Lesson 5, Part 3:
Single electron effects: Coulomb
blockade and staircase (Quantum Dots)
C
R
Coulomb blockade Coulomb Staircase
Thermal smearing
Coulomb staircase
V=0
The constant interaction model
Energetic window depending on L
Constant Interaction model (C indipendent from N)
Constant Interaction model
 
C E Ne
N H
N H
N H
N
l n pot
cin( ) ( ) 2
) (
2
. 
 
N tot
dot E
C N Ne
H N
H
N)  ( )  ( 1)  2 
 (
C E N e
N N
tot
dot      
 ( ) ( 1) ( ) 2
A simplified and intuitive framework
e/Ceq
e/2C 3e/2C 5e/2C
R=R1+R2 R1 T1
R2 T2
Cotunneling
Application 1: Single Electron Transistor and Memory
0
1
Application 2: NanoSchottky diode
Electronic transport model:
 Thermoionic emission
 Ballistic transport
 Charging Energy (CI)
Au cluster:
3D quantum box
Fm
2R
E2 E1
EF=μ(N)
ΔE
EV
EV
EVB
6H-SiC
ECBmax
cs ECB
FB0
 FB0=Fm-cs Fm(Au)=5.2 eV
cs(6H-siC)=3.3eV FB0=1.9 eV AFM tip
Rcontact
e- Thermoionic emission of e- from substrate to nanocluster
Δμ
μ(N+1)
EV
EVB
6H-SiC
ECBmax cs
ECB
FB
 FB(R)= FB0 –(R) AFM tip
Evacuum
EV
EVB
6H-SiC
ECBmax cs
ECB e-
Ballistic transport within the nanocluster
e-
Ohmic contact tip-nanocluster e-
Thermoionic emission of e- from substrate to nanocluster
Size Effect:
How a bulk (macroscopic) property derives from the
microscopic one
1.85 eV SBH of the macroscopic contact Au/6H-SiC
1 2 3 4 5 6 7
1.3 1.4 1.5 1.6 1.7 1.8
F B