• Non ci sono risultati.

U. Salvolini · T. Scarabino (Eds.) High-Field Brain MRI: Use in Clinical Practice

N/A
N/A
Protected

Academic year: 2022

Condividi "U. Salvolini · T. Scarabino (Eds.) High-Field Brain MRI: Use in Clinical Practice"

Copied!
12
0
0

Testo completo

(1)

U. Salvolini · T. Scarabino (Eds.)

High-Field Brain MRI: Use in Clinical Practice

(2)

U. Salvolini · T. Scarabino (Eds.)

High Field Brain MRI

Use in Clinical Practice

With 156 Figures in 553 Parts

(3)

Ugo Salvolini

Neuroradiology and Department of Radiology University of Marche, Ancona, Italy

Tommaso Scarabino

Department of Neuroradiology, Scientific Institute “Casa Sollievo della Sofferenza”

San Giovanni Rotondo (Fg), Italy

Department of Radiology, ASL BA/1, Hospital of Andria (Ba), Italy

ISBN 3-540-31775-9 Springer-Verlag Berlin Heidelberg New York Library of Congress Control Number: 2006921045

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media http://www.springer.com

ˇ Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about the application of operative techniques and medications contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Editor: Dr. Ute Hesemann Desk Editor: Meike Stoeck

Production Editor: Joachim W. Schmidt Cover design: eStudio Calamar, Spain

Typesetting: FotoSatz Pfeifer GmbH, D-82166 Gräfelfing

Printed on acid-free paper – 24/3151 – 5 4 3 2 1 0

(4)

Preface

Since the advent of magnetic resonance (MR) imaging, systems with a magnetic field intensity of 1.5 tesla (T) have been deemed the gold standard for different clinical ap- plications in all body areas. Ongoing advances in hardware and software have made these MR systems increasingly compact, powerful and versatile, leading to the devel- opment of higher magnetic field strength MR systems (3.0 T) for use in clinical prac- tice and for research purposes. As usually occurs with a new technology, 3.0 T MR imaging units will probably follow the same development trends in the years to come.

These new systems are currently in routine use mainly in the United States, but despite their high cost they are increasingly being adopted for research in much bro- ader fields than those of conventional MR systems, and also in daily clinical practice for new, more sophisticated applications, bringing major practical benefits.

Results to date have been encouraging with respect to previous experience with lower field strength MR systems and show that the many advantages of 3.0 T imaging (high signal, high resolution, high sensitivity, shorter imaging times, additional more advanced study procedures and enhanced diagnostic capacity) will ensure it becomes the future standard for morphofunctional study of the brain.

When future technological advances have resolved some of the shortcomings of the new 3.0 T systems (inhomogeneity of the field, artefacts caused by susceptibility and chemical shift, elevated SAR, high costs), the current MR units will gradually be replaced by higher field strength MR imaging systems.

The 3.0 T MR systems of the future will offer morphological investigation with high spatial, temporal and contrast resolution (essential for diagnosis) and will also yield physiological, metabolic and functional information, enhancing the diagnostic power of routine MR imaging in terms of sensitivity and specificity both in clinical practice and for applied research purposes.

This volume includes papers on the techniques and semeiotics of morphofunc- tional cerebral imaging at 3.0 T (including reference to the advantages and draw- backs with respect to lower field strength MR systems) and the main clinical applica- tions in neuroradiology.

We are grateful to Dr. Silvia Modena for the language revision.

Ugo Salvolini

Tommaso Scarabino

(5)

Contents

I Techniques and Semeiotics

1 High-Field MRI and Safety: I. Installation

A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta,

U. Salvolini . . . 3

References . . . 5

2 High-Field MRI and Safety: II. Utilization A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta, U. Salvolini . . . 6

2.1 Static Magnetic Field . . . 6

2.1.1 Translation and Rotation Forces . . . 6

2.2 Varying Electric and Magnetic Fields . . . 8

2.2.1 Magnetic Field Gradients . . . 8

2.2.2 Radiofrequency Electromagnetic Fields . . . 8

2.3 Cryogenic Gases . . . 8

2.3.1 Acoustic Noise . . . 9

References . . . 9

3 3.0 T MRI Diagnostic Features: Comparison with Lower Magnetic Fields T. Scarabino, G. M. Giannatempo, T. Popolizio, A. Simeone, A. Maggialetti, N. Maggialetti, U. Salvolini . . . 10

3.1 Comparison of 3.0 T and 1.5 T MR Imaging . . . 11

3.1.1 Advantages . . . 11

3.1.2 Disadvantages . . . 12

3.2 Diagnostic Features of 3.0 T MR Imaging . . . 14

3.2.1 Changes in Tissue Contrast . . . 14

3.2.2 Increased Magnetic Susceptibility . . . 16

3.2.3 Increased Chemical Shift . . . 19

3.3 Conclusions . . . 19

References . . . 20

4 Standard 3.0 T MR Imaging T. Scarabino, F. Nemore, G. M. Giannatempo, A. Simeone, A. Maggialetti, N. Maggialetti, U. Salvolini . . . 21

4.1 Pulse Sequences . . . 21

4.1.1 T1 Imaging . . . 21

4.1.2 T2 Imaging . . . 26

4.1.3 FLAIR Imaging . . . 30

References . . . 32

(6)

5 3.0 T MR Angiography

T. Scarabino, T. Popolizio, A. Stranieri, A. Maggialetti, A. Carriero,

N. Maggialetti, U. Salvolini . . . 34

5.1 MRA Techniques . . . 35

5.2 3.0 T MRA . . . 36

5.3 Conclusions . . . 45

References . . . 49

6 3.0 T MR Spectroscopy M. Tosetti, T. Schirmer, V. d’Alesio, A. Di Costanzo, T. Scarabino . . . 51

6.1 Spectroscopy Basics . . . 51

6.1.1 Proton MRS in Neuroradiology . . . 52

6.1.2 MR Spectroscopy – Quality and Resolution . . . 53

6.2 Spectroscopy Artefacts and Pitfalls . . . 58

6.2.1 Magnetic Susceptibility and B

0

and B

1

Inhomogeneities . . . 58

6.2.2 Chemical Shift Misregistration and J-Modulation Artefacts . . . 58

6.2.3 Magnetic Field Stability and Radiofrequency Coil Efficiency . . . 59

6.3 MR Spectroscopy Quantification and Analysis . . . 60

6.4 Advanced Spectroscopy Sequences and Applications . . . 60

6.4.1 Spectral Editing . . . 60

6.4.2 Fast Acquisition Techniques . . . 61

6.4.3 High Spatial Resolution Spectroscopy . . . 62

6.5 Conclusions . . . 63

References . . . 63

7 3.0 T Diffusion Studies T. Scarabino, F. Di Salle, F. Esposito, M. Tosetti, M. Armillotta, R. Agati, U. Salvolini . . . 66

7.1 Diffusion Studies . . . 67

7.1.1 DWI . . . 68

7.1.2 ADC Studies . . . 70

7.1.3 Diffusion Tensor Imaging and Tractography . . . 70

7.2 3.0 T Diffusion Studies . . . 71

References . . . 75

8 Nerve Pathways with MR Tractography A. Cherubini, G. Luccichenti, F. Fasano, G. E. Hagberg, P. P ´ eran, F. Di Salle, F. Esposito, T. Scarabino, U. Sabatini . . . 79

8.1 Basic Principles . . . 79

8.2 Image Acquisition . . . 80

8.3 Fibre Tracking Techniques . . . 81

8.3.1 Seed Point . . . 82

8.3.2 Stopping Criteria . . . 82

8.3.3 Global Algorithms . . . 82

8.4 Limitations of Tractography Techniques and Their Solutions . . . 84

8.4.1 Noise . . . 84

8.4.2 Partial Volume . . . 84

8.4.3 Ultrastructure . . . 84

8.4.4 Error Correction Methods . . . 86

8.4.5 The Problem of Validation . . . 86

8.5 Clinical Applications . . . 86

8.6 Conclusions . . . 87

References . . . 88

VIII Contents

(7)

9 3.0 T Perfusion Studies

G. M. Giannatempo, T. Scarabino, A. Simeone, T. Popolizio, A. Stranieri,

M. Armillotta, U. Salvolini . . . 91

9.1 Exogenous Methods: Dynamic Susceptibility Contrast . . . 91

9.1.1 Cerebral Blood Volume . . . 94

9.1.2 Cerebral Blood Flow . . . 95

9.1.3 Mean Transit Time . . . 96

9.1.4 Time to Peak . . . 96

9.2 High Field DSC . . . 98

9.3 Endogenous Methods: Arterial Spin Labelling . . . 100

9.4 High-Field ASL . . . 101

9.5 New Frontiers . . . 102

9.6 Conclusions . . . 103

References . . . 103

10 High-Field Strength Functional MRI F. Di Salle, T. Scarabino, F. Esposito, A. Aragri, O. Santopaolo, A. Elefante, M. Cirillo, S. Cirillo, R. Elefante . . . 107

10.1 Effects of Field Strength on Spatial Resolution . . . 108

10.2 High-Field and Temporal Resolution . . . 110

10.3 High-Field and BOLD Signal Behaviour . . . 111

10.4 High-Field, Noise and Data Processing Issues . . . 114

10.5 Conclusions . . . 115

References . . . 115

11 Recent Developments and Prospects in High-Field MR A. Bacci, R. Agati, M. Leonardi . . . 117

11.1 Parallel Imaging . . . 117

11.1.1 Parallel Imaging Applications . . . 120

11.2 PROPELLER . . . 124

11.3 New Prospects . . . 127

11.3.1 Integration Between Different Functional Techniques . . . 127

11.3.2 Molecular Imaging . . . 129

References . . . 131

12 3.0 T Brain MRI: A Pictorial Overview of the Most Interesting Sequences T. Popolizio, V. d’Alesio, T. Scarabino . . . 133

II Applications 13 High-Field Neuroimaging in Traumatic Brain Injury E. Giugni, G. Luccichenti, G. E. Hagberg, A. Cherubini, F. Fasano, U. Sabatini . . . 169

13.1 Rationale for MR Imaging of Patients with TBI . . . 169

13.1.1 Results Obtained with Low- and Medium-Field MR . . . 170

13.2 High-Field MR in Patients with TBI . . . 170

13.2.1 Advanced High-Field Techniques in TBI . . . 171

References . . . 174

14 3.0 T Imaging of Ischaemic Stroke T. Popolizio, A. Simeone, G. M. Giannatempo, A. Stranieri, M. Armillotta, T. Scarabino . . . 177

14.1 Neuropathological Features . . . 177

14.2 Neuroradiological Protocol . . . 178

14.3 Neuroradiological Diagnostic Imaging . . . 178

14.3.1 Standard MRI . . . 178

Contents IX

(8)

14.3.2 MR Diffusion . . . 180

14.3.3 MR Perfusion . . . 181

14.3.4 Combined Diffusion and Perfusion Studies . . . 181

14.3.5 MR Spectroscopy . . . 181

14.4 3.0 T MRI . . . 184

14.5 Conclusions . . . 185

References . . . 185

15 High-Field Strength MRI (3.0 T or More) in White Matter Diseases A. Charil, M. Filippi, A. Falini . . . 186

15.1 The Quest for Improved Image Quality and Shorter Acquisition Times 186 15.2 3.0 T MRI Studies of Multiple Sclerosis . . . 186

15.2.1 Role of MRI in Multiple Sclerosis . . . 186

15.2.2 Conventional MRI Techniques: Better Lesion Identification and Quantification at Higher Fields . . . 187

15.2.3 High-Field Magnetic Resonance Spectroscopy: Improved Measurements of Brain Metabolites . . . 189

15.2.4 Diffusion Tensor Imaging and Fibre Tractography . . . 190

15.2.5 Anatomical and Physiological Imaging of the Optic Chiasm . . . 190

15.2.6 Pathological Iron Deposition . . . 190

15.2.7 The Future of High-Field Functional MRI in MS . . . 190

15.2.8 Very High-Field MRI in MS . . . 190

15.3 Other White Matter Diseases . . . 191

15.4 Conclusions . . . 192

References . . . 192

16 High-Field Neuroimaging in Parkinson’s Disease P. P ´ eran, G. Luccichenti, A. Cherubini, G. E. Hagberg, U. Sabatini . . . 194

16.1 Rationale . . . 194

16.1.1 Mesencephalic Level . . . 195

16.1.2 Basal Ganglia Level . . . 197

16.1.3 Cortical Level . . . 198

16.2 Conclusions . . . 198

References . . . 199

17 High-Field 3 T Imaging of Alzheimer Disease G. Luccichenti, P. P ´ eran, A. Cherubini, E. Giugni, T. Scarabino, G. E. Hagberg, U. Sabatini . . . 201

17.1 Rationale in Imaging Neurodegenerative Diseases . . . 201

17.2 Advanced Magnetic Resonance Techniques . . . 203

17.3 Advantages of 3 T Scanning . . . 204

References . . . 205

18 3.0 T Imaging of Brain Tumours A. Di Costanzo, F. Trojsi, T. Popolizio, G. M. Giannatempo, A. Simeone, S. Pollice, D. Catapano, M. Tosetti, N. Maggialetti, V. A. d’Angelo, A. Carriero, U. Salvolini, G. Tedeschi, T. Scarabino . . . 208

18.1 Glial Neoplasms . . . 208

18.2 Meningiomas . . . 214

18.3 Primary Central Nervous System Lymphomas . . . 216

18.4 Metastases . . . 218

18.5 Conclusions . . . 219

References . . . 219

X Contents

(9)

19 Use of fMRI Activation Paradigms: A Presurgical Tool for Mapping Brain Function

D. Cevolani, R. Agati, M. Leonardi . . . 221

19.1 The BOLD Phenomenon . . . 221

19.2 3 T vs 1.5 T . . . 221

19.3 The „Ideal“ Paradigm . . . 222

19.4 Stimulating Apparatus . . . 222

19.5 Experimental Design . . . 223

19.6 Data Processing . . . 223

19.7 Software . . . 224

19.8 Paradigms . . . 225

19.8.1 Motor Paradigms . . . 225

19.8.2 Sensory Paradigms . . . 226

19.8.3 Visual Paradigms . . . 227

19.8.4 Language and Lateralization Paradigms . . . 227

19.9 Presurgical Applications of fMRI . . . 231

19.9.1 fMRI and Brain Tumours . . . 231

19.9.2 fMRI and Epilepsy . . . 231

19.9.3 fMRI and AVM . . . 231

19.9.4 fMRI and Other Pathologies . . . 232

19.9.5 fMRI and Presurgical Risk . . . 232

19.9.6 Our Experience . . . 233

19.10 Conclusions . . . 233

References . . . 233

Subject Index . . . 235

Contents XI

(10)

List of Contributors

Raffaele Agati

Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Adriana Aragri

Department of Neurological Sciences, II University of Naples, Naples, Italy Michele Armillotta

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Antonella Bacci

Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Alessandro Carriero

Radiologia, Universit`a di Novara, Novara, Italy Domenico Catapano

Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Daniela Cevolani

Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Arnaud Charil

Neuroimaging Research Unit, Scientific Institute and University H San Raffaele, Milan, Italy

Andrea Cherubini

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Mario Cirillo

Department of Neurological Sciences, II University of Naples, Naples, Italy Sossio Cirillo

Department of Neurological Sciences, II University of Naples, Naples, Italy Valentina d’Alesio

Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Vincenzo A. d’Angelo

Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Alfonso Di Costanzo

Department of Health Sciences, University of Molise, Campobasso, Italy Francesco Di Salle

Department of Radiology, University of Pisa, Pisa, Italy

(11)

Andrea Elefante

Department of Neurological Sciences, II University of Naples, Naples, Italy Raffaele Elefante

Department of Neurological Sciences, II University of Naples, Naples, Italy Fabrizio Esposito

Department of Radiology, University of Pisa, Pisa, Italy Andrea Falini

CERMAC, Scientific Institute and University H San Raffaele, Milan, Italy Fabrizio Fasano

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Massimo Filippi

Neuroimaging Research Unit, Scientific Institute and University H San Raffaele, Milan, Italy

Giuseppe M. Giannatempo

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Elisabetta Giugni

U.O. Diagnostica per Immagini e Laboratorio di neuroimmagini funzionali, IRCCS Fondazione Santa Lucia, Rome, Italy

Gisela E. Hagberg

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Marco Leonardi

Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Giacomo Luccichenti

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Alberto Maggialetti

Radiologia, AUSL BA/1, Andria (Ba), Italy Nicola Maggialetti

Medical Student, University of Bari, Bari, Italy Alberto Maiorana

Servizio di Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Francesco Nemore

Radiologia, AUSL BA/1, Andria (Ba), Italy Patrice P´eran

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Saverio Pollice

Department of Radiology, University of Novara, Novara, Italy Teresa Popolizio

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

XIV List of Contrtributors

(12)

Umberto Sabatini

Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy

Ugo Salvolini

Neuroradiologia, Universit`a Politecnica delle Marche, Ancona, Italy Ornella Santopaolo

Department of Neurological Sciences, University of Pisa, Pisa, Italy Tommaso Scarabino

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy; and Dipartimento di Radiologia, AUSL BA/1, Andria (Ba), Italy

Timo Schirmer

G2 Healthcare Technologies, Applied Science Laboratory Europe, Monaco Anna Simeone

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Alessandra Stranieri

Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy

Gioacchino Tedeschi

Department of Neurological Sciences, II University of Naples, Naples, Italy Michela Tosetti

MR Laboratory, Stella Maris Scientific Institute, Calabrone, Pisa, Italy Francesca Trojsi

Department of Neurological Sciences, II University of Naples, Naples, Italy

List of Contrtributors XV

Riferimenti

Documenti correlati

1 borsa di ricerca post-lauream, durata 3 mesi, dal titolo “Allestimento di strumenti e metodi di ricerca per la valutazione dello stress lavoro-correlato e del rischio aggressione

L’utilizzo di un indice di riferimento per la fissazione di un tasso fisso comporta la possibilità che, al momento della stipula del contratto, il tasso di interesse praticato

171 CIUFFREDA ANOTNIA ANNA 1 FG A017 1 FGPM05000Q LICEO "MARIA IMMACOLATA" SAN GIOVANNI ROTONDO - interna. 171 TOMASELLO GIORGIO 2 FG A017 4

TIPOLOGIA DI PERSONALE PRIMA DELLA MOBILITA' AN - COMUNE ********** D'AMATO CINZIA MARIA 17/01/1970 FG

Evaristo Maiello IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) Paolo Maione Azienda Ospedaliera S. Giuseppe

Con il contratto di mutuo chirografario la banca consegna al cliente una somma di denaro dietro impegno da parte del cliente medesimo di rimborsarla, unitamente agli interessi,

Con il contratto di mutuo fondiario la banca consegna una somma di denaro al cliente che si impegna dietro impegno da parte del cliente medesimo di rimborsarla, unitamente

1 borsa di ricerca post-lauream, durata 3 mesi, dal titolo “Valutazione dell’esposizione a rischio chimico e cancerogeno negli ambienti di lavoro” , con referente scientifico il