• Non ci sono risultati.

Examination of a soot model in premixed laminar flames at fuel-rich conditions

N/A
N/A
Protected

Academic year: 2021

Condividi "Examination of a soot model in premixed laminar flames at fuel-rich conditions"

Copied!
9
0
0

Testo completo

(1)

Proceedings of the Combustion Institute 37 (2019) 1013–1021

www.elsevier.com/locate/proci

Examination

of

a

soot

model

in

premixed

laminar

flames

at

fuel-rich

conditions

Warumporn

Pejpichestakul

a ,b

,

Eliseo

Ranzi

a

,

Matteo

Pelucchi

a

,

Alessio

Frassoldati

a

,

Alberto

Cuoci

a

,

Alessandro

Parente

b ,c

,

Tiziano

Faravelli

a ,∗

aDepartmentofChemistry,MaterialsandChemicalEngineering“G.Natta”,PolitecnicodiMilano,P.zzaLeonardoda

Vinci32,20133Milano,Italy

bUniversité LibredeBruxelles,EcolepolytechniquedeBruxelles,Aero-Thermo-MechanicsLaboratory,AvenueF.D.

Roosevelt,50-CP165/41,1050Brussels,Belgium

cCombustionandRobustOptimizationGroup(BURN),Université LibredeBruxellesandVrijeUniversiteitBrussel,1050

Bruxelles,Belgium

Received30November2017;accepted13June2018 Availableonline8August2018

Abstract

Theprimaryobjectiveofthepresentworkistocollectandreviewthevastamountofexperimentaldata onrichlaminarpremixedflamesofhydrocarbonfuelsreportedinrecentyears,andtoanalyzethembyusing adetailedkineticmechanism,identifyingaspectsof themechanismofPAHandsootformationrequiring furtherrevisions.Thekinetic assessmentwashierarchicallyconducted,withtheprogressiveextensionof thecoreC0–C2NUIGmechanismuptotheCRECKkineticmechanismofPAHandsootformation.This mechanismishereadoptedtoevaluateandanalyzetheextensiveamountof experimentaldatacollected. Therefore,itprovidesakineticguideline,usefultocriticallycompareandunifyflamesinvolvingsimilarfuels and/orconditionsfromdifferentsources.TherelevanteffectofsootparticlesformationonheavyPAHs con-centrationisalsodiscussed,togetherwiththekineticanalysishighlightingsystematicdeviationsandcritical issuesstillexistinginthepresentmodel.ThemodelperformanceswereevaluatedusingtheCurveMatching approach(Bernardietal.,2016).ConsideringthechallengesofquantitativePAHmeasurementsand asso-ciateduncertainties,thisextensivedatabaseisafurthervalueof thispaperandisbeneficialforimproving reliabilityofkineticmodelsinawiderangeofconditions.

© 2018TheAuthors.PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.

ThisisanopenaccessarticleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

Keywords: Laminarpremixedflames;Experimentaldatabase;PAH;Sootprecursors

Correspondingauthor.

E-mailaddress:tiziano.faravelli@polimi.it (T.Faravelli).

https://doi.org/10.1016/j.proci.2018.06.104

1540-7489© 2018TheAuthors.PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.Thisisanopenaccess articleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

(2)

1. Introduction

Polycyclic aromatic hydrocarbons (PAH) are carcinogeniccompoundsharmfultohumanhealth. Inaddition tothis,PAHs arealso precursorsof soot by means of radical addition reactions on double bonds,cyclization, andformation of res-onantlystabilizedradicals,finally resultingin in-cipient soot[1] .The formationof soothas been intensivelystudiedthroughdifferentmodeling ap-proaches[2–4] .However,allof themrequire pre-dictiveandcomprehensivedetailedkinetic mecha-nismsabletocorrectlydescribePAHsformationfor awiderangeoffuelsandoperatingconditions.

PAHgrowth andsootformation aretypically investigatedinnearlysootingorsootingpremixed laminarflames[5] .Alargenumberof experimen-talstudies of richpremixed laminar flames have been presented in the past decades, providing a massiveamountof detailed informationon tem-peratureandconcentrationprofilesforindividual flames.Thelastefforttocollectandreviewseveral flamesfordifferenthydrocarbonfuelsdatedback toovereightyearsagoandconsistedof 22flames [6] .Since then,advancesin analyticaltechniques andadditionalmeasurementsdroveimproved pre-dictive capabilities of kinetic models. These ad-vancementsmotivatethecomprehensivecollection herereportedwhichisusedtogainsignificant in-sights on current knowledge of PAHs and soot chemistry. This work provides the basis for fur-therimprovementsoftheCRECKsootmodelby meansofahierarchicalapproachtothemodeling ofPAHskineticsinflames.

Themotivations andobjectivesof thepresent workare:

(i)Toorganizeanextensive datacollectionof literaturemeasurementsinrichlaminar pre-mixedflamesofdifferenthydrocarbonfuels; (ii) To critically assess themodel performance throughextensivecomparisonswith experi-mentaldatabymeansofastatisticalanalysis usingthecurvematching(CM)approach[7] . Simulationsofalltheflamesaredonewiththe updatedCRECKkineticmechanismofPAHand sootformation[8,9] ,whichincludesthereference C0–C2 chemistrydeveloped atNUIG[10] .These simulationsareusefulbothfortheevaluationofthe consistencyofexperimentaldataandfor identify-inglimitationsinkineticmodels.Toourknowledge, thisworkconstitutesthefirstefforttowardsuchan extensiveandsystematicanalysisonPAHs chem-istry,alsohighlightingtheeffectofsootformation ontheyieldsofintermediatePAHs.

Table 1 summarizes the experimental condi-tionsof thelaminarflameshereinvestigated.The database provided in the Supplementary Mate-rial (SM) accounts for60 flames, formore than 20 different C1–C10 fuels, in a wide range of

equivalence ratios (φ =1.00–3.06) and pressures (P=0.03–1.00atm).

2. Kineticmechanismandnumericalmethods Thegas-phasehightemperatureCRECK mech-anism (244 species and ∼6000 reactions) imple-ments a C0–C3 core mechanism obtained from theH2/O2andC1/C2subsetsfromMetcalfeetal. [10] ,C3 fromBurke etal. [11] ,andheavier fuels fromRanzietal.[12,13] .Thisimportantstep to-wardthe unification of core mechanisms allows tomore effectivelyfocustheattentiononspecific featuresof heavier andmore complex molecules suchasPAHs.Thethermochemicalpropertieswere adopted,whenavailable,fromtheATcTdatabase of Rusic[14] orfromBurcat’sdatabase[15] . Un-availablepropertiesofsomespecieswereobtained from group additivity method [16] . The kinetic mechanism with thermodynamic and transport propertiesisattachedasSupplementaryMaterial tothisstudy.

With the aim to update the detailed kinetic mechanismtowardsPAHandsoot,thedominant molecularweight growthpathways described ac-cordingtotheHACAmechanism[17] ,wererevised basedontherecenttheoreticalstudybyMebelet al.[18] .Tofitthisdetailedandaccurate descrip-tiontotheconstrainedsizeoftheCRECKmodel [12,13] ,many isomerspecieswere lumped,where appropriate.Regardless,therelativebranching ra-tiosaretakenintoaccountinthelumped mecha-nism,treatingreactionswithexplicitforwardand backwardrates.Infact,asalreadydiscussed else-where[8,19] ,theCRECKmechanisminvolvesonly 20lumpedspeciesand16radicalsforthe progres-sivegrowthfromnaphthalenetoC20species,which arethefirstsootprecursors(BIN1).Additionally toHACA mechanism, themass growth through lightandheavyresonantlystabilizedradicals(from propargylC3H3,uptoindenyl(C9H7))isalso con-sidered[12] .

The soot mechanism, based on a discrete sectional model, is then coupled to the PAH sub-mechanismtodescribetheevolutionfrom gas-phasetosolidparticles.Thewholerangeofcarbon atomsof heavy PAHandsootparticles(from 20 uptomorethan108 Catoms)isdividedinto25 sectionswithaspacingfactoroftwo.25classesof lumped-pseudo species called “BIN” are consid-eredwiththreedifferenthydrogenationlevels.The firstfourBINs(upto160carbonatoms)areheavy PAH,whileheavierBINsaresootparticles(upto 4× 104 carbon atoms)and then sootaggregates. Thus,thesootkineticmodelinvolves150molecular andradicalspeciesfordescribingtheformationof sootparticlesupto∼0.2μm,i.e.3.2× 108carbon atoms.Thesootkineticmodelconsistsofsurface growth, nucleation, coagulation and oxidation processes. The surface growth reactions include

(3)

Table1

Flamedatabase.Experimentalconditionsandglobalerrorindex(Ei)calculatedusingtheCurveMatchingapproach[7] .

No. Fuel Tmax(K) P(atm)  v0(cm/s)a Ei Ref.

1 CH4 1600 1.00 2.5 5.24 0.33 Marinovetal.[27]

2 CH4 1776 1.00 2.4 5.00 0.24 Alfè etal.[31]

3–5 CH4 1682–1709 1.00 2.2–2.6 5.35 0.31 Meltonetal.[24] 6–7 CH4 1805–1850 0.26 2.1–2.3 8.55 0.4 ElBakalietal.[32] 8–9 CH4/H2 1683–1701 1.00 2.2–2.4 5.90–6.20 0.25 MzeAhmedetal.[33]

10 C2H2 1850 0.03 2.5 97.00 0.24 Bastinetal.[34] 11 C2H2 1901 0.03 2.4 50.00 0.25 Westmorelandetal.[35] 12 C2H2 1992 0.12 2.8 20.40 0.34 Bockhornetal.[36] 13 C2H2 1912 0.03 2.25 63.08 0.31 Lietal.[37] 14 C2H2 2121 0.04 2.4 58.95 0.29 Bierkandtetal.[38] 15–16 C2H2/C3H4-A 2200–2300 0.03 1.7–2.4 72.75 0.21 Milleretal.[39] 17 C2H4 1430 1.00 3.1 6.42 0.45 Castaldietal.[40] 18 C2H4 1600 1.00 2.8 6.84 0.21 Harrisetal.[41] 19–20 C2H4 1592–1610 1.00 1.5–1.9 3 0.42 Barbellaetal.[42] 21–23 C2H4 1552–1818 1.00 2.4 2–6 0.33 Ciajoloetal.[43] 24 C2H4 1710 1.00 2 5.87 0.38 Carboneetal.[25] 25 C2H4 1574 1.00 2.8 4.90 0.32 Migliorinietal.[44] 26–28 C2H4 1556–1643 1.00 2.3–2.9 6.73 0.51 Xuetal.[27] 29 C2H4 2192 0.03 1.9 62.5 0.33 Bhargavaetal.[45] 30 C2H6 1600 1.00 2.5 6.37 0.34 Marinovetal.[27] 31–34 C2H6 1681–1800 1.00 2–2.6 6.19–7.26 0.38 Meltonetal.[26] 35–36 C3H4 2185–2262 0.03 1.8 48.2 0.28 Hansenetal.[46] 37 C3H6 2306 0.05 2.3 50.00 0.23 Bohmetal.[47] 38 C3H8 1250 1.00 2.5 4.77 0.35 Marinovetal.[48] 39 C4H6 2050 0.03 2.4 50.00 0.28 Coleetal.[49] 40 NC4H10 1600 1.00 2.6 6.38 0.4 Marinovetal.[50]

41–44 CYC5H8 2098–2168 0.05 1.7-2.6 50–54.7 0.3 Lamprechtetal.[51] , Hansenetal.[52] 45 C6H6 1905 0.03 1.8 50.00 0.24 Bittneretal.[53] 46–48 C6H6 1778–2101 0.04 1.25–2 36.10 0.25 Yangetal.[54] 49–50 C6H6 1742–1850 1.00 1.8–1.9 4.00 0.42 Tregrossietal.[55] 51–52 C6H6 1720–1810 1.00 2 3-4 0.31 Russoetal.[56] 53–54 C6H6 1722–1885 0.05 2 35–40.5 0.28 Vandoorenetal.[57] [58] 55 C6H6/CH4 1500 0.05 1 1.8 0.23 ElBakalietal.[59] 56 CYC6H12 1752 1.00 2.3 4.00 0.29 Ciajoloetal.[60] 57 C7H8 1743 0.05 2.00 40.50 0.26 Detilleuxetal.[61] 58-59 NC7H16/IC8H18 1614 1.00 1.9 4.12-4.98 0.19 ElBakalietal.[62] 60 C10H8 1860 0.03 1.7 50.00 0.34 Griesheimeretal.[63] a Coldgasvelocity.

HACA mechanism, as well as gaseous species andPAHcondensationreactions.Thecondensing species are molecules and radicals of aromatic starting from benzene and phenyl radical. The complete soot sub-mechanism consists of ∼400 species and 25,000 reactions. Further details on thesootmodelareavailablein[8,9] .

2.1. Numericalmethods

Numerical simulations were performed using the1-Dlaminar flamesolverimplementedin the OpenSMOKE++ suite of programs [20] . The mixture-average diffusioncoefficient was used in thesimulation.Thermaldiffusion(Soreteffect)is alsoincludedinspeciestransportequations. Solu-tiongradientandcurvaturecoefficientsof0.05and 0.5wereassignedtoensurethesmoothnessof the calculatedprofiles.Themeasuredtemperature

pro-fileswereimposedtothesimulationstoaccountfor theunknownconductiveandradiativeheatlosses.

2.2. CurveMatchingandperformanceevaluation

Assessingthe overallperformancesof the ki-netic model over the wide set of experimental flamesisachallengingtask,because of thelarge number of species profiles. The Curve Matching approach [7] was here adopted to evaluate the agreementbetween experimentaldataandmodel predictions.Itperformsquantitativeand qualita-tive error comparisons bythe transformation of discreteexperimentaldataandmodel predictions intotwodifferentcontinuousfunctions.Itprovides individualerror indices, which account not only for square errors, but also for the shape of the speciesprofiles.Anintegratederror index(Eflame) ofeachflame(averageoverallspecies)andan

(4)

in-tegratederrorindex(Especies)ofeachspecies (aver-ageoverallflames)arealsoprovided.Errorindices rangebetween0(accuratemodel)and1(inaccurate model).

3. Results

Before discussing PAHs formation in sooting flames,itisfirstimportanttoassessthemodel reli-abilityinpredictingthemaincombustionfeatures of key PAH precursors such as cyclopentadiene andsingleringaromatics.Comparisonsof model predictions with experimentaldata for the lami-narflamespeedof acetylenicspecies, cyclopenta-diene,benzeneandtoluenearethereforereported in theSM. These comparisonsconfirmand em-phasizetheroleofresonantlystabilizedradicalsin reducinglaminarflamespeed[12] .Theinterestin cyclopentadienylradicalisalsodueto itsrolein naphthaleneformationthroughself-recombination reactions. Moreover, the interest in phenyl radi-calchemistryisduetoitsrelevanceintheHACA mechanism.

Allthe60flamesweresimulated,withand with-outthesootsub-mechanism, anddetailedresults andcomparisonswiththeexperimental measure-mentsarereportedintheSM.AsreportedinTable 1 ,theintegratederrorindex(Ei)variesfrom∼0.15 inthecaseofn-heptane(Flame58),upto>0.5for ethyleneFlame26,indicatingaverypoor predic-tivecapability.Apreliminaryanalysisoftheerror indextrend doesnot seemtoindicatesystematic deviationsdependingonfuels,equivalentratios,or sootyields.Duetospacelimitations,intheattempt toobtainthemostsignificant,effectiveandgeneral overview,scatterplotsbetweenthemaximum pre-dictedandmeasuredvalueofmeasuredspeciesare herereportedasaglobalmeasureof model per-formances,together withtheerror indexof each species.TheSMcontainsthecompletesetof com-parisons,alsogroupingthesamespeciesindifferent flames.

3.1. Majorspeciesformationinflames

Figure 1 shows the parity diagrams of max-imumexperimental andpredictedconcentrations of major species in rich flames, for different fu-els.Asexpected,COistheprimarycomponentin richconditions.PredictedCOprofilesagreewithin 20%withthemeasurementanddonotshow sys-tematicdeviations.Themodel capturesCO2 pre-dictionsquitewell,alsoforC6H6/O2/Aratφ =1.25 (Flame46,Yangetal.,2015),whereCOislargely convertedtoCO2,afterreachingitsmaximum con-centration.A similardegreeof accuracyisfound forH2 andH2O,evenif largerdeviationsare ob-servedinmostof CH4 flameswherebothspecies areunder-predicted.

Thescatter diagramsof CH4 andthesumof C2H4andC2H2arealsosatisfactory.Larger uncer-taintiesareindeedobservedfortheparitydiagrams ofindividualspeciesC2H4andC2H2,asreported intheSM.Similardeviationsarealsoobserved us-ingotherliteraturemodels[21,22] .AlthoughC2H2 predictions are more accurate for atmospheric flames,morescatteredresultsareobservedatlower pressures,whereover-orunder-predictionsupto afactor of ∼3 arehighlighted. C2H4 seems sys-tematicallyover-predictedinCH4andC2H6flames, highlightingshortcomingsinbothC2H6formation anddehydrogenationpathways withintheC0–C2 mechanism.C3H4s(propyneandallene)and ben-zenearecorrectlypredictedbythemodel,whereas diacetylene(C4H2),despiteitslowerconcentration, deservesgreaterattention.

Largeunder-predictionsofC4H2areinfact ob-servedinatmosphericflames,whereasminor dis-crepanciesareobtained atlow pressures. Similar disagreementsareobservedwithKAUST[21] and Blanquartetal.[22] mechanisms(seeSM).Thelack of consistent findings, togetherwith thepossible relevanceof C4H2 insootformationmechanism, suggeststheneedoffurtherinvestigatingacetylenic specieskinetics.

3.2. HeavieraromaticsandPAHsformationin flames

Figure 2 showsthescatterplotsofPAHsclearly highlightingthehigherpropensityof C3+fuelsto form heavier species. The overall prediction of PAHs in atmospheric flames is satisfactory, but mostof thelow-pressurebenzeneflamesshowan overestimationofphenylacetylene(C6H5C2H)and underestimationof naphthalene (C10H8). Similar deviationsarealsoobtainedwith[21] and[22] (see SM).Thissuggeststhatpressuredependentratesof acetyleneadditionmightrequirefurtherrevision.

IthastobenotedthatFig. 2 showsthescatter plotsofheavierspeciesaspredictedwiththe com-plete kinetic mechanism, also including thesoot model.Together with thepreviouscomments on theobserveddeviationsatlowpressures,itisworth notingthegeneral over-predictions,athigh pres-sures.Thelumpingof heavyspeciescanpartially explainthesedeviations.Infacts,lumped phenan-threnegroupsnotonlyanthracene,butalsoC13and C15homologousspecies.

Figure 3 shows the error index of different species,asaveragedoverthedifferentflames, ver-susthenumberof availabledata.Theconvergent behaviorsuggeststheimportanceofthenumberof measurementstoimprovemodelreliability.Good predictivecapabilities areshownforbenzeneand gaseousspecies forwhichnot only the availabil-ityofmanyreliabledata,butalsotheinformation gainedfromquantum chemistry ensureadeeper knowledge.

(5)

Fig.1. Scatterplotsofthemaximumcalculatedandmeasuredconcentrationofmajorspecies.Eachmarkerrepresents mainfuels,࢞:CH4,:C2H2,:C2H4,:C2H6,and◦:C3+.Voidsymbol:low-pressureflames.Filledsymbol:atmospheric flames.

Fig.2.Scatterplotsofmaximumexperimentalandpredictedconcentrationofphenylacetylene,naphthalene,and phenan-threne.SymbolsasinFig. 1 .

Fig. 3.Errorindex ofdifferentspecies. Filledsymbol: aromaticspecies.Voidsymbol:gaseousspecies.

3.3. EffectofsootonPAHpredictions

Althoughitisintuitivethataccountingforsoot formationleadstoareductionofPAH concentra-tion[23] ,thescopeofthissectionistoquantifythis effect, bycomparingmodel predictionswith and withoutsootmechanism. Figure 4 clearly shows thisrelevanteffectonbenzeneprofilesfromCH4 [24] ,C2H4[25] ,andC2H6[26] flames.Theinclusion ofthesootsignificantlyreducesnotonlythe maxi-mumbuttheentirebenzeneyieldsalongthespace domain(dashedlinesinFig. 4 ),withanimproved agreementinallthethreecases.

SootpresenceaffectsthebenzeneyieldinFlame 4 and 5 (CH4/O2/Ar – φ =2.4–2.6 – Melton et al.[24] ). Onthecontrary,this effectisnegligible whenconsideringthebenzeneformationinFlame 1(CH4/O2/Ar–φ =2.5– Marinovetal.[27] ),as reportedintheSM.Bycomparingthetemperature profilesoftheseflames,itispossibletonotethatthe maximumtemperatureofFlame1(Tmax=1600K)

isabout100Klowerthanthemaximum tempera-tureofFlames4and5,eventhoughtheflame con-ditionsareverysimilar.Bycorrectingand assum-ingahigherflametemperatureprofileforFlame1, itispossibletoobservethesootinfluenceandto achieveabetteragreementwithexperimentaldata (seeSM).Thiscriticalanalysisof theconsistency of similarflamesshowsoneof theusefulaspects ofthedatabase.

Relevant variations of C10H8 and mainly of heavierPAHsarealsoobserved,asreportedinthe SM. Figure 5 shows the predicted reduction of theerror index of majorPAH in sooting flames atdifferentequivalenceratios.Thereduction per-centage iscalculated bycomparing error indices withandwithoutsootmodel.Asexpected,thesoot chemistry allows to reduce the average error in-dices, withaverage reductions of about 10%, in-creasing atricher conditions.The 33%reduction of theerrorindexofpyrene atφ =2– Flame31 [26] isnotverysignificant,becauseofitsverylow concentration(<1ppm).Closetonon-sooting con-ditionsthedifferencesdecreasetolessthan1%.The bluelineshowstheaveragereductionof error

(6)

in-Fig.4. Comparisonbetweenexperimental(symbols)andpredictedC10H8profiles.Modelpredictionswith(dashedlines) andwithoutsootkineticmodel(solidlines).Leftpanel:CH4flames(Flames3–5)[24 ].Middlepanel:C2H6flames(Flames 31–34)[25 ].Rightpanel:C2H4flames(Flame24)–φ =2[26] .

Fig.5.ReductionoferrorindexofintermediatePAHsat differentequivalenceratio.(Forinterpretationofthe ref-erencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

dex, increasingforhighersootpropensity condi-tions(i.e.higherequivalenceratios).This improve-mentinerrorindexconfirmstheimportantroleof PAHcondensationandsootgrowthprocesses.

Additionally, the model performance evalua-tionsuggeststhatvalidationof PAHwithoutthe sootsub-mechanismismisleading,particularlyin richflames. Asdemonstrated in[3] ,thecoupling of different PAH mechanisms to the same soot model providessignificantlydifferent predictions. Thedatabasereportedhereinisalsousefulforthe selectionofthemostappropriatePAHmechanism andfortheverificationof PAHconsumptionby sootmodel.

Toverifytheoverallperformancesofthemodel inpredictingsootvolumefraction,Fig. 6 showsa comparisonwithdatacollectedinCH4andC2H6 flames byMeltonet al. [24,26] ,as wellasin the

C2H4 flameof Carbone et al.[25] . Good agree-mentisobservedforCH4andC2H6flames.While soot volume fraction from CH4 is consistently under-predictedmainlyforshortdistancesfromthe burner,fortheethanecasesabetteragreementis observed,withmaximumdeviationsofafactorof ∼2fortheintermediateφ =2.4case.Areasonable agreementwiththeexperimentaldataisobserved intheC2H4flameofCarboneetal.[25] .

Theoverallreasonableagreementbetween ex-perimental dataandmodel predictions allowsto relyon theanalysisof thePAH-soot interaction through the surface growth reactions. Figure 7 schematicallyshowsthe relativecontributions of HACAmechanism andPAH condensation reac-tionstotheformationandgrowthof soot parti-cles,obtainedfromthesootmodelatdifferent pres-sures.AcetyleneismostlyinvolvedintheHACA mechanismwiththegrowingof PAHspecies.At atmosphericpressure,incipientsootparticlesform near flame region and react with aromatic radi-calsvia chemicalcondensation.PAHs also inter-actswithsootparticles,inthepost-flameregion. Thus,theroleofC2H2 andHACAmechanismin thesuccessive sootgrowth decreases, because of thepreferential addition tomost abundant PAH thantotheheavy particlespresent inlower con-centrations.Mainlyinveryrichflamesathigh pres-sure,benzeneandheavyPAHscondensation reac-tionsonsootparticlesplayarelevantrole.Because of theirrelativeconcentration, benzene contribu-tionisthedominantone,followedby phenylacety-leneandnaphthalene.At lowerpressure instead, acetyleneadditiondominatesoverPAH condensa-tion,as PAH concentrationstrongly dependson pressure[18] .Thispressureeffectisinagreement withtheobservationswithGuoetal.[28] .However, thedifferentrelativeroleatatmosphericcondition fromthis work is dueto the concerned PAH in themodelandPAHchemistry.Inadditionto pres-sure,thetwocompetitivepathwaysdependon tem-peratureandequivalenceratio.Inparticular,lower

(7)

Fig.6. Comparisonbetweenpredicted(lines)andmeasured(symbols)sootvolumefractionindifferentflames.

Fig.7.RelativecontributionsofHACAmechanismand PAHcondensationreactionstothegrowthofsoot parti-clesatlow(dashedlines)andatmosphericpressure(solid lines).Thethicknessofthearrowsrepresentsthe impor-tanceofthedifferentpaths.

temperaturesandhigherequivalentratiosincrease therelative roleof PAH condensationcompared toC2H2addition.Mainlyinmethaneandethane flames,itisimportanttohighlightthatacetyleneis alsoinvolvedinbenzeneformation,viathemethyl additiontoformpropargylradical.

3.4. Experimentaluncertaintiesandtemperature effectonsootpredictions

Accurateexperimentaltemperaturesarecrucial forkineticstudies especiallyinrichflames where sootfoulinganddisturbancescanaffect measure-ments[27] .Flame27 (C2H4)[29,30] ischosen to demonstratethetemperatureeffect.Thesimulated temperatureprofileisobtainedfromMenonetal. [30] thatusedaspectrallinereversaltechniqueup to ∼10mm and two-color pyrometry technique, wherethepresenceofsootperturbsthesubstantial absorptionofradiationfromthelamp.This con-firmsthechallengesof accuratelymeasuring tem-peraturesinsootingconditions.

Figure 8 showsthecomparison between mea-surementsandmodelpredictions.Themodel

sat-Fig.8. TemperatureeffectonsootformationofC2H4 flame(Flame27)[29,30] .Comparisonofmeasured (sym-bols)andpredicted(lines)sootvolumefraction. isfactorilyagreeswith theexperimental measure-mentswhenusingtheoriginaltemperatureprofile. Modelpredictionsobtainedperturbingthe temper-atureprofileof±50Karealsoreported.These tem-peraturevariationsstronglyimpactsootformation. Athigher temperatures,sootvolumefraction in-creasesofafactorof∼2.Thisisjustifiedbyhigher yieldsof C2H2 from C2H4 dehydrogenation, en-hancingPAHsproduction.Conversely,thesooting tendenciesdecreasewithtemperature.Theseresults highlighttheimportanceof accuratetemperature measurements.Besidestheobviousimpactof tem-peratureonkinetics,thermodynamiceffectisalso expectedonPAHandsootformationathigh tem-peratures.

4. Conclusions

The upgradedCRECKkinetic model, hierar-chicallyobtainedbyassemblingtheC0-C2 NUIG mechanism [10] ,the kineticmechanism of heavy

(8)

fuelcombustionincludingPAHformation[12] ,and thesootmodel[8,9] wasusedtosimulatethewhole setofrichlaminarpremixedflames.Besidesthe im-portantstepstowardaunifiedcoremechanism,this extensivevalidationprovidesasignificantoverview of the current understanding of the molecular weightgrowthkineticsleadingtonanoparticle for-mationunderhigh-temperaturesootingconditions. The flame database extendsthe previousone of laminarpremixedflamespeeds[12] ,andconstitutes anaddedvaluetothisworkandavaluablesource ofinformationforthewholecombustion commu-nity.Moreover,theoverallkineticmechanism in-cludingsootformationisfurtherlyvalidatedover thisdatabase, andis provided asSupplementary Material.Thiscomprehensivevalidationshows re-gionsof fuels/conditionswheremodelpredictions arequiteaccurate(CO,CO2,H2,C2H2,C6H6,etc.) andmore importantly, highlights areasrequiring furtherattention(C4H2andotherpolyynespecies). This mechanistic studyclearly highlights the im-portant roleof PAHs as surfacegrowth species, largelycontributingtothesuccessivesoot forma-tion.Theeffectof thesootformationmodelwas alsoquantitativelyinvestigated,highlightingits im-portance onheavyPAHs concentrations.The re-ductionintheaverageerrorindexof intermediate PAHsshowsthatneglectingthesuccessivesoot for-mationleadstodeviationsupto10%.Thebetter qualitativeandquantitativeagreementobtainedby using thecompletekinetic model provesthatthe sootsub-mechanismisnecessarytoproperly ana-lyzerichsootingflames.

Finally,thispaperdemonstratesthatnotonly kineticmodeluncertaintiesandsimplifications,but alsoexperimentaluncertaintiesintemperatureand PAHsmeasurementssignificantlyaffectpredicted sootyields.Therefore,moresignificantinsightscan onlybeobtainedfromacomprehensivemechanism validationrelyingonallthepossibletargetflames, comingfromdifferentfacilities,fordifferentfuels andexperimentalconditions.

Acknowledgments

Thisprojecthasreceivedfundingfromthe Eu-ropeanUnion’s Horizon 2020 researchand inno-vationprogrammeundertheMarie Sklodowska-CuriegrantagreementNo.643134 .

Supplementarymaterials

Supplementarymaterialassociatedwiththis ar-ticlecan be found, inthe online version, atdoi: 10.1016/j.proci.2018.06.104 .

References

[1] H. Wang , Proc.Combust.Inst.33 (2011) 41–67 .

[2]M.E. Mueller , G. Blanquart , H. Pitsch , Combust. Flame156 (2009) 1143–1155 .

[3]A. Veshkini , N.A. Eaves , S.B. Dworkin , M.J. Thom- son , Combust.Flame167 (2016) 335–352 .

[4]E.K.Y. Yapp , D. Chen , J. Akroyd , et al. , Combust. Flame162 (2015) 2569–2581 .

[5]C.S. McEnally , L.D. Pfefferle , B. Atakan , K. Kohse-Höinghaus , Prog. Energy Combust. Sci32 (2006) 247–294 .

[6]H.R. Zhang , E.G. Eddings , A.F. Sarofim , C.K. West- brook , Proc.Combust.Inst.32 (2009) 377–385 . [7]M.S. Bernardi , M. Pelucchi , A. Stagni , et al. ,

Com-bust.Flame168 (2016) 186–203 .

[8]C. Saggese , S. Ferrario , J. Camacho , et al. , Combust. Flame162 (2015) 3356–3369 .

[9]W. Pejpichetsakul , A. Frassoldati , A. Parente , T. Far- avelli , in: Tenth Mediterranean Combustion Sympo- sium, Naples, Italy, 2017 .

[10]W.K. Metcalfe , S.M. Burke , S.S. Ahmed , H.J. Cur- ran , Int.J.Chem.Kinet45 (2013) 638–675 . [11]S.M. Burke , U. Burke , R. Mc Donagh , et al. , Com-

bust.Flame162 (2015) 296–314 .

[12]E. Ranzi , A. Frassoldati , R. Grana , et al. , Prog. En-ergyCombust.Sci38 (2012) 468–501 .

[13]E. Ranzi, A. Frassoldati,A. Stagni, M.Pelucchi, A.Cuoci,T.Faravelli,Int.J.Chem.Kinet.46(2014) 512–542,doi:10.1002/kin.20867 .

[14]B. Ruscic , J.Phys.Chem.A119 (2015) 7810–7837 . [15]E.Goos,A.Burcat,B.Ruscic,ExtendedThird

Mil-leniumIdealGasThermochemicalDatabasewith up-dates from Active Thermochemical Tables (2017). http://burcat.technion.ac.il/dir mirrored at http:// garfield.chem.elte.hu/Burcat/burcat.html .

[16]S.W. Benson , F. Cruicksh , D.M. Golden , Chem.Rev.

69 (3) (1969) 279–324 .

[17]M. Frenklach , H. Wang , in: H. Bockhorn (Ed.), Soot Formation in Combustion: Mechanisms and Mod- els of Soot Formation, Springer Series in Chemi- cal Physics, vol. 59, Springer-Verlag, Berlin, 1994, pp. 162–190 .

[18]A.M. Mebel , Y. Georgievskii , A.W. Jasper , S.J. Klip- penstein , Proc.Combust.Inst.36 (2017) 919–926 . [19]A. Frassoldati , G. D’Errico , T. Lucchini , et al. ,

Com-bust.Flame162 (2015) 3991–4007 .

[20]A. Cuoci , A. Frassoldati , T. Faravelli , E. Ranzi , Com-put.Phys.Commun.192 (2015) 237–264 .

[21]Y. Wang , A. Raj , S.H. Chung , Combust.Flame 160 (2013) 1667–1676 .

[22]G. Blanquart , P. Pepiot-Desjardins , H. Pitsch , Com-bust.Flame156 (2009) 588–607 .

[23]M.R. Djokic , K.M. Van Geem , C. Cavallotti , A. Frassoldati , E. Ranzi , G.B. Marin , Combust. Flame161 (2014) 2739–2751 .

[24]T.R. Melton , A.M. Vincitore , S.M. Senkan , Symp. Combust.27 (1998) 1631–1637 .

[25]F. Carbone , K. Gleason , A. Gomez , Combust.Flame

181 (2017) 315–328 .

[26]T.R. Melton , F. Inal , S.M. Senkan , Combust.Flame

121 (2000) 671–678 .

[27]N.M. Marinov , W.J. Pitz , C.K. Westbrook , M.J. Castaldi , S.M. Senkan , Combust.Sci.Technol.

116–117 (1996) 211–287 .

[28]H. Guo , Z. Gub , K.A. Thomson , G.J. Small- wood , F.F. Baksh , Proc. Combust.Inst. 34 (2013) 1795–1802 .

[29]F. Xu , P.B. Sunderland , G.M. Faeth , Combust.Flame

(9)

[30] A.V. Menon , S.-Y.Y. Lee , M.J. Linevsky , T.A. Litzinger , R.J. Santoro , Proc. Combust. Inst.31 (2007) 593–601 I .

[31] M. Alfè, B. Apicella , J.N. Rouzaud , A. Tregrossi , A. Ciajolo , Combust.Flame157 (2010) 1959–1965 . [32] A. El Bakali , X. Mercier , M. Wartel , F. Acevedo ,

I. Burns , L. Gasnot , J.F. Pauwels , P. Desgroux , En-ergy43 (2012) 73–84 .

[33] A. Mze Ahmed , S. Mancarella , P. Desgroux , L. Gas- not , J.F. Pauwels , A. El Bakali , Int.J.Hydrogen En-ergy41 (2016) 6929–6942 .

[34] E. Bastin , J.L. Delfau , M. Reuillon , C. Vovelle , J. Warnatz , Symp.Combust.22 (1989) 313–322 . [35] P.R. Westmoreland , A.M. Dean , J.B. Howard ,

J.P. Longwell , J.Phys.Chem.93 (1989) 8171–8180 . [36] H. Bockhorn , F. Fetting , A. Heddrich , G. Wan-

nemacher , Symp.Combust.20 (1985) 979–988 . [37] Y. Li , L. Zhang , Z. Tian , T. Yuan , K. Zhang , B. Yang ,

F. Qi , Proc.Combust.Inst.32 (2009) 1293–1300 . [38] T. Bierkandt , T. Kasper , E. Akyildiz , A. Lucassen ,

P. Oßwald , M. Köhler , P. Hemberger , Proc.Combust. Inst.35 (2015) 803–811 .

[39] J.A. Miller , J.V. Volponi , J.-F. Pauwels , Combust. Flame105 (1996) 451–461 .

[40] M.J. Castaldi , N.M. Marinov , C.F. Melius , J. Huang , S.M. Senkan , W.J. Pit , C.K. Westbrook , Symp. Com-bust.26 (1996) 693–702 .

[41] S. Harris , A. Weiner , Combust. Sci. Technol. 31 (1983) 155–167 .

[42] R.Barbella,A.Ciajolo,A. D’Anna,A.Tregrossi, in:,JointMeetingofTheItalianandPortuguese Sec-tionsofTheCombustionInstitute,Salsomaggiore Terme,Italy,1994,p.III-13.

[43] A. Ciajolo , A. D’anna , R. Barbella , A. Tregrossi , A. Violi , Symp.Combust.26 (1996) 2327–2333 . [44] F. Migliorini , S. De Iuliis , F. Cignoli , G. Zizak ,

Com-bust.Flame153 (2008) 384–393 .

[45] A. Bhargava , P.R.Westmoreland(1998) 2180 . [46] N. Hansen , J.A. Miller , C.A. Taatjes , J. Wang ,

T.A. Cool , M.E. Law , P.R. Westmoreland , Proc. Combust.Inst.31 (2007) 1157–1164 .

[47] H. Böhm , A. Lamprecht , B. Atakan , K. Kohse-Höinghaus , Phys.Chem. Chem.Phys. 2 (2000) 4956–4961 .

[48] N.M. Marinov , M.J. Castaldi , C.F. Melius , W. Tsang ,

Combust.Sci.Technol.128 (1997) 295–342 . [49] J.A. Cole , J.D. Bittner , J.P. Longwell , J.B. Howard ,

Combust.Flame56 (1984) 51–70 .

[50] N.M. Marinov , W.J. Pitz , C.K. Westbrook , A.M. Vincitore , M.J. Castaldi , S.M. Senkan , C.F. Melius , Combust.Flame114 (1998) 192–213 . [51] A. Lamprecht , B. Atakan , K. Kohse-Höinghaus ,

Proc.Combust.Inst.28 (2000) 1817–1824 .

[52] N. Hansen , T. Kasper , S.J. Klippenstein , P.R. Westmoreland , M.E. Law , C.A. Taatjes , K. Kohse-Höinghaus , J. Wang , T.A. Cool , J.Phys. Chem.A 111 (2007) 4081–4092 .

[53] J.D. Bittner , J.B. Howard , Symp.Combust.18 (1981) 1105–1116 .

[54] J. Yang , L. Zhao , W. Yuan , F. Qi , Y. Li , Proc. Com-bust.Inst.35 (2015) 855–862 .

[55] A. Tregrossi , A. Ciajolo , R. Barbella , Combust. Flame117 (1999) 553–561 .

[56] C. Russo , F. Stanzione , A. Tregrossi , M. Alfè, A. Cia- jolo , Combust.Flame159 (2012) 2233–2242 . [57] F. Defoeux , V. Dias , C. Renard , P.J. Van Tigge-

len , J. Vandooren , Proc. Combust.Inst. 30 (2005) 1407–1414 .

[58] V. Detilleux , J. Vandooren , Combust.Explos.Shock Waves45 (2009) 392–403 .

[59] A. El Bakali , M. Ribaucour , A. Saylam , G. Vanhove , E. Therssen , J.F. Pauwels , Fuel85 (2006) 881–895 . [60] A. Ciajolo , A. Tregrossi , M. Mallardo , T. Faravelli ,

E. Ranzi , Proc.Combust.Inst.32 I (2009) 585–591 . [61] V. Detilleux , J. Vandooren , Proc.Combust.Inst. 33

(2011) 217–224 .

[62] A. El Bakali , J.L. Delfau , C. Vovelle , Combust.Sci. Technol.140 (1998) 69–91 .

[63] J. Griesheimer , K.-H. Homann , Symp.Combust.27 (1998) 1753–1759 .

Riferimenti

Documenti correlati

An omni-experience leverages the relational and lifestyle dimensions of the customer experience.We outline the four key design elements integral to creating an omni-experience

In Michael Pleyer and Stefan Hartmann’s contribution, the attempt is made to combine the two lines of research hinted at above insofar as modern linguistic theorizing is employed

Dans cet article, elle dénonçait, à l’instar de féministes d’autres champs d’études, une invariabilité du genre acceptée dans la recherche et les méthodes

A4.2-From channel management in sales and distribution to co- evolving service ecosystems B4.2-Using Digital Co-creation for Innovation Development C4.2-The value

The full holographic dictionary, including the full set of sources and 1-point functions, the Fe fferman-Graham asymptotic ex- pansions, and the holographic Ward identities can

As it is logical for a Moorish architecture, the design of the original fortification was not planned in meters but using the typical measurement system of that culture: the

La produzione del formaggio è stata seguita per 36 giornate e sono stati prelevati campioni di latte di caldaia, cagliata, formaggio ad un giorno, un mese e sette mesi di

In conclusion, we think that the present data provide some additional evidence for the presence of linkage to MS in selected genomic regions and also provide sufficient ground for