Correspondence
Rosalba Calvini ([email protected]) Received: 8 November 2018 Revised: 10 December 2018 Accepted: 10 December 2018 Publication: 18 December 2018 doi: 10.1255/jsi.2018.a13 ISSN: 2040-4565 Citation
R. Calvini, G. Orlandi, G. Foca and A. Ulrici, “Development of a
classificationalgorithmforefficienthandlingofmultipleclassesinsorting systemsbasedonhyperspectralimaging”,J. Spectral Imaging 7, a13 (2018). https://doi.org/10.1255/jsi.2018.a13 ©2018TheAuthors Thislicencepermitsyoutouse,share,copyandredistributethepaperin anymediumoranyformatprovidedthatafullcitationtotheoriginal paperinthisjournalisgiven,theuseisnotforcommercialpurposesand thepaperisnotchangedinanyway. In thIs Issue:
spectral preprocessing to compensate for packaging film / using neural nets to invert the PROSAIL canopy model
JOURNAL OF
SPECTRAL
IMAGING
Peer Reviewed Paper Highlighting Young Investigators openaccessDevelopmentofaclassificationalgorithmfor
efficienthandlingofmultipleclassesinsorting
systemsbasedonhyperspectralimaging
Rosalba Calvini,a,* Giorgia Orlandi,b Giorgia Focac and Alessandro Ulricid
DepartmentofLifeSciences,UniversityofModenaandReggioEmilia,PadiglioneBesta,ViaAmendola,2,42122ReggioEmilia,Italy. E-mail:[email protected]
a :https://orcid.org/0000-0002-0100-8798, b :https://orcid.org/0000-0002-9116-4566 c :https://orcid.org/0000-0002-4436-774X, d :https://orcid.org/0000-0002-6010-6400
When dealing with practical applications of hyperspectral imaging, the development of efficient, fast and flexible classification algorithms is of the utmost importance. Indeed, the optimal classification method should be able, in a reasonable time, to maximise the separation between the classes of interest and, at the same time, to correctly reject possible outlier samples. To this aim, a new extension of Partial Least Squares Discriminant Analysis (PLS-DA), namely Soft PLS-DA, has been implemented. The basic engine of Soft PLS-DA is the same as PLS-DA, but class assignment is subjected to some additional criteria which allow samples not belonging to the target classes to be identified and rejected. The proposed approach was tested on a real case study of plastic waste sorting based on near infrared hyperspectral imaging. Household plastic waste objects made of the six recyclable plastic polymers commonly used for packaging were collected and imaged using a hyperspectral camera mounted on an indus-trial sorting system. In addition, paper and not recyclable plastics were also considered as potential foreign materials that are commonly found in plastic waste. For classification purposes, the Soft PLS-DA algorithm was integrated into a hierarchical classification tree for the discrimination of the different plastic polymers. Furthermore, Soft PLS-DA was also coupled with sparse-based variable selection to identify the relevant variables involved in the classification and to speed up the sorting process. The tree-structured classification model was successfully validated both on a test set of representative spectra of each material for a quantitative evaluation, and at the pixel level on a set of hyperspectral images for a qualitative assessment.
Keywords: PLS-DA, multivariate classification, hierarchical classification, sparse methods, feature selection, plastic sorting
Introduction
Overthepastdecades,HyperspectralImaging(HSI)has gainedincreasingattentionfromindustriesinterested intheimplementationofautomatedsortingsystemsto solveanumberofdifferentproblems.Indeed,HSIhas foundawiderangeofapplicationsinthefoodindustry, includingthequalityevaluationandsafetyassessmentof several food products,1
suchasfruitsandvegeta-bles,2,3 meat,4 cereals5 and dairy products.6 Moreover,
othermanufacturingenvironments,suchasthepharma-ceuticalindustry,haveemployedreal-timeHSIsystems forqualitycontrolandprocessmonitoringintheframe oftheprocessanalyticaltechnology.7–9Anotherrelevant
fieldofapplicationofHSIisrepresentedbytherecy-clingindustry,wherehyperspectralsensorsareusedto separateend-of-lifeobjects,suchasplastic,10 paper11 or electronicwaste,12accordingtomaterialtype. Inthesecontexts,HSIcanbeconsideredasastep forwardwithrespecttotraditionalspectroscopictech- niques,whichallowfastandnon-destructivecharac-terisationofthechemicalpropertiesoftheanalysed samples.Infact,HSIsystemscoupletheseadvantages withthepossibilityofalsovisualisingthespatialdistri-butionofthechemicalfeaturesofinterestwithinthe samplesurface.Furthermore,insortingsystems,HSIcan alsobeemployedtoquicklyidentifythechemicalcompo-sitionofhomogeneousobjectsmovingonaconveyor belt,andtodistinguishthemfromsampleswithdifferent composition.13 Inpracticalsituations,hyperspectralimagingcanbe appliedtoaddresscomplexclassificationissues,where thesortingproblemunderinvestigationrequiresthe discriminationofseveralclassesatthesametime,with someclassessharingsimilarfeatures.Thiscanbeeasily managed by using HSI systems, since with a single measurement,i.e.withtheacquisitionofasinglehyper-spectralimage,itispossibletohaveawiderangeof information.However,inordertomeettheneedsofreal-timeapplications,itisnecessarytoidentifyclassification strategiesabletohandleahugeamountofspectraldata, providingreliableresultsinshortcomputationaltimes.14 Whendealingwithmultipleclasses,thisissuecanbe addressedusingatree-structuredclassificationmodel, whereeachbranching(treenode)correspondstoalocal classificationmodel. Inthismanner,classificationisperformedconsidering atop-downapproach,wherethesamplesareinitially assignedtogeneralmacro-categories,andtheneach macro-classissplitintoincreasinglyspecificcategories, untilreachingtheclassesofinterest.15–17 Anotherrelevantissuetobefacedinpracticalapplica-tionsofHSIinsortingsystemsisrelatedtothefactthat, generally,itisnoteasytohaveastrictcontrolofthe inputstreaminordertoavoidthepresenceofforeign objects,i.e.objectsnotbelongingtothetargetclassesof thespecificapplication.Inthiscontext,theavailabilityof algorithmsabletomaximisethediscriminationbetween thecategoriesofinterestand,atthesametime,toiden-tifypossibleforeignmaterialsisoftheutmostimportance. PartialLeastSquaresDiscriminantAnalysis(PLS-DA) isoneofthemostwidelyusedmethodsformultivariate classificationofhyperspectraldata.18Basically,PLS-DA isanextensionofthePLSalgorithm,whichaimsatiden-tifyinganewsetofvariables,namedLatentVariables (LVs),bymaximisingthebetween-classesvariance.Class membership is coded using a dummy Y matrix, and theassignmentofunknownsamplesisbasedonthe
a posterioriprobabilityassociatedwiththecorresponding
Y predicted values.The standard PLS-DA approach assignsasampletotheclassforwhichithasthehigher a posterioriprobability,resultinginunknownsamples alwaysbeingassignedtooneofthetargetclasses.19,20 Therefore,ontheonehandPLS-DAhasthegreatadvan- tageofmaximisingtheseparationbetweentheconsid-eredclassesbut,ontheotherhand,itdoesnotallowa straightforwardidentificationofoutliers.
Conversely, the possibility of having unassigned samplesisoneofthemajoradvantagesoftheso-called class-modellingtechniques,whichareessentiallybased ondescribingeachsingleclassindependentlyfromthe others,andthenverifyingwhetheranunknownsample iscompliantornotwiththecharacteristicsofeachclass of interest.21Inthismanner,itispossiblethatanew unknownsampleisrejectedfromalltheclassmodels, resultinginanunassignedsample.SoftIndependent ModellingofClassAnalogy(SIMCA)isthemostcommon class-modelling method. It calculates local Principal ComponentAnalysis(PCA)modelsforeachconsidered class,whichareusedtodefineclassboundariesbased onthedistancesbothinthescorespace(Hotelling’sT2) andintheresidualspace(Qresiduals).22Notwithstanding theadvantagesofclass-modellingmethodslikeSIMCA, theycanprovidepoorclassificationresultswhenthe modelledclassesarequiteoverlapped,sincethemodel isnotorientedtowardsthediscriminationoftheconsid-eredcategories. Giventheseconsiderations,itisreasonabletoassume thataclassificationalgorithmtobeefficientlyemployed insortingsystemsshouldcomprisetheadvantagesof bothclassificationtechniquesandofclass-modelling methods,i.e.itshouldbeabletomaximisethediscrimi- nationbetweenthecategoriesofinterestandtorecog-niseandrejectoutliersamplesatthesametime. Tothisaim,inthepresentpaperamodifiedversionof thePLS-DAalgorithm,namelySoftPLS-DA,isproposed. ThebasicprincipleofSoftPLS-DAisthesameasPLS-DA, butclassassignmentisperformedbyfixingadditional limits both on the Y predictedvalues and on the Q residuals.Inthismanner,theclassificationmodelisbuilt
bymaximisingthedifferencesbetweenthemodelled classes;atthesametime,theadditionallimitsallowthe rejectionofsamplesbelongingtounexpectedcategories andrelegationofthemtoageneralcategoryofunas-signedsamples. TheeffectivenessofSoftPLS-DAalgorithmwastested onacasestudyrelatedtotheimplementationofanear infrared(NIR)hyperspectralimagingsystemforplastic wastesorting.Indeed,thedifferentplasticpolymershave aspecificspectralfingerprintintheNIRrangeandoptical sortingiscommonlyusedtoseparatethem.23,24Thegoal ofourstudyconsistedintheimplementationofaclas-sificationmethodabletoeffectivelydiscriminatepaper andsixrecyclableplasticpolymerscommonlyusedfor packaging,andtocorrectlyrejectobjectsbelongingto non-targetclasses,suchasnon-recyclableplastics. Thepresentmanuscriptisstructuredasfollows: ■Thenextsectionreportsthetheoreticalbackgroundof thestandardclassificationapproachbasedonPLS-DA andadetaileddescriptionofthenovelSoftPLS-DA algorithm. ■Materialandmethodsdescribestheplasticdataset,
the procedure followed for image acquisition and elaborationtogetherwiththedifferentstepsofdata analysis.
■Results shows the classification results obtained
usingSoftPLS-DAalgorithmbothconsideringthefull wavelengthrangeandsparse-basedvariableselection, andalsotheresultsofthefinalimplementationofthe classificationtree. ■Finally,wereportthegeneralconclusionsofthisstudy.
Theory
Background
PLS-DAisasanextensionofPLSregressionadaptedto operateinaclassificationframework.SimilarlytoPLS,the independentmatrixXisregressedagainstthedependent matrixYbycalculatinganewsetofLVs,whichmaximise thecovariancebetweenX and Y matrices.25,26Inmoredetail,bothX and Y matrices can be decomposed as follows:
X = TPT + E (1)
whereT, P and Erepresentthescorematrix,theloading matrixandtheresidualsmatrixofX,respectively;
Y = UCT + G (2)
whereUisthescorematrix,CistheloadingmatrixandG istheresidualsmatrixreferredtoY.
AccordingtoPLS,theobjectvariationoftheX-block expressedbythescorematrixT can be used to describe Y;thereforeEquation2canbere-writtenasfollows: Y = TCT + G (3) Inparticular,thedecompositionofXhastobeopti-misedinamannerthatTaccountsforthevariationinX whichallowsthebestdescriptionofY.Tothisaim,for eachLVaweightvector(w)iscalculatedwhichweights theoriginalvariablesaccordingtotheircontributionin explainingtheYmatrix.Giventheseconsiderations,the estimateofY (Ŷ)canbecalculatedasfollows: Ŷ = XWCT + F = XB + F (4) whereWistheweightsmatrixandBisthematrixof regressioncoefficients. InthecaseofPLS-DA,theYmatrixconsistsofadummy matrixwithasmanyrowsasthenumberofsamplesand asmanycolumnsasthenumberofconsideredclasses. Thisdummymatrixexpressesclassmembershipofeach samplewithbinarycoding:avalueequalto1indicates thatanobjectbelongstotheclass,whileavalueequalto 0referstosamplesnotbelongingtotheclass.19,27 OncethePLSmodelhasbeencalibrated,classassign-ment of unknown samples is based on the y values estimatedforeachclass(ŷ).Thesevalueswillnotbe exactlyequalto0or1,thereforeitisnecessarytoestab-lishathresholdvaluesothatanewsampleisassigned toadefinedclassonlyifitsŷvalueisgreaterthanthe thresholdforthatclass.Thethresholdisusuallycalcu-latedusingtheBayestheoremundertheassumption thattheestimatedvaluesforeachclassfollowaGaussian distribution,andthesedistributionsareusedtocalculate thea posterioriprobabilitythatasamplebelongstoa givenclass.20Inparticular,foreachclassthethreshold valuecorrespondstotheŷvalueatwhichthenumberof falsepositivesandfalsenegativesisminimised,thatis thepointwherethetwoprobabilitydistributionscross (i.e.thepointwherethea posteriori probability values for thetwoclassesarethesame).
Usually,classassignmentofanunknownsamplecan bedoneconsideringtwodifferentapproaches:either choosing the class with the highest probability, or comparingthepredictedŷvalueswiththecorresponding thresholdvalues.Theformerstrategyrepresentsthestan-darddiscriminantapproach,wheresamplesarealways
assignedtooneofthemodelledclasses.Conversely,if thelatterapproachisused,asamplecanhaveŷ values higherthanthecorrespondingthresholdformorethan oneclass,orlowerthanthethresholdforalltheclasses. Inboththesecases,thesamplecannotbeassignedto any class.27However,inthecaseofonlytwoclasses,
thesetwoapproachesconvergetothesameresultsand standardPLS-DAalgorithmwillalwaysattributeasample tooneoftheclasses. Thestandarddiscriminantapproachhasoftenbeen criticisedduetoitslimitedabilitytocorrectlyhandlenew objectsnotbelongingtothetargetclasses.28Inorderto overcomethisissue,extensionsofPLS-DAhavebeen proposedintheliterature,whichincorporatearejection optionintheclassificationrule. ThesemethodsusuallyconsistinconsideringPLS-DA asadatacompressionmethodratherthanaclassification strategy,andclassassignmentisperformedwithafurther class-modellingstepconsideringdistance-basedmetrics calculatedonthePLSscores16oronthePCAscores obtainedfromthedecompositionoftheŶmatrix.29In thismanner,classassignmentisperformedinarather complexmulti-stepprocedure. Conversely,analternativeapproachconsistsincalcu- latingaclassificationruleconsideringconfidenceinter-valsaroundtheŷvaluesofeachclass,andrejecting samplesoutsidetheseintervals.30 Furthermore,ithastobeconsideredthatdiagnostics basedonQresidualscanrepresentaneffectivetool to identify outlier samples, i.e. sampleswith proper-tiesdifferentfromthoseofthesamplesusedformodel calibration.Thesediagnosticsarewidelyusedinclass-modelling,forexampleintheSIMCAalgorithm.However, Qresidualsarerarelyincorporatedinclassificationrules basedonPLS-DAalgorithm,evenifthecomputationof QscoresfromtheoutcomesofthePLSmodelisstraight-forwardaccordingtothefollowingequation: T i i i Q=e e (5)
whereQiistheQscorevalueoftheithsampleofmatrixX
and eiistheithrowvectoroftheresidualsmatrixE.
Soft PLS-DA
Inthepresentstudy,anovelalgorithmbasedonPLS-DA hasbeendevelopedinordertocombinetheadvantages ofclassicaldiscriminantanalysiswiththoseofclass-modellingtechniques; forthesereasonsithasbeen namedSoftPLS-DA.ThemainideabehindSoftPLS-DA istohaveaflexibleandsimpleclassificationtoolableto maximisetheseparationbetweentheconsideredclasses and,atthesametime,toeffectivelyidentitypossible outlierobjects(i.e.objectsthatdonotbelongtothe classesincludedintheclassificationmodel),whichwillbe automaticallynotassignedtoanyclass. InthesamemannerasPLS-DA,aPLSmodeliscalcu-latedbetweentheXmatrixandthedummyYmatrix,in ordertomaximisethedifferencesbetweentheconsid-eredclasses.Then,classassignmentofunknownsamples isbasedonsomeadditionalcriteriawhichallowoutlier samplestonotbeassignedtothetargetclasses. AccordingtotheSoftPLS-DAdecisionrules,class assignmentofanewsampletoadefinedclassissubjected tothefollowingcriteria: ■havingQresidualsfallinginsidethe99.9 %confidence limitofthemodel.31The99.9 %confidencelimithas beenchoseninordertosetboundarieslargeenough toconsiderasmuchaspossiblethevariabilityofthe differentclassesand,atthesametime,beingableto excludesampleswithaverylowfittothemodel; ■havingŷvaluesfallinginsideanacceptabilityrange fortheconsideredclass.Moreindetail,inadditionto thethresholdvaluecalculatedbystandardPLS-DAfor eachclassg (ytsh1,g), also an upper limit (ytsh2,g)ontheŷvalueshasbeenintroduced,whichiscalculatedas
follows:
2, ˆ, 5 ˆ, tsh g y g y g
y =m + ´s (6) wheremy^,g and sy^,g
arethemeanandthestandarddevi-ationoftheŷ values of class gcalculatedonthetraining setsamples.Therefore,inordertobeassignedtoclassg, anunknownsamplemusthaveaŷvaluerangingbetween
ytsh1,g and ytsh2,g.Theupperlimitimposedonthe ŷ values
allowsobjectsfoundattheextremesoftheGaussian probabilitydensityfunctions(PDFs)toberejected;these usuallyhavelowvaluesinthePDFsbuthigha posteriori probabilityforoneclassaccordingtotheBayesrule.The upperlimitwassetbasedonpreliminarytestsperformed onsomerepresentativeimages; ■forclassificationproblemswithmorethantwoclasses, thesamplesmustbeunambiguouslyassignedonlyto one class. Samplesthatdonotmatchallthethreecriteriaarenot assignedtoanyclassandarelabelledas“notassigned” (NA).Inthismanner,SoftPLS-DAallowsboundariesto bedrawnaroundeachmodelledclasswhichmaximise thediscriminationbetweenthecategoriesofinterestand
minimisepossiblefalsepositivesduetoambiguousclas-sificationsortooutliersamples.
Material and methods
Plastic dataset
Inthepresentstudy,wehaveconsideredtherecyclable plasticpolymersmainlyusedforpackaging,including polyethyleneterephthalate(PET),polystyrene(PS),poly- vinylchloride(PVC),polypropylene(PP)andpolyeth-ylene(PE),whichinturncanbefurthersubdividedin high-densitypolyethylene(HDPE)andlow-densitypoly-ethylene(LDPE). Differentplasticobjectsmadeoftheconsideredpoly- mershavebeencollectedformhouseholdwaste.Inaddi-tion,samplescomposedofpaperandofothertypes ofnon-recyclableplastics(OTHER),e.g.acrylonitrile butadienestyrene(ABS)andpolylacticacid(PLA),were alsoconsideredaspossibleforeignmaterialsthatcanbe foundinplasticmunicipalwaste.The different samples have been manually sorted intothecorrespondingcategoriesbasedontheResin IdentificationCode(RIC)reportedontheobjects.32The RICisaninternationalcodingsystemcomprisingasetof symbols(labelsandnumbers)presentonplasticproducts andindicatingthepolymerofwhichtheyarecomposed. Forexample,accordingtoRIC,codingnumber1isassoci-atedtoPET,number2isassociatedtoHDPE,number3 isassociatedtoPVCetc. Imageacquisition Thecollectedwastesampleshavebeenacquiredwithan industrialsortingsystemconsistingofaNIRlinescanning hyperspectralcamera(KUSTA1.9MSI,LLAInstruments) mountedoverablackconveyorbeltandequippedwith anInGaAsdetectorarrayandZeissf/2.4,10 mmoptical lens.Imageacquisitionwasperformedwithaframerate equalto644 Hzandthespeedoftheconveyorbelt wasequalto0.84 m s–1.Illuminationwasprovidedby halogenlightbulbspositionedintwoparallelillumination rowsslightlytiltedtowardseachother(PMAmsi,LLA Instruments).Thehyperspectralimageswereacquiredin theNIRrangefrom1330 nmto1900 nmwithaspectral resolutionof6 nm. Thesampleswereacquiredintwoacquisitionphases conductedondifferentdays.Inthefirstphase,hyper-spectralimagescontainingobjectsmadeofthesame materialwereacquired.Inmoredetail,twoimagesof differentobjectswereacquiredforeachtypeofmaterial, foratotalof16hyperspectralimages(=8materials 2 replicatedimages).Theseimageswereusedastraining imagesinthesubsequentelaborationsteps,inorderto obtainalibraryofrepresentativespectraforeachmate-rial type.
In the second acquisition phase, hyperspectral imagescontainingsamplesoftwodifferentmaterials wereacquiredconsideringallthepossiblecombinations betweenthematerialtypesunderinvestigation.Onthe whole,56hyperspectralimageshavebeenobtainedin thisphase,resultingfromtworeplicateimagesforeach combination. Allthehyperspectralimages,acquiredontheobjects positionedonthemovingconveyorbelt,havesizeequal to41rowpixels500columnpixels96wavelengths. Foreachimage,therawintensitycountswereconverted intoreflectanceunitsbymeansofaninternalcalibration procedurebasedonthemeasureofthedarkcurrentand ofawhitehighreflectancestandard.Darkcurrentwas measuredbyclosingtheshutterofthecamera,whilethe whitereferenceconsistedofanaluminiumframeholding thecalibrationmaterialwithanaverageremissionfactor equalto83.0 %. Imageelaboration Initially,the16imagesacquiredduringthefirstacquisi-tionphasewereanalysedbymeansofPCAaftermean centringasdatapreprocessing,inordertosegmentthe pixelsofthebackground(blackconveyorbelt)fromthose belongingtothesamples. Afterbackgroundsegmentation,fromeachtraining image1000spectraofthesampleand400spectraof thebackgroundwererandomlyselected.Thesespectra were used to build a training setwith size {22,400 spectra 96wavelengths},containing16,000repre-sentativespectraoftheconsideredmaterials(2000 spectraforeachmaterialtype)and6400spectraofthe background.Theaveragespectraofeachmaterialtype calculatedfromthetrainingsetarereportedinFigure 1A,whiletheaverageandstandarddeviationspectraof eachclassareshowninFigureS1oftheSupplementary Material. Theimagescontainingsamplesoftwodifferentmate- rialswereusedastestimagestoobtainbothaquan-titativeandqualitativeevaluationoftheclassification
models.Forthecreationofthetestset,somerepresen-tativeimageshavebeenchoseninordertoconsiderall thematerials,andRegionsofInterest(ROI)weredefined ontheseimages.FromeachROI,thecorresponding spectrawereextractedtocreateatestsetwithsize {21,760spectra96wavelengths},containingalibrary ofspectrawithknownassignment.Figure1Bshowsthe averagespectraofeachconsideredmaterialcalculated fromthetestset,whilethecorrespondingaverageand
Figure 1. Average spectra of each material type calculated from training and test sets without any pre-processing (A and B), and after SNV (C and D) and detrend (E and F) as data prepre-processing.
standarddeviationspectraarereportedinFigureS2of theSupplementaryMaterial.
Data analysis
ThetrainingsetwasinitiallyanalysedbymeansofPCA considering both standard normalvariate (SNV) and detrendasrowpreprocessingmethods.Thispreliminary analysis allowedsimilaritiesanddifferencesbetween theconsideredmaterialstobeidentified,andbothSNV anddetrendgaveanalogousresults.Theclustersofthe differentmaterialsobservedinthePCAscoreplotsessen-tiallyreflectedsimilaritiesanddifferencesofthechemical structureoftheconsideredpolymers.Theseresultswere usedtodevelopthestructureofthetree-basedclassifica- tionmodelreportedinFigure2.Inparticular,PCAhigh-lightedthattheclasscorrespondingtothenon-recyclable plasticpolymerswastooheterogenoustobemodelled intoasingleclass.Forthisreason,thespectrabelonging totheOTHERclasswerenotusedduringmodelcalibra-tion,buttheywereusedduringthefinalvalidationofthe classificationtreeinordertoevaluatetheabilityofSoft PLS-DAalgorithmtorejectobjectsbelongingtoclasses notconsideredinmodelcalibration.Theclassification treereportedinFigure2iscomposedoffivenodes,each correspondingtoaclassificationmodelcalculatedwith SoftPLS-DAalgorithmusingthetrainingset. Foreachnodeofthetree,theclassificationmodels have been computed considering both SNV + mean
centring and detrend + mean centring as data
prepro-cessingmethods. Theaveragespectraofeachconsideredmaterialtype obtainedfrombothtrainingandtestsetspreprocessed withSNVanddetrendarereportedinFigures1C–F. Classificationperformancesofeachsingleclasswere definedusingsensitivity(SENS),i.e.thepercentageof objectsbelongingtoagivenclasscorrectlyassigned tothecorrespondingclass,specificity(SPEC),i.e.the percentageofobjectscorrectlyrejectedfromtheclass model,andefficiency(EFF),i.e.thegeometricmeanof sensitivityandspecificity.Furthermore,foranoverall evaluationoftheclassificationqualityofeachnode,the Non-ErrorRate(NER)wasalsoconsidered,whichis calculatedasthearithmeticmeanoftheSENSvaluesof thedifferentclasses.33 ThepropernumberofLVsfortheSoftPLS-DAmodels hasbeenoptimisedbymaximisingtheNERvalueincross-validation.Inparticular,acustomisedcross-validation schemehasbeenadopted,consistingoftwodeletion groups(i.e.,cross-validationgroups);duringthecross-validationsteponemodelwasthereforecalculatedusing thespectraofeachdeletiongroup,topredicttheclassof thespectraoftheotherdeletiongroup. Eachdeletiongroupwasdefinedinordertoinclude thespectrabelongingtoalltheconsideredtargetclasses andtokeeptogetherallthespectraextractedfromthe sameimage. Furthermore,foreachnodeoftheclassificationtree, theSoftPLS-DAalgorithmhasalsobeencoupledwith asparse-basedvariableselectionapproachinorderto identifytherelevantvariablesinvolvedintheclassifica-tion.Inmoredetail,theoutcomesofthesparsePLS-DA (sPLS-DA)algorithmproposedby Lê Cao et al.34–36were
subjectedtothesameconstraintsforclassassignment describedaboveforSoftPLS-DA,thusresultingina sparseversionofSoftPLS-DA(sparseSoftPLS-DA). Basically,themainideaofsparse-basedmethodsis toperformvariableselectionbyforcingthemodelcoef-ficientsnotbringingusefulinformationtobeequalto zero.Sparsemethodsrepresentanextensionofthe correspondingtraditionalclassificationorregression methods,wheresparsityisachievedbyaddingapenalty termtothecomputationofthemodelcoefficients.37,38In additiontothenumberofmodelcomponents(i.e.,LVs), sparsemethodsalsorequirethelevelofsparsitytobe optimised,whichisrelatedtothenumberofvariables whosecoefficientsaresetequaltozerointhemodel.36,39 Thesparse-basedSoftPLS-DAmodelswereoptimised consideringamaximumnumberofLVsequalto10and
anumberofvariablesselectedforeachLVrangingfrom 4to96(withastepequalto4).Foreachnodeofthe classificationtree,thebestcombinationbetweenthe numberofLVsandthenumberofselectedvariables wasidentifiedbymaximisingtheNERvalueestimatedin cross-validation. BothSoftPLS-DAandsparseSoftPLS-DAmodels werevalidatedusingthetestsetdescribedabove. Imageelaborationanddataanalysiswereperformed usingthePLS_Toolboxsoftware(ver.8.5,Eigenvector ResearchInc.,USA)andad hocroutinesdevelopedinthe MATLABenvironment(ver.9.0,TheMathWorks,USA). TheMATLABroutinetorunSoftPLS-DAalgorithmis freelydownloadablefromhttp://www.chimslab.unimore. it/downloads/.
Results
Classification by Soft PLS-DA
Table 1 and Table 2 report the results obtained by applyingSoftPLS-DAalgorithmforeachnodeofthe classificationtreeandconsideringbothSNVanddetrend asrowpreprocessingmethods.Foreachmodel,theclas-sificationperformanceshavebeenevaluatedconsidering, foreachsingleclass,thenumberofnot-assignedpixel spectraandSENS,SPECandEFFvalues,whiletheNER valueshavebeencalculatedasaglobalmeasureoverall theclasses.Tomaintainaconcisepresentation,Table1 showsonlytheNERvaluesobtainedforeachnodeofthe classificationtree,whileTable2reportstheSENSvalues ofalltheconsideredclassesineachnodeofthetree.
SNV + mean centring Detrend + mean centring
LV CAL CV TS LV CAL CV TS NODE1 3 91.8 87.7 98.4 5 86.1 86.0 84.9 NODE2 2 94.3 93.6 100.0 5 93.9 92.4 91.1 NODE3 5 94.7 89.5 100.0 2 97.0 94.7 59.6 NODE4 4 90.3 90.2 98.9 6 87.7 83.9 98.1 NODE5 5 90.6 82.9 100.0 2 90.7 85.1 99.9
Table 1. NER values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.
SNV + mean centring Detrend + mean centring
CAL CV TS CAL CV TS NODE1 BACKGROUND 91.6 89.7 98.1 96.9 96.6 100.0 SAMPLE 91.9 85.7 98.6 75.3 75.5 69.9 NODE2 PAPER 98.7 98.8 100.0 100.0 99.9 100.0 PE+PVC+PP 93.5 92.9 100.0 92.3 89.5 96.6 PS+PET 90.6 89.2 100.0 80.8 76.7 50.2 NODE3 PET 95.2 85.9 100.0 95.4 97.4 76.2 PS 94.3 93.2 100.0 98.6 92.1 43.0 NODE4 PE 89.8 87.7 99.7 86.2 82.8 97.7 PP 89.5 91.2 97.1 91.6 86.3 99.5 PVC 91.8 91.8 100.0 85.5 82.6 97.1 NODE5 HDPE 86.6 84.5 100.0 81.8 76.5 99.8 LDPE 94.6 81.3 100.0 99.6 93.7 100.0
Table 2. SENS values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.
With few exceptions, SNV preprocessing method allowed better classification performances to be obtainedthandetrend,bothincross-validationandin predictionofthetestset.Indeed,inNode1,Node2 andNode4theNERvaluesobtainedincross-valida-tionfromthemodelscalculatedwithSNVarehigher thanthoseobtainedwithdetrend,andtheseresults werealsoconfirmedfromthepredictionoftheexternal testset.ConcerningNode3,SNVanddetrendledto similarclassificationperformancesincross-validation, butdetrendgavealowerNERvalueinpredictionofthe testset;inparticularaSENSvalueequalto43.0 %was obtainedforclassPS.Therefore,alsoforNode3SNV wasthebestpreprocessingmethod,sinceitresulted inamorerobustclassificationmodel.Conversely,in Node5thetwopreprocessingmethodsshowedsimilar performancesbothincross-validationandinprediction ofthetestset. Basedontheseresults,SNVcanbeidentifiedasthe optimalpreprocessingmethodforallthefivenodesof theclassificationtree.Furthermore,ithastobehigh-lightedthattheuseofthesamepreprocessingmethod foreachnodeoftheclassificationtreerepresentsagreat advantagefromthecomputationalpointofview.Indeed, thespectraofthehyperspectralimagescanberow-preprocessedonlyonceafterimageacquisition,andthe preprocessedspectracanthenbeusedforallthenodes oftheclassificationtree,resultinginalowercomputa-tionaleffort. FigureS3oftheSupplementaryMaterialshowsthe regressionvectorsoftheclassificationmodelscalculated foreachnodeofthetreeusingSNVasspectralrow preprocessing.BycomparingFigureS3withFigure1, whichreportstheaveragespectraofthedifferentmate-rialtypes,itispossibletoobservethatforeachnode ofthetreetherelevantvariables,i.e.thevariableswith highestabsolutevaluesoftheregressioncoefficients, generallycorrespondtothecharacteristicwavelengths ofthematerialsconsideredinthespecificclassification problem.
Classification by Soft PLD-DA and
sparse-based variable selection
SinceSNVwastheoptimalrowpreprocessingmethod forthewholeclassificationtree,thesubsequentvari-ableselectionstepbymeansofsparseSoftPLS-DAwas performedconsideringonlySNV + mean centringforeach node. Table3reportstheclassificationresultsobtainedfor thefivenodesoftheclassificationtreeexpressedin termsofNERvalesasaglobalmeasurementoftheclassi-ficationperformancesofeachnode,whileTable4shows theSENSvaluesofeachmodelledclass. ComparingTable1withTable3andTable2withTable 4,itispossibletoobservethat,generally,variableselec-tionimprovedtheclassificationperformancesand,atthe sametime,considerablyreducedthenumberofretained variables. Thehigherimprovementinclassificationperformances was reached in Node 3 with a NER value in cross- validationequalto94.3 %withrespectofaNERvalue equalto89.5 %obtainedconsideringthefullwavelength LV No. variables CAL CV TS NODE1 4 62 92.7 89.1 99.2 NODE2 2 8 95.6 95.2 100.0 NODE3 1 20 97.8 94.3 100.0 NODE4 4 40 90.3 90.5 98.1 NODE5 2 6 89.6 81.9 100.0
Table 3. NER values obtained with sparse-based variable selection coupled with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.
CAL CV TS NODE1 BACKGROUND 92.5 90.5 98.9 SAMPLE 92.8 87.7 99.6 NODE2 PAPER 100.0 99.8 100.0 PE+PVC+PP 94.6 94.6 100.0 PS+PET 92.3 91.3 100.0 NODE3 PET 97.4 92.5 100.0 PS 98.2 96.1 100.0 NODE4 PE 88.4 87.2 94.7 PP 91.9 93.1 99.5 PVC 90.7 91.3 100.0 NODE5 HDPE 92.9 82.6 100.0 LDPE 86.3 81.3 100.0
Table 4. SENS values obtained with sparse-based variable selection coupled with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.
range.Inaddition,byconsideringonlythe20selected variablesinNode3,allthetestsetspectrawerecorrectly assigned. Node2isthenodewiththelowernumberofselected variables,retainingonly8variablesoutofthe96original wavelengths.Suchasmallnumberofvariablesenabled anincreaseintheclassificationperformancesforallthe threeclassesmodelledinNode2(PAPER,PE+PVC+PP andPS+PET),maintainingatthesametimethe100.0 % ofcorrectassignmentsforthetestset. Conversely,inNode5variableselectionledtoaslight decreaseoftheclassificationperformancesincross- validation;inparticular,theSENSvalueforclassHDPEis lowerthanwhatobtainedwiththefullwavelengthrange (82.6 % vs 84.5 %).Actually,itshouldbeconsideredthat Node5dealswiththeclassificationofHDPEandLDPE, whicharederivedfromthesamemonomer,andthe differencebetweenthesetwopolymersisonlyrelated tothedegreeofbranching.Therefore,itisreasonableto assumethat,forthediscriminationbetweenHDPEand LDPE,thefullwavelengthrangeprovidesmorecomplete information.
Final implementation of the classification tree
Basedontheresultsobtainedfromtheoptimisationof eachsinglenode,thedifferentclassificationmodelshave beenassembledtogetherinordertoobtainthefinal implementationoftheclassificationtree,whichissche-matisedinFigure3. Theproposedtree-structuredclassificationmodelwas appliedtothetestsetinordertoobtainaquantitative assessmentofitsclassificationperformances.Duringthe finalvalidationofthemodel,thespectrabelongingto theothertypesofnon-recyclableplastics(classOTHER) werealsoincludedinthetestsettoevaluatetheability ofSoftPLS-DA,andofitssparse-basedextension,to correctlyrejectspectranotbelongingtothemodelled classes. TheresultsaresummarisedinFigure4,whichcanbe seenasakindofgraphicalrepresentationoftheconfu-sionmatrixobtainedbyapplyingtheclassificationtreeto thetestset.Indeed,eachpointinthegraphrepresents aspectrumofthetestsetanditiscolouredaccordingto thecorrespondingactualclass,whilethepositionofthe pointsonthey-axisisbasedontheclasspredictedfrom thetree-structuredclassificationmodel. ThesameresultsarealsoreportedinTable5interms ofSENSandSPECvaluesforeachconsideredclass,and ofNERoftheoveralltree-structuredmodel. Generally,satisfactoryclassificationresultshavebeen obtainedforallthemodelledclasses,resultinginaNER valueequalto98.4 %.TheSENSvaluesarealwaysgreater than90 %,andforPSandPVCallthetestsetspectra havebeencorrectlypredicted.
Figure 3. Final implementation of the tree-structured classification model for plastic waste sorting.
Concerningtheresultsexpressedintermsofspeci-ficity,foralltheclasses,SPECvaluescloseto1were obtained,indicatingthattheclassificationtreecorrectly rejected the great part of spectra not belonging to theconsideredclass.Indeed,Figure4showsthatthe majorityofthetestsetspectrabelongingtothecategory ofotherplastics(OTHER),whichwasnotincludedinthe classificationtree,wascorrectlyrejectedfromallthe consideredclassesandthuslabelledas“not-assigned” (NA).Inmoredetail,70.9 %ofspectrabelongingto classOTHERwaspredictedasNA,whileonlyaminority ofthesespectrafromotherplasticswaserroneously assignedtoPETandPSclasses(12.4 %and14.7 %, respectively). Theseresultsconfirmthattheproposedtree-structured classificationmodelisabletoeffectivelyrecognisethe spectraoftheanalysedmaterials,minimisingatthesame timepossiblefalsepositivesduetospectrabelongingto materialsthatwerenotconsideredduringmodelcalibra-tion. Furthermore,theclassificationtreewasappliedtothe testimages,i.e.totheimagescontainingobjectsoftwo differentmaterials,inordertoevaluatetheclassification performancesatthepixellevel.Asanexample,Figure5 showsthepredictionimagesobtainedfromthehyper-spectralimagescontainingPP+PVC(Figure5A),PAPER +HDPE(Figure5B),LDPE+OTHER(Figure5C)andPET +PS(Figure5D).Inordertofacilitatetheinterpretation oftheresults,theRGBimagesofthecorresponding wastesampleshavealsobeenincludedtogetherwiththe predictionimages.Inthepredictionimages,allthepixels predictedasbelongingtoadefinedclasshavebeen colouredaccordingtothelegend.Inparticular,greyis associatedwiththosepixelsthathavenotbeenassigned to any class.
Based on the prediction images, it is possible to observethatthemajorityofthepixelsofeachsingle objectarecorrectlyassignedtothecorrespondingmate-rialtype.Misclassificationsmainlyoccurattheedgesof theobjectsorinsomeareasofthebackground,dueto
Figure 4. Prediction results obtained from the final implementation of the tree-structured classification model.
HDPE LDPE PAPER PET PP PS PVC BACK SENS% 99.9 92.1 96.7 99.8 99.5 100.0 100.0 98.9 SPEC% 100.0 100.0 100.0 97.7 100.0 97.4 100.0 99.2
NER% 98.4
Table 5. Results in prediction obtained by applying the classification tree to the test set. BACK is the abbre-viation for background.
thenoisecausedbyspecularreflectionsoftheconveyor belt. Inmoredetail,inFigure5AandFigure5Dallthepixels oftheobjectsdepictedintheimagesarecorrectlyclassi-fied,whileinFigure5BthepixelsofthelargerHDPEbottle locatedatitsupperedgearenotassigned.Considering Figure5C,themajorityofthepixelsoftheLDPEobject arecorrectlyassigned,whilesomeofthemareclassified asHDPEornotassigned.Inthesameimage,theobjects madeofplasticpolymersnotincludedintheclassifica-tionmodelhavebeengloballynotassignedtoanyclass.
Conclusions
In practical applications of hyperspectral imaging to classificationaims,e.g.insortingplants,itisnecessary toimplementclassificationmethodsabletoeffectively handlealargenumberofclasses,tocorrectlyclassify samplesbelongingtotheconsideredcategories,andto correctlyrecogniseandrejectpossibleforeignobjects. Thepresentstudywasaimedatthedevelopmentof aclassificationruleforthediscriminationofmultiple categoriesthroughatree-structuredmodel,inwhich theclassificationateachnodewasperformedbySoft PLS-DA,anextensionofthePLS-DAalgorithm.The basicengineofSoftPLS-DAisthesameasPLS-DA,but classassignmentissubjectedtosomeadditionalcriteria involvingthecalculationoffurtherthresholdsbasedon Qresidualsandonypredictions.Theseadditionalthresh-oldsallowtherejectionofunknownsampleswhichare notcompliantwiththeclassesofinterest. Theproposedapproachwastestedonacasestudy relatedtothediscriminationofthedifferentrecyclable
Figure 5. Prediction images and corresponding RGB images of the samples: PP+PVC (A), PAPER+HDPE (B), LDPE+OTHER (C) and PET+PS (D).
plasticpolymersthatarecommonlyusedforpackaging. Ontheonehand,theuseofatree-structuredclassifica-tionmodelallowedeightdifferentclassestobeefficiently handled,asituationinwhichasinglediscriminationstep wouldrarelygivesatisfactoryresults.Ontheotherhand, SoftPLS-DAprovedtobeaflexiblealgorithmthanksto thepossibilityofrejectingforeignobjects,whosepres-enceisaplausiblesituationinrecyclingplants,sinceitis notpossibletocompletelycontroltheincomingmaterials. Furthermore,couplingSoft-PLS-DAwithasparse-based variableselectionallowedustoimprovetheclassification performancesandtodecreasethenumberofspectral variables,reducingatthesametimethecomputational efforts. Theexternalvalidationoftheclassificationtreedemon-strated the effectiveness of the proposed approach, reachingaNERvalueequalto98.4 %.Thesesatisfactory resultswerealsoconfirmedbythepixel-levelprediction performedonasetoftestimages. Afurtherimprovementofthisapplicationwillconsist intheextensionofthepredictionfromapixel-leveltoan object-levelapproach,byassigningeachplasticsample toadefinedclassbasedontheclassattributionofthe majorityofitspixels.Inthespecificcaseunderinves-tigation,thistaskcanbeaccomplishedbycouplingthe hyperspectralcamerawithanRGBcameraforobject shapedetection.Indeed,themuchhigherspatialreso-lutionofRGBimagingcouldallowtobetterdefinethe edgesofeachimagedobject,toidentifylabelspartly coveringthesamples,andtofurtherclassifythesamples ofagivenplasticmaterialbasedonitscolour.
Acknowledgements
The authors acknowledge financial support for this researchbyCNIGROUP–Visionsystemsbusinessunit throughthePOR-FESR2014-2020projectRICIPLA.The authorsalsowishtothankPhilippHaumannandEdoardo Covertino(CNIGROUP–Visionsystemsbusinessunit, Alfonsine,Italy)forthehelpduringimageacquisitionand fortechnicalsupport.
References
1. A.Gowen,C.O’Donnell,P.J.Cullen,G.Downey andJ.M.Frias,“Hyperspectralimaging–anemerging processanalyticaltoolforfoodqualityandsafety control”,Trends Food Sci. Technol. 18(12),590(2007). doi:https://doi.org/10.1016/j.tifs.2007.06.001 2. Y.Y.Pu,Y.Z.FengandD.W.Sun,“Recentprogressofhyperspectralimagingonqualityandsafety inspectionoffruitsandvegetables:areview”,
Compr. Rev. Food Sci F. 14(2),176(2015).doi:
https://doi.org/10.1111/1541-4337.12123 3. C. Ferrari, G. Foca, R. Calvini and A. Ulrici, “Fast
explorationandclassificationoflargehyperspectral imagedatasetsforearlybruisedetectiononapples”,
Chemometr. Intell. Lab. Syst. 146,108(2015).doi:
https://doi.org/10.1016/j.chemolab.2015.05.016 4. G.ElMasry,F.D.Barbin,D.W.Sunand
P.Allen,“Meatqualityevaluationbyhyper-spectralimagingtechnique:anoverview”,Crit.
Rev. Food Sci. Nutr. 52(8),689(2012).doi:
https://doi.org/10.1080/10408398.2010.507908 5. K.Sendin,P.J.WilliamsandM.Manley,“Near
infraredhyperspectralimaginginqual-ityandsafetyevaluationofcereals”,Crit.
Rev. Food Sci. Nutr. 58(4),575(2018).doi:
https://doi.org/10.1080/10408398.2016.1205548 6.
E.Dufour,“Recentadvancesintheanaly-sisofdairyproductqualityusingmethods basedontheinteractionsoflightwithmat-ter”,Int. J. Dairy Technol. 64(2),153(2011).doi:
https://doi.org/10.1111/j.1471-0307.2010.00665.x 7. Y.Roggo,A.Edmond,P.Chalusand
M.Ulmschneider,“Infraredhyperspectralimag-ingforqualitativeanalysisofpharmaceutical solidforms”,Anal. Chim. Acta 535,79(2005).doi:
https://doi.org/10.1016/j.aca.2004.12.037 8. A.A.Gowen,C.P.O’Donnell,P.J.Cullenand
S.E.J.Bell,“Recentapplicationsofchemicalimaging topharmaceuticalprocessmonitoringandquality control”,Eur. J. Pharm. Biopharm. 69(1), 10 (2008). doi:https://doi.org/10.1016/j.ejpb.2007.10.013 9.
J.M.Amigo,“Practicalissuesofhyperspec-tralimaginganalysisofsoliddosageforms”,
Anal. Bioanal. Chem. 398,93(2010).doi:
https://doi.org/10.1007/s00216-010-3828-z 10.A.Ulrici,S.Serranti,C.Ferrari,D.Cesare,
G.FocaandG.Bonifazi,“Efficientchemomet-ricstrategiesforPET–PLAdiscriminationin recyclingplantsusinghyperspectralimaging”,
Chemometr. Intell. Lab. Syst. 122,31(2013).doi:
11.P.Tatzer,M.WolfandT.Panner,“Industrialappli- cationforinlinematerialsortingusinghyperspec-tralimagingintheNIRrange”,Real-Time Imaging 11(2),99(2005).doi:https://doi.org/10.1016/j. rti.2005.04.003 12.R.Palmieri,G.BonifaziandS.Serranti,“Recycling-orientedcharacterizationofplasticframesand printedcircuitboardsfrommobilephonesbyelec-tronicandchemicalimaging”,Waste Manag. 34(11), 2120(2014).doi: https://doi.org/10.1016/j.was-man.2014.06.003 13.J.M.Amigo,H.BabamoradiandS.Elcoroaristizabal, “Hyperspectralimageanalysis.Atutorial”,Anal. Chim.
Acta 896,34(2015).doi:https://doi.org/10.1016/j.
aca.2015.09.030
14.P.Paclik,R.LeitnerandR.P.W.Duin,“Astudyon
designofobjectsortingalgorithmsintheindustrial applicationusinghyperspectralimaging”,J.
Real-Time Image Proc. 1(2),101(2006).doi:https://doi.
org/10.1007/s11554-006-0018-5 15.L.Eriksson,J.TryggandS.Wold,“PLS‐trees®, a top‐downclusteringapproach”,J. Chemometr. 23(11), 569(2009).doi:https://doi.org/10.1002/cem.1254 16.K.H.Liland,A.KohlerandV.Shapaval,“HotPLS—a frameworkforhierarchicallyorderedtaxonomic classificationbypartialleastsquares”,Chemometr.
Intell. Lab. Syst. 138,41(2014).doi:https://doi.
org/10.1016/j.chemolab.2014.07.010
17.W.Song,H.Wang,P.MaguireandO.Nibouche,
“Nearestclustersbasedpartialleastsquaresdiscrimi-nantanalysisfortheclassificationofspectraldata”,
Anal. Chimica Acta 1009,27(2018).doi:https://doi.
org/10.1016/j.aca.2018.01.023
18.S.Chevallier,D.Bertrand,A.KohlerandP.Courcoux,
“ApplicationofPLS‐DAinmultivariateimageanaly-sis”,J. Chemometr. 20(5),221(2006).doi:https://doi. org/10.1002/cem.994
19.M.BarkerandW.Rayens,“Partialleastsquaresfor
discrimination”,J. Chemometr. 17(3),166(2003).doi:
https://doi.org/10.1002/cem.785
20.N.F.Pérez,J.FerréandR.Boqué,“Calculationof
thereliabilityofclassificationindiscriminantpar-tialleast-squaresbinaryclassification”,Chemometr.
Intell. Lab. Syst. 95(2),122(2009).doi:https://doi.
org/10.1016/j.chemolab.2008.09.005 21.P.Oliveri,“Class-modellinginfoodanalytical
chemistry:Development,sampling,optimisa-tionandvalidationissues–Atutorial”,Anal. Chim.
Acta 982,9(2017).doi:https://doi.org/10.1016/j.
aca.2017.05.013 22.S.Wold,“Patternrecognitionbymeansofdisjoint principalcomponentsmodels”,Pattern Recognit. 8(3),127(1976).doi: https://doi.org/10.1016/0031-3203(76)90014-5 23.Y.Zheng,J.Bai,J.Xu,X.LiandY.Zhang,“Adis-criminationmodelinwasteplasticssortingusing NIRhyperspectralimagingsystem”,Waste Manag. 72,87(2018).doi: https://doi.org/10.1016/j.was-man.2017.10.015 24.G.Bonifazi,G.CapobiancoandS.Serranti,“Ahier-archicalclassificationapproachforrecognition oflow-density(LDPE)andhigh-densitypolyeth-ylene(HDPE)inmixedplasticwastebasedon short-waveinfrared(SWIR)hyperspectralimaging”,
Spectrochim. Acta A 198,115(2018).doi:https://doi.
org/10.1016/j.saa.2018.03.006
25.P.GeladiandB.R.Kowalski,“Partialleast-squares
regression:atutorial”,Anal. Chim. Acta 185, 1 (1986).doi: https://doi.org/10.1016/0003-2670(86)80028-9
26.A.Höskuldsson,“PLSregressionmethods”,
J. Chemometr. 2(3),211(1988).doi:https://doi.
org/10.1002/cem.1180020306
27.D.BallabioandV.Consonni,“Classificationtools
inchemistry.Part1:linearmodels.PLS-DA”,
Anal. Methods 5,3790(2013).doi:https://doi.
org/10.1039/c3ay40582f
28.O.Y.Rodionova,A.V.TitovaandA.L.Pomerantsev,
“Discriminantanalysisisaninappropriatemethod ofauthentication”,TrAC Trends Anal. Chem. 78,17(2016).doi:https://doi.org/10.1016/j. trac.2016.01.010 29.A.L.PomerantsevandO.Y.Rodionova,“Multiclass partialleastsquaresdiscriminantanalysis:Taking therightway—Acriticaltutorial”,J. Chemometr. 32, 3030(2018).doi:https://doi.org/10.1002/cem.3030 30.C.Botella,J.FerréandR.Boqué,“Classification frommicroarraydatausingprobabilis-ticdiscriminantpartialleastsquareswith rejectoption”,Talanta 80,321(2009).doi: https://doi.org/10.1016/j.talanta.2009.06.072 31.J.E.JacksonandG.S.Mudholkar,“Controlproce- duresforresidualsassociatedwithprincipalcom-ponentanalysis”,Technometrics 21,341(1979).doi: https://doi.org/10.1080/00401706.1979.10489779
32.ASTMD7611/D7611M-13e1,Standard
Practice for Coding Plastic Manufactured Articles for Resin Identification.ASTMInternational,
WestConshohocken,PA,USA(2013).
https://www.astm.org
33.D.Ballabio,F.GrisoniandR.Todeschini,
“Multivariatecomparisonofclassifica-tionperformancemeasures”,Chemometr.
Intell. Lab. Syst. 174,33(2018).doi:
https://doi.org/10.1016/j.chemolab.2017.12.004 34.K.A.LêCao,S.BoitardandP.Besse,“SparsePLS
discriminantanalysis:biologicallyrelevantfeature selectionandgraphicaldisplaysformulticlass problems”,BMC bioinformatics 12,253(2011).doi:
https://doi.org/10.1186/1471-2105-12-253
35.E.Szymańska,E.Brodrick,M.Williams,A.N.Davies,
H.J.vanManenandL.M.Buydens,“Datasizereduc-tionstrategyfortheclassificationofbreathandair samplesusingmulticapillarycolumn-ionmobility spectrometry”,Anal. Chem. 87(2),869(2015).doi:
https://doi.org/10.1021/ac503857y
36.R.Calvini,A.UlriciandJ.M.Amigo,“Practical
comparisonofsparsemethodsforclassifica-tionofArabicaandRobustacoffeespecies usingnearinfraredhyperspectralimaging”,
Chemometr. Intell. Lab. Syst. 146,503(2015).doi:
https://doi.org/10.1016/j.chemolab.2015.07.010 37.P.Filzmoser,M.GschwandtnerandV.Todorov,
“Reviewofsparsemethodsinregressionand classificationwithapplicationtochemo-metrics”,J. Chemometr. 26,42(2012).doi:
https://doi.org/10.1002/cem.1418
38.M.A.RasmussenandR.Bro,“Atutorialon
theLassoapproachtosparsemodeling”,
Chemometr. Intell. Lab. Syst. 119,21(2012).doi:
https://doi.org/10.1016/j.chemolab.2012.10.003 39.R.Calvini,J.M.AmigoandA.Ulrici,“Transferring
resultsfromNIR-hyperspectraltoNIR-multispectral imagingsystems:afilter-basedsimulationappliedto theclassificationofArabicaandRobustagreencof-fee”,Anal. Chimica Acta 967,33(2017).doi:https:// doi.org/10.1016/j.aca.2017.03.011