == 0 && col == 0}

htemp

Entries 1009 Mean 899.8 RMS 39.63

data {row == 0 && col == 0}

data

860 880 900 920 940 960 980 1000

0 20 40 60 80 100 120 140 160 180 200

data {row == 1 && col == 0}

htemp

Entries 1009 Mean 964.6 RMS 26.98

data {row == 1 && col == 0}

data

835 840 845 850 855 860 865 870 875 880

0 50 100 150 200 250 300

data {row == 2 && col == 0}

htemp

Entries 1009 Mean 850.6 RMS 10.98

data {row == 2 && col == 0}

data

860 880 900 920 940 960 980

0 20 40 60 80 100 120 140 160

data {row == 3 && col == 0}

htemp

Entries 1009 Mean 923.8 RMS 55.21

data {row == 3 && col == 0}

data

860 880 900 920 940 960 980

0 20 40 60 80 100 120 140 160 180 200

data {row == 4 && col == 0}

htemp

Entries 1009 Mean 919.3 RMS 55.69

data {row == 4 && col == 0}

data

840 850 860 870 880 890 900 910

0 20 40 60 80 100 120 140

data {row == 5 && col == 0}

htemp

Entries 1009 Mean 870.7 RMS 24.28

data {row == 5 && col == 0}

data

840 850 860 870 880

0 20 40 60 80 100 120

data {row == 6 && col == 0}

htemp

Entries 1009 Mean 857.4 RMS 17.22

data {row == 6 && col == 0}

data

860 880 900 920 940 960

0 20 40 60 80 100

data {row == 7 && col == 0}

htemp

Entries 1009 Mean 941.5 RMS 20.42

data {row == 7 && col == 0}

Riferimenti

Documenti correlati

[r]

[r]

[r]

(a) Determinare una coppia di vettori di giacitura per il

Nel caso in cui invece M sia invertibile, si calcoli la matrice inversa M

il che corrisponde a risolvere il sistema lineare che ha per matrice dei coefficienti la matrice A 0 considerata in precedenza e per colonna dei termini noti il vettore colonna (3,

4.Se si moltiplicano gli elementi di una riga (o colonna )per uno scalare anche il determinante risulta moltiplicato per lo

[r]