• Non ci sono risultati.

Developmentof a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging

N/A
N/A
Protected

Academic year: 2021

Condividi "Developmentof a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging"

Copied!
15
0
0

Testo completo

(1)

Correspondence

Rosalba Calvini ([email protected]) Received: 8 November 2018 Revised: 10 December 2018 Accepted: 10 December 2018 Publication: 18 December 2018 doi: 10.1255/jsi.2018.a13 ISSN: 2040-4565 Citation

R. Calvini, G. Orlandi, G. Foca and A. Ulrici, “Development of a

­classification­algorithm­for­efficient­handling­of­multiple­classes­in­­sorting­ systems­based­on­hyperspectral­imaging”,­J. Spectral Imaging 7, a13 (2018). https://doi.org/10.1255/jsi.2018.a13 ©­2018­The­Authors This­licence­permits­you­to­use,­share,­copy­and­redistribute­the­paper­in­ any­medium­or­any­format­provided­that­a­full­citation­to­the­original­ ­paper­in­this­journal­is­given,­the­use­is­not­for­commercial­purposes­and­ the­paper­is­not­changed­in­any­way. In thIs Issue:

spectral preprocessing to compensate for packaging film / using neural nets to invert the PROSAIL canopy model

JOURNAL OF

SPECTRAL

IMAGING

Peer Reviewed Paper Highlighting Young Investigators openaccess

Development­of­a­classification­algorithm­for­

efficient­handling­of­multiple­classes­in­sorting­

systems­based­on­hyperspectral­imaging

Rosalba Calvini,a,* Giorgia Orlandi,b Giorgia Focac and Alessandro Ulricid

Department­of­Life­Sciences,­University­of­Modena­and­Reggio­Emilia,­Padiglione­Besta,­Via­Amendola,­2,­42122­Reggio­Emilia,­Italy.­ E-mail:­[email protected]

a https://orcid.org/0000-0002-0100-8798, b https://orcid.org/0000-0002-9116-4566 c https://orcid.org/0000-0002-4436-774X, d https://orcid.org/0000-0002-6010-6400

When dealing with practical applications of hyperspectral imaging, the development of efficient, fast and flexible classification algorithms is of the utmost importance. Indeed, the optimal classification method should be able, in a reasonable time, to maximise the separation between the classes of interest and, at the same time, to correctly reject possible outlier samples. To this aim, a new extension of Partial Least Squares Discriminant Analysis (PLS-DA), namely Soft PLS-DA, has been implemented. The basic engine of Soft PLS-DA is the same as PLS-DA, but class assignment is subjected to some additional criteria which allow samples not belonging to the target classes to be identified and rejected. The proposed approach was tested on a real case study of plastic waste sorting based on near infrared hyperspectral imaging. Household plastic waste objects made of the six recyclable plastic polymers commonly used for packaging were collected and imaged using a hyperspectral camera mounted on an indus-trial sorting system. In addition, paper and not recyclable plastics were also considered as potential foreign materials that are commonly found in plastic waste. For classification purposes, the Soft PLS-DA algorithm was integrated into a hierarchical classification tree for the discrimination of the different plastic polymers. Furthermore, Soft PLS-DA was also coupled with sparse-based variable selection to identify the relevant variables involved in the classification and to speed up the sorting process. The tree-structured classification model was successfully validated both on a test set of representative spectra of each material for a quantitative evaluation, and at the pixel level on a set of hyperspectral images for a qualitative assessment.

Keywords: PLS-DA, multivariate classification, hierarchical classification, sparse methods, feature selection, plastic sorting

Introduction

Over­the­past­decades,­Hyperspectral­Imaging­(HSI)­has­ gained­increasing­attention­from­industries­interested­ in­the­implementation­of­automated­sorting­systems­to­ solve­a­number­of­different­problems.­Indeed,­HSI­has­ found­a­wide­range­of­applications­in­the­food­industry,­ including­the­quality­evaluation­and­safety­assessment­

of several food products,1

­such­as­fruits­and­vegeta-bles,2,3 meat,4 cereals5 and dairy products.6 Moreover,

other­manufacturing­environments,­such­as­the­pharma-ceutical­industry,­have­employed­real-time­HSI­systems­ for­quality­control­and­process­monitoring­in­the­frame­ of­the­process­analytical­technology.7–9­Another­relevant­

(2)

field­of­application­of­HSI­is­represented­by­the­recy-cling­industry,­where­hyperspectral­sensors­are­used­to­ separate­end-of-life­objects,­such­as­plastic,10 paper11 or electronic­waste,12­according­to­material­type. In­these­contexts,­HSI­can­be­considered­as­a­step­ forward­with­respect­to­traditional­spectroscopic­tech- niques,­which­allow­fast­and­non-destructive­charac-terisation­of­the­chemical­properties­of­the­analysed­ samples.­In­fact,­HSI­systems­couple­these­advantages­ with­the­possibility­of­also­visualising­the­spatial­distri-bution­of­the­chemical­features­of­interest­within­the­ sample­surface.­Furthermore,­in­sorting­systems,­HSI­can­ also­be­employed­to­quickly­identify­the­chemical­compo-sition­of­homogeneous­objects­moving­on­a­conveyor­ belt,­and­to­distinguish­them­from­samples­with­different­ composition.13 In­practical­situations,­hyperspectral­imaging­can­be­ applied­to­address­complex­classification­issues,­where­ the­sorting­problem­under­investigation­requires­the­ discrimination­of­several­classes­at­the­same­time,­with­ some­classes­sharing­similar­features.­This­can­be­easily­ managed­ by­ using­ HSI­ systems,­ since­ with­ a­ single­ measurement,­i.e.­with­the­acquisition­of­a­single­hyper-spectral­image,­it­is­possible­to­have­a­wide­range­of­ information.­However,­in­order­to­meet­the­needs­of­real-time­applications,­it­is­necessary­to­identify­classification­ strategies­able­to­handle­a­huge­amount­of­spectral­data,­ providing­reliable­results­in­short­computational­times.14 When­dealing­with­multiple­classes,­this­issue­can­be­ addressed­using­a­tree-structured­classification­model,­ where­each­branching­(tree­node)­corresponds­to­a­local­ classification­model. In­this­manner,­classification­is­performed­considering­ a­top-down­approach,­where­the­samples­are­initially­ assigned­to­general­macro-categories,­and­then­each­ macro-class­is­split­into­increasingly­specific­categories,­ until­reaching­the­classes­of­interest.15–17 Another­relevant­issue­to­be­faced­in­practical­applica-tions­of­HSI­in­sorting­systems­is­related­to­the­fact­that,­ generally,­it­is­not­easy­to­have­a­strict­control­of­the­ input­stream­in­order­to­avoid­the­presence­of­foreign­ objects,­i.e.­objects­not­belonging­to­the­target­classes­of­ the­specific­application.­In­this­context,­the­availability­of­ algorithms­able­to­maximise­the­discrimination­between­ the­categories­of­interest­and,­at­the­same­time,­to­iden-tify­possible­foreign­materials­is­of­the­utmost­importance. Partial­Least­Squares­Discriminant­Analysis­(PLS-DA)­ is­one­of­the­most­widely­used­methods­for­multivariate­ classification­of­hyperspectral­data.18­Basically,­PLS-DA­ is­an­extension­of­the­PLS­algorithm,­which­aims­at­iden-tifying­a­new­set­of­variables,­named­Latent­Variables­ (LVs),­by­maximising­the­between-classes­variance.­Class­ membership­ is­ coded­ using­ a­ dummy­ Y­ matrix,­ and­ the­assignment­of­unknown­samples­is­based­on­the­

a posteriori­probability­associated­with­the­corresponding­

Y­ predicted­ values.­The­ standard­ PLS-DA­ approach­ assigns­a­sample­to­the­class­for­which­it­has­the­higher­ a posteriori­probability,­resulting­in­unknown­samples­ always­being­assigned­to­one­of­the­target­classes.19,20 Therefore,­on­the­one­hand­PLS-DA­has­the­great­advan- tage­of­maximising­the­separation­between­the­consid-ered­classes­but,­on­the­other­hand,­it­does­not­allow­a­ straightforward­identification­of­outliers.

Conversely,­ the­ possibility­ of­ having­ unassigned­ samples­is­one­of­the­major­advantages­of­the­so-called­ class-modelling­techniques,­which­are­essentially­based­ on­describing­each­single­class­independently­from­the­ others,­and­then­verifying­whether­an­unknown­sample­ is­compliant­or­not­with­the­characteristics­of­each­class­ of interest.21­In­this­manner,­it­is­possible­that­a­new­ unknown­sample­is­rejected­from­all­the­class­models,­ resulting­in­an­unassigned­sample.­Soft­Independent­ Modelling­of­Class­Analogy­(SIMCA)­is­the­most­common­ class-modelling­ method.­ It­ calculates­ local­ Principal­ Component­Analysis­(PCA)­models­for­each­considered­ class,­which­are­used­to­define­class­boundaries­based­ on­the­distances­both­in­the­score­space­(Hotelling’s­T2) and­in­the­residual­space­(Q­residuals).22­Notwithstanding­ the­advantages­of­class-modelling­methods­like­SIMCA,­ they­can­provide­poor­classification­results­when­the­ modelled­classes­are­quite­overlapped,­since­the­model­ is­not­oriented­towards­the­discrimination­of­the­consid-ered­categories. Given­these­considerations,­it­is­reasonable­to­assume­ that­a­classification­algorithm­to­be­efficiently­employed­ in­sorting­systems­should­comprise­the­advantages­of­ both­classification­techniques­and­of­class-modelling­ methods,­i.e.­it­should­be­able­to­maximise­the­discrimi- nation­between­the­categories­of­interest­and­to­recog-nise­and­reject­outlier­samples­at­the­same­time. To­this­aim,­in­the­present­paper­a­modified­version­of­ the­PLS-DA­algorithm,­namely­Soft­PLS-DA,­is­proposed.­ The­basic­principle­of­Soft­PLS-DA­is­the­same­as­PLS-DA,­ but­class­assignment­is­performed­by­fixing­additional­ limits­ both­ on­ the­ Y­ predicted­values­ and­ on­ the­ Q­ residuals.­In­this­manner,­the­classification­model­is­built­

(3)

by­maximising­the­differences­between­the­modelled­ classes;­at­the­same­time,­the­additional­limits­allow­the­ rejection­of­samples­belonging­to­unexpected­categories­ and­relegation­of­them­to­a­general­category­of­unas-signed­samples. The­effectiveness­of­Soft­PLS-DA­algorithm­was­tested­ on­a­case­study­related­to­the­implementation­of­a­near­ infrared­(NIR)­hyperspectral­imaging­system­for­plastic­ waste­sorting.­Indeed,­the­different­plastic­polymers­have­ a­specific­spectral­fingerprint­in­the­NIR­range­and­optical­ sorting­is­commonly­used­to­separate­them.23,24­The­goal­ of­our­study­consisted­in­the­implementation­of­a­clas-sification­method­able­to­effectively­discriminate­paper­ and­six­recyclable­plastic­polymers­commonly­used­for­ packaging,­and­to­correctly­reject­objects­belonging­to­ non-target­classes,­such­as­non-recyclable­plastics. The­present­manuscript­is­structured­as­follows: ■The­next­section­reports­the­theoretical­background­of­ the­standard­classification­approach­based­on­PLS-DA­ and­a­detailed­description­of­the­novel­Soft­PLS-DA­ algorithm. ■Material­and­methods­describes­the­plastic­dataset,­

the­ procedure­ followed­ for­ image­ acquisition­ and­ elaboration­together­with­the­different­steps­of­data­ analysis.

■Results­ shows­ the­ classification­ results­ obtained­

using­Soft­PLS-DA­algorithm­both­considering­the­full­ wavelength­range­and­sparse-based­variable­selection,­ and­also­the­results­of­the­final­implementation­of­the­ classification­tree. ■Finally,­we­report­the­general­conclusions­of­this­study.

Theory

Background

PLS-DA­is­as­an­extension­of­PLS­regression­adapted­to­ operate­in­a­classification­framework.­Similarly­to­PLS,­the­ independent­matrix­X­is­regressed­against­the­dependent­ matrix­Y­by­calculating­a­new­set­of­LVs,­which­maximise­ the­covariance­between­X and Y matrices.25,26­In­more­

detail,­both­X and Y matrices can be decomposed as follows:

X = TPT + E (1)

where­T, P and E­represent­the­score­matrix,­the­loading­ matrix­and­the­residuals­matrix­of­X,­respectively;

Y = UCT + G (2)

where­U­is­the­score­matrix,­C­is­the­loading­matrix­and­G is­the­residuals­matrix­referred­to­Y.

According­to­PLS,­the­object­variation­of­the­X-block­ expressed­by­the­score­matrix­T can be used to describe Y;­therefore­Equation­2­can­be­re-written­as­follows: Y = TCT + G (3) In­particular,­the­decomposition­of­X­has­to­be­opti-mised­in­a­manner­that­T­accounts­for­the­variation­in­X which­allows­the­best­description­of­Y.­To­this­aim,­for­ each­LV­a­weight­vector­(w)­is­calculated­which­weights­ the­original­variables­according­to­their­contribution­in­ explaining­the­Y­matrix.­Given­these­considerations,­the­ estimate­of­Y (Ŷ)­can­be­calculated­as­follows: Ŷ = XWCT + F = XB + F (4) where­W­is­the­weights­matrix­and­B­is­the­matrix­of­ regression­coefficients. In­the­case­of­PLS-DA,­the­Y­matrix­consists­of­a­dummy­ matrix­with­as­many­rows­as­the­number­of­samples­and­ as­many­columns­as­the­number­of­considered­classes.­ This­dummy­matrix­expresses­class­membership­of­each­ sample­with­binary­coding:­a­value­equal­to­1­indicates­ that­an­object­belongs­to­the­class,­while­a­value­equal­to­ 0­refers­to­samples­not­belonging­to­the­class.19,27 Once­the­PLS­model­has­been­calibrated,­class­assign-ment­ of­ unknown­ samples­ is­ based­ on­ the­ y values estimated­for­each­class­(ŷ).­These­values­will­not­be­ exactly­equal­to­0­or­1,­therefore­it­is­necessary­to­estab-lish­a­threshold­value­so­that­a­new­sample­is­assigned­ to­a­defined­class­only­if­its­ŷ­value­is­greater­than­the­ threshold­for­that­class.­The­threshold­is­usually­calcu-lated­using­the­Bayes­theorem­under­the­assumption­ that­the­estimated­values­for­each­class­follow­a­Gaussian­ distribution,­and­these­distributions­are­used­to­calculate­ the­a posteriori­probability­that­a­sample­belongs­to­a­ given­class.20­In­particular,­for­each­class­the­threshold­ value­corresponds­to­the­ŷ­value­at­which­the­number­of­ false­positives­and­false­negatives­is­minimised,­that­is­ the­point­where­the­two­probability­distributions­cross­ (i.e.­the­point­where­the­a posteriori probability values for the­two­classes­are­the­same).

Usually,­class­assignment­of­an­unknown­sample­can­ be­done­considering­two­different­approaches:­either­ choosing­ the­ class­ with­ the­ highest­ probability,­ or­ comparing­the­predicted­ŷ­values­with­the­corresponding­ threshold­values.­The­former­strategy­represents­the­stan-dard­discriminant­approach,­where­samples­are­always­

(4)

assigned­to­one­of­the­modelled­classes.­Conversely,­if­ the­latter­approach­is­used,­a­sample­can­have­ŷ values higher­than­the­corresponding­threshold­for­more­than­ one­class,­or­lower­than­the­threshold­for­all­the­classes.­ In­both­these­cases,­the­sample­cannot­be­assigned­to­ any class.27­However,­in­the­case­of­only­two­classes,­

these­two­approaches­converge­to­the­same­results­and­ standard­PLS-DA­algorithm­will­always­attribute­a­sample­ to­one­of­the­classes. The­standard­discriminant­approach­has­often­been­ criticised­due­to­its­limited­ability­to­correctly­handle­new­ objects­not­belonging­to­the­target­classes.28­In­order­to­ overcome­this­issue,­extensions­of­PLS-DA­have­been­ proposed­in­the­literature,­which­incorporate­a­rejection­ option­in­the­classification­rule. These­methods­usually­consist­in­considering­PLS-DA­ as­a­data­compression­method­rather­than­a­classification­ strategy,­and­class­assignment­is­performed­with­a­further­ class-modelling­step­considering­distance-based­metrics­ calculated­on­the­PLS­scores16­or­on­the­PCA­scores­ obtained­from­the­decomposition­of­the­Ŷ­matrix.29­In­ this­manner,­class­assignment­is­performed­in­a­rather­ complex­multi-step­procedure. Conversely,­an­alternative­approach­consists­in­calcu- lating­a­classification­rule­considering­confidence­inter-vals­around­the­ŷ­values­of­each­class,­and­rejecting­ samples­outside­these­intervals.30 Furthermore,­it­has­to­be­considered­that­diagnostics­ based­on­Q­residuals­can­represent­an­effective­tool­ to­ identify­ outlier­ samples,­ i.e.­ samples­with­ proper-ties­different­from­those­of­the­samples­used­for­model­ calibration.­These­diagnostics­are­widely­used­in­class-modelling,­for­example­in­the­SIMCA­algorithm.­However,­ Q­residuals­are­rarely­incorporated­in­classification­rules­ based­on­PLS-DA­algorithm,­even­if­the­computation­of­ Q­scores­from­the­outcomes­of­the­PLS­model­is­straight-forward­according­to­the­following­equation: T i i i Q=e e (5)

where­Qi­is­the­Q­score­value­of­the­ith­sample­of­matrix­X

and ei­is­the­ith­row­vector­of­the­residuals­matrix­E.

Soft PLS-DA

In­the­present­study,­a­novel­algorithm­based­on­PLS-DA­ has­been­developed­in­order­to­combine­the­advantages­ of­classical­discriminant­analysis­with­those­of­class-modelling­techniques;­ for­these­reasons­it­has­been­ named­Soft­PLS-DA.­The­main­idea­behind­Soft­PLS-DA­ is­to­have­a­flexible­and­simple­classification­tool­able­to­ maximise­the­separation­between­the­considered­classes­ and,­at­the­same­time,­to­effectively­identity­possible­ outlier­objects­(i.e.­objects­that­do­not­belong­to­the­ classes­included­in­the­classification­model),­which­will­be­ automatically­not­assigned­to­any­class. In­the­same­manner­as­PLS-DA,­a­PLS­model­is­calcu-lated­between­the­X­matrix­and­the­dummy­Y­matrix,­in­ order­to­maximise­the­differences­between­the­consid-ered­classes.­Then,­class­assignment­of­unknown­samples­ is­based­on­some­additional­criteria­which­allow­outlier­ samples­to­not­be­assigned­to­the­target­classes. According­to­the­Soft­PLS-DA­decision­rules,­class­ assignment­of­a­new­sample­to­a­defined­class­is­subjected­ to­the­following­criteria: ■having­Q­residuals­falling­inside­the­99.9 %­confidence­ limit­of­the­model.31­The­99.9 %­confidence­limit­has­ been­chosen­in­order­to­set­boundaries­large­enough­ to­consider­as­much­as­possible­the­variability­of­the­ different­classes­and,­at­the­same­time,­being­able­to­ exclude­samples­with­a­very­low­fit­to­the­model; ■having­ŷ­values­falling­inside­an­acceptability­range­ for­the­considered­class.­More­in­detail,­in­addition­to­ the­threshold­value­calculated­by­standard­PLS-DA­for­ each­class­g (ytsh1,g), also an upper limit (ytsh2,g)­on­the­

ŷ­values­has­been­introduced,­which­is­calculated­as­

follows:

2, ˆ, 5 ˆ, tsh g y g y g

y =m + ´s (6) where­my^,g and sy^,g

­are­the­mean­and­the­standard­devi-ation­of­the­ŷ values of class g­calculated­on­the­training­ set­samples.­Therefore,­in­order­to­be­assigned­to­class­g, an­unknown­sample­must­have­a­ŷ­value­ranging­between­

ytsh1,g and ytsh2,g.­The­upper­limit­imposed­on­the ŷ values

allows­objects­found­at­the­extremes­of­the­Gaussian­ probability­density­functions­(PDFs)­to­be­rejected;­these­ usually­have­low­values­in­the­PDFs­but­high­a posteriori probability­for­one­class­according­to­the­Bayes­rule.­The­ upper­limit­was­set­based­on­preliminary­tests­performed­ on­some­representative­images; ■for­classification­problems­with­more­than­two­classes,­ the­samples­must­be­unambiguously­assigned­only­to­ one class. Samples­that­do­not­match­all­the­three­criteria­are­not­ assigned­to­any­class­and­are­labelled­as­“not­assigned”­ (NA).­In­this­manner,­Soft­PLS-DA­allows­boundaries­to­ be­drawn­around­each­modelled­class­which­maximise­ the­discrimination­between­the­categories­of­interest­and­

(5)

minimise­possible­false­positives­due­to­ambiguous­clas-sifications­or­to­outlier­samples.

Material and methods

Plastic dataset

In­the­present­study,­we­have­considered­the­recyclable­ plastic­polymers­mainly­used­for­packaging,­including­ polyethylene­terephthalate­(PET),­polystyrene­(PS),­poly- vinyl­chloride­(PVC),­polypropylene­(PP)­and­polyeth-ylene­(PE),­which­in­turn­can­be­further­subdivided­in­ high-density­polyethylene­(HDPE)­and­low-density­poly-ethylene­(LDPE). Different­plastic­objects­made­of­the­considered­poly- mers­have­been­collected­form­household­waste.­In­addi-tion,­samples­composed­of­paper­and­of­other­types­ of­non-recyclable­plastics­(OTHER),­e.g.­acrylonitrile­ butadiene­styrene­(ABS)­and­polylactic­acid­(PLA),­were­ also­considered­as­possible­foreign­materials­that­can­be­ found­in­plastic­municipal­waste.

The­ different­ samples­ have­ been­ manually­ sorted­ into­the­corresponding­categories­based­on­the­Resin­ Identification­Code­(RIC)­reported­on­the­objects.32­The­ RIC­is­an­international­coding­system­comprising­a­set­of­ symbols­(labels­and­numbers)­present­on­plastic­products­ and­indicating­the­polymer­of­which­they­are­composed.­ For­example,­according­to­RIC,­coding­number­1­is­associ-ated­to­PET,­number­2­is­associated­to­HDPE,­number­3­ is­associated­to­PVC­etc. Image­acquisition The­collected­waste­samples­have­been­acquired­with­an­ industrial­sorting­system­consisting­of­a­NIR­line­scanning­ hyperspectral­camera­(KUSTA1.9MSI,­LLA­Instruments)­ mounted­over­a­black­conveyor­belt­and­equipped­with­ an­InGaAs­detector­array­and­Zeiss­f/2.4,­10 mm­optical­ lens.­Image­acquisition­was­performed­with­a­frame­rate­ equal­to­644 Hz­and­the­speed­of­the­conveyor­belt­ was­equal­to­0.84 m s–1.­Illumination­was­provided­by­ halogen­light­bulbs­positioned­in­two­parallel­illumination­ rows­slightly­tilted­towards­each­other­(PMAmsi,­LLA­ Instruments).­The­hyperspectral­images­were­acquired­in­ the­NIR­range­from­1330 nm­to­1900 nm­with­a­spectral­ resolution­of­6 nm. The­samples­were­acquired­in­two­acquisition­phases­ conducted­on­different­days.­In­the­first­phase,­hyper-spectral­images­containing­objects­made­of­the­same­ material­were­acquired.­In­more­detail,­two­images­of­ different­objects­were­acquired­for­each­type­of­material,­ for­a­total­of­16­hyperspectral­images­(=­8­materials­ 2 replicated­images).­These­images­were­used­as­training­ images­in­the­subsequent­elaboration­steps,­in­order­to­ obtain­a­library­of­representative­spectra­for­each­mate-rial type.

In­ the­ second­ acquisition­ phase,­ hyperspectral­ images­containing­samples­of­two­different­materials­ were­acquired­considering­all­the­possible­combinations­ between­the­material­types­under­investigation.­On­the­ whole,­56­hyperspectral­images­have­been­obtained­in­ this­phase,­resulting­from­two­replicate­images­for­each­ combination. All­the­hyperspectral­images,­acquired­on­the­objects­ positioned­on­the­moving­conveyor­belt,­have­size­equal­ to­41­row­pixels­­500­column­pixels­­96­wavelengths.­ For­each­image,­the­raw­intensity­counts­were­converted­ into­reflectance­units­by­means­of­an­internal­calibration­ procedure­based­on­the­measure­of­the­dark­current­and­ of­a­white­high­reflectance­standard.­Dark­current­was­ measured­by­closing­the­shutter­of­the­camera,­while­the­ white­reference­consisted­of­an­aluminium­frame­holding­ the­calibration­material­with­an­average­remission­factor­ equal­to­83.0 %. Image­elaboration Initially,­the­16­images­acquired­during­the­first­acquisi-tion­phase­were­analysed­by­means­of­PCA­after­mean­ centring­as­data­preprocessing,­in­order­to­segment­the­ pixels­of­the­background­(black­conveyor­belt)­from­those­ belonging­to­the­samples. After­background­segmentation,­from­each­training­ image­1000­spectra­of­the­sample­and­400­spectra­of­ the­background­were­randomly­selected.­These­spectra­ were­ used­ to­ build­ a­ training­ set­with­ size­ {22,400­ spectra ­96­wavelengths},­containing­16,000­repre-sentative­spectra­of­the­considered­materials­(2000­ spectra­for­each­material­type)­and­6400­spectra­of­the­ background.­The­average­spectra­of­each­material­type­ calculated­from­the­training­set­are­reported­in­Figure­ 1A,­while­the­average­and­standard­deviation­spectra­of­ each­class­are­shown­in­Figure­S1­of­the­Supplementary­ Material. The­images­containing­samples­of­two­different­mate- rials­were­used­as­test­images­to­obtain­both­a­quan-titative­and­qualitative­evaluation­of­the­classification­

(6)

models.­For­the­creation­of­the­test­set,­some­represen-tative­images­have­been­chosen­in­order­to­consider­all­ the­materials,­and­Regions­of­Interest­(ROI)­were­defined­ on­these­images.­From­each­ROI,­the­corresponding­ spectra­were­extracted­to­create­a­test­set­with­size­ {21,760­spectra­­96­wavelengths},­containing­a­library­ of­spectra­with­known­assignment.­Figure­1B­shows­the­ average­spectra­of­each­considered­material­calculated­ from­the­test­set,­while­the­corresponding­average­and­

Figure 1. Average spectra of each material type calculated from training and test sets without any pre-processing (A and B), and after SNV (C and D) and detrend (E and F) as data prepre-processing.

(7)

standard­deviation­spectra­are­reported­in­Figure­S2­of­ the­Supplementary­Material.

Data analysis

The­training­set­was­initially­analysed­by­means­of­PCA­ considering­ both­ standard­ normal­variate­ (SNV)­ and­ detrend­as­row­preprocessing­methods.­This­preliminary­ analysis­ allowed­similarities­and­differences­between­ the­considered­materials­to­be­identified,­and­both­SNV­ and­detrend­gave­analogous­results.­The­clusters­of­the­ different­materials­observed­in­the­PCA­score­plots­essen-tially­reflected­similarities­and­differences­of­the­chemical­ structure­of­the­considered­polymers.­These­results­were­ used­to­develop­the­structure­of­the­tree-based­classifica- tion­model­reported­in­Figure­2.­In­particular,­PCA­high-lighted­that­the­class­corresponding­to­the­non-recyclable­ plastic­polymers­was­too­heterogenous­to­be­modelled­ into­a­single­class.­For­this­reason,­the­spectra­belonging­ to­the­OTHER­class­were­not­used­during­model­calibra-tion,­but­they­were­used­during­the­final­validation­of­the­ classification­tree­in­order­to­evaluate­the­ability­of­Soft­ PLS-DA­algorithm­to­reject­objects­belonging­to­classes­ not­considered­in­model­calibration.­The­classification­ tree­reported­in­Figure­2­is­composed­of­five­nodes,­each­ corresponding­to­a­classification­model­calculated­with­ Soft­PLS-DA­algorithm­using­the­training­set. For­each­node­of­the­tree,­the­classification­models­ have­ been­ computed­ considering­ both­ SNV + mean

centring and detrend + mean centring as data

prepro-cessing­methods. The­average­spectra­of­each­considered­material­type­ obtained­from­both­training­and­test­sets­preprocessed­ with­SNV­and­detrend­are­reported­in­Figures­1C–F. Classification­performances­of­each­single­class­were­ defined­using­sensitivity­(SENS),­i.e.­the­percentage­of­ objects­belonging­to­a­given­class­correctly­assigned­ to­the­corresponding­class,­specificity­(SPEC),­i.e.­the­ percentage­of­objects­correctly­rejected­from­the­class­ model,­and­efficiency­(EFF),­i.e.­the­geometric­mean­of­ sensitivity­and­specificity.­Furthermore,­for­an­overall­ evaluation­of­the­classification­quality­of­each­node,­the­ Non-Error­Rate­(NER)­was­also­considered,­which­is­ calculated­as­the­arithmetic­mean­of­the­SENS­values­of­ the­different­classes.33 The­proper­number­of­LVs­for­the­Soft­PLS-DA­models­ has­been­optimised­by­maximising­the­NER­value­in­cross-validation.­In­particular,­a­customised­cross-validation­ scheme­has­been­adopted,­consisting­of­two­deletion­ groups­(i.e.,­cross-validation­groups);­during­the­cross-validation­step­one­model­was­therefore­calculated­using­ the­spectra­of­each­deletion­group,­to­predict­the­class­of­ the­spectra­of­the­other­deletion­group. Each­deletion­group­was­defined­in­order­to­include­ the­spectra­belonging­to­all­the­considered­target­classes­ and­to­keep­together­all­the­spectra­extracted­from­the­ same­image. Furthermore,­for­each­node­of­the­classification­tree,­ the­Soft­PLS-DA­algorithm­has­also­been­coupled­with­ a­sparse-based­variable­selection­approach­in­order­to­ identify­the­relevant­variables­involved­in­the­classifica-tion.­In­more­detail,­the­outcomes­of­the­sparse­PLS-DA­ (sPLS-DA)­algorithm­proposed­by Lê Cao et al.34–36­were­

subjected­to­the­same­constraints­for­class­assignment­ described­above­for­Soft­PLS-DA,­thus­resulting­in­a­ sparse­version­of­Soft­PLS-DA­(sparse­Soft­PLS-DA). Basically,­the­main­idea­of­sparse-based­methods­is­ to­perform­variable­selection­by­forcing­the­model­coef-ficients­not­bringing­useful­information­to­be­equal­to­ zero.­Sparse­methods­represent­an­extension­of­the­ corresponding­traditional­classification­or­regression­ methods,­where­sparsity­is­achieved­by­adding­a­penalty­ term­to­the­computation­of­the­model­coefficients.37,38­In­ addition­to­the­number­of­model­components­(i.e.,­LVs),­ sparse­methods­also­require­the­level­of­sparsity­to­be­ optimised,­which­is­related­to­the­number­of­variables­ whose­coefficients­are­set­equal­to­zero­in­the­model.36,39 The­sparse-based­Soft­PLS-DA­models­were­optimised­ considering­a­maximum­number­of­LVs­equal­to­10­and­

(8)

a­number­of­variables­selected­for­each­LV­ranging­from­ 4­to­96­(with­a­step­equal­to­4).­For­each­node­of­the­ classification­tree,­the­best­combination­between­the­ number­of­LVs­and­the­number­of­selected­variables­ was­identified­by­maximising­the­NER­value­estimated­in­ cross-validation. Both­Soft­PLS-DA­and­sparse­Soft­PLS-DA­models­ were­validated­using­the­test­set­described­above. Image­elaboration­and­data­analysis­were­performed­ using­the­PLS_Toolbox­software­(ver.­8.5,­Eigenvector­ Research­Inc.,­USA)­and­ad hoc­routines­developed­in­the­ MATLAB­environment­(ver.­9.0,­The­MathWorks,­USA).­ The­MATLAB­routine­to­run­Soft­PLS-DA­algorithm­is­ freely­downloadable­from­http://www.chimslab.unimore. it/downloads/.

Results

Classification by Soft PLS-DA

Table­ 1­ and­ Table­ 2­ report­ the­ results­ obtained­ by­ applying­Soft­PLS-DA­algorithm­for­each­node­of­the­ classification­tree­and­considering­both­SNV­and­detrend­ as­row­preprocessing­methods.­For­each­model,­the­clas-sification­performances­have­been­evaluated­considering,­ for­each­single­class,­the­number­of­not-assigned­pixel­ spectra­and­SENS,­SPEC­and­EFF­values,­while­the­NER­ values­have­been­calculated­as­a­global­measure­over­all­ the­classes.­To­maintain­a­concise­presentation,­Table­1­ shows­only­the­NER­values­obtained­for­each­node­of­the­ classification­tree,­while­Table­2­reports­the­SENS­values­ of­all­the­considered­classes­in­each­node­of­the­tree.

SNV + mean centring Detrend + mean centring

LV CAL CV TS LV CAL CV TS NODE­1 3 91.8 87.7 98.4 5 86.1 86.0 84.9 NODE­2 2 94.3 93.6 100.0 5 93.9 92.4 91.1 NODE­3 5 94.7 89.5 100.0 2 97.0 94.7 59.6 NODE­4 4 90.3 90.2 98.9 6 87.7 83.9 98.1 NODE­5 5 90.6 82.9 100.0 2 90.7 85.1 99.9

Table 1. NER values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.

SNV + mean centring Detrend + mean centring

CAL CV TS CAL CV TS NODE­1 BACKGROUND 91.6 89.7 98.1 96.9 96.6 100.0 SAMPLE 91.9 85.7 98.6 75.3 75.5 69.9 NODE­2 PAPER 98.7 98.8 100.0 100.0 99.9 100.0 PE+PVC+PP 93.5 92.9 100.0 92.3 89.5 96.6 PS+PET 90.6 89.2 100.0 80.8 76.7 50.2 NODE­3 PET 95.2 85.9 100.0 95.4 97.4 76.2 PS 94.3 93.2 100.0 98.6 92.1 43.0 NODE­4 PE 89.8 87.7 99.7 86.2 82.8 97.7 PP 89.5 91.2 97.1 91.6 86.3 99.5 PVC 91.8 91.8 100.0 85.5 82.6 97.1 NODE­5 HDPE 86.6 84.5 100.0 81.8 76.5 99.8 LDPE 94.6 81.3 100.0 99.6 93.7 100.0

Table 2. SENS values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.

(9)

With­ few­ exceptions,­ SNV­ preprocessing­ method­ allowed­ better­ classification­ performances­ to­ be­ obtained­than­detrend,­both­in­cross-validation­and­in­ prediction­of­the­test­set.­Indeed,­in­Node­1,­Node­2­ and­Node­4­the­NER­values­obtained­in­cross-valida-tion­from­the­models­calculated­with­SNV­are­higher­ than­those­obtained­with­detrend,­and­these­results­ were­also­confirmed­from­the­prediction­of­the­external­ test­set.­Concerning­Node­3,­SNV­and­detrend­led­to­ similar­classification­performances­in­cross-validation,­ but­detrend­gave­a­lower­NER­value­in­prediction­of­the­ test­set;­in­particular­a­SENS­value­equal­to­43.0 %­was­ obtained­for­class­PS.­Therefore,­also­for­Node­3­SNV­ was­the­best­preprocessing­method,­since­it­resulted­ in­a­more­robust­classification­model.­Conversely,­in­ Node­5­the­two­preprocessing­methods­showed­similar­ performances­both­in­cross-validation­and­in­prediction­ of­the­test­set. Based­on­these­results,­SNV­can­be­identified­as­the­ optimal­preprocessing­method­for­all­the­five­nodes­of­ the­classification­tree.­Furthermore,­it­has­to­be­high-lighted­that­the­use­of­the­same­preprocessing­method­ for­each­node­of­the­classification­tree­represents­a­great­ advantage­from­the­computational­point­of­view.­Indeed,­ the­spectra­of­the­hyperspectral­images­can­be­row-preprocessed­only­once­after­image­acquisition,­and­the­ preprocessed­spectra­can­then­be­used­for­all­the­nodes­ of­the­classification­tree,­resulting­in­a­lower­computa-tional­effort. Figure­S3­of­the­Supplementary­Material­shows­the­ regression­vectors­of­the­classification­models­calculated­ for­each­node­of­the­tree­using­SNV­as­spectral­row­ preprocessing.­By­comparing­Figure­S3­with­Figure­1,­ which­reports­the­average­spectra­of­the­different­mate-rial­types,­it­is­possible­to­observe­that­for­each­node­ of­the­tree­the­relevant­variables,­i.e.­the­variables­with­ highest­absolute­values­of­the­regression­coefficients,­ generally­correspond­to­the­characteristic­wavelengths­ of­the­materials­considered­in­the­specific­classification­ problem.

Classification by Soft PLD-DA and

sparse-based variable selection

Since­SNV­was­the­optimal­row­preprocessing­method­ for­the­whole­classification­tree,­the­subsequent­vari-able­selection­step­by­means­of­sparse­Soft­PLS-DA­was­ performed­considering­only­SNV + mean centring­for­each­ node. Table­3­reports­the­classification­results­obtained­for­ the­five­nodes­of­the­classification­tree­expressed­in­ terms­of­NER­vales­as­a­global­measurement­of­the­classi-fication­performances­of­each­node,­while­Table­4­shows­ the­SENS­values­of­each­modelled­class. Comparing­Table­1­with­Table­3­and­Table­2­with­Table­ 4,­it­is­possible­to­observe­that,­generally,­variable­selec-tion­improved­the­classification­performances­and,­at­the­ same­time,­considerably­reduced­the­number­of­retained­ variables. The­higher­improvement­in­classification­performances­ was­ reached­ in­ Node­ 3­ with­ a­ NER­ value­ in­ cross-­ validation­equal­to­94.3 %­with­respect­of­a­NER­value­ equal­to­89.5 %­obtained­considering­the­full­wavelength­ LV No. variables CAL CV TS NODE­1 4 62 92.7 89.1 99.2 NODE­2 2 8 95.6 95.2 100.0 NODE­3 1 20 97.8 94.3 100.0 NODE­4 4 40 90.3 90.5 98.1 NODE­5 2 6 89.6 81.9 100.0

Table 3. NER values obtained with sparse-based variable selection coupled with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.

CAL CV TS NODE­1 BACKGROUND 92.5 90.5 98.9 SAMPLE 92.8 87.7 99.6 NODE­2 PAPER 100.0 99.8 100.0 PE+PVC+PP 94.6 94.6 100.0 PS+PET 92.3 91.3 100.0 NODE­3 PET 97.4 92.5 100.0 PS 98.2 96.1 100.0 NODE­4 PE 88.4 87.2 94.7 PP 91.9 93.1 99.5 PVC 90.7 91.3 100.0 NODE­5 HDPE 92.9 82.6 100.0 LDPE 86.3 81.3 100.0

Table 4. SENS values obtained with sparse-based variable selection coupled with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the test set (TS) for each node of the classification tree.

(10)

range.­In­addition,­by­considering­only­the­20­selected­ variables­in­Node­3,­all­the­test­set­spectra­were­correctly­ assigned. Node­2­is­the­node­with­the­lower­number­of­selected­ variables,­retaining­only­8­variables­out­of­the­96­original­ wavelengths.­Such­a­small­number­of­variables­enabled­ an­increase­in­the­classification­performances­for­all­the­ three­classes­modelled­in­Node­2­(PAPER,­PE+PVC+PP­ and­PS+PET),­maintaining­at­the­same­time­the­100.0 % of­correct­assignments­for­the­test­set. Conversely,­in­Node­5­variable­selection­led­to­a­slight­ decrease­of­the­classification­performances­in­cross-­ validation;­in­particular,­the­SENS­value­for­class­HDPE­is­ lower­than­what­obtained­with­the­full­wavelength­range­ (82.6 % vs 84.5 %).­Actually,­it­should­be­considered­that­ Node­5­deals­with­the­classification­of­HDPE­and­LDPE,­ which­are­derived­from­the­same­monomer,­and­the­ difference­between­these­two­polymers­is­only­related­ to­the­degree­of­branching.­Therefore,­it­is­reasonable­to­ assume­that,­for­the­discrimination­between­HDPE­and­ LDPE,­the­full­wavelength­range­provides­more­complete­ information.

Final implementation of the classification tree

Based­on­the­results­obtained­from­the­optimisation­of­ each­single­node,­the­different­classification­models­have­ been­assembled­together­in­order­to­obtain­the­final­ implementation­of­the­classification­tree,­which­is­sche-matised­in­Figure­3. The­proposed­tree-structured­classification­model­was­ applied­to­the­test­set­in­order­to­obtain­a­quantitative­ assessment­of­its­classification­performances.­During­the­ final­validation­of­the­model,­the­spectra­belonging­to­ the­other­types­of­non-recyclable­plastics­(class­OTHER)­ were­also­included­in­the­test­set­to­evaluate­the­ability­ of­Soft­PLS-DA,­and­of­its­sparse-based­extension,­to­ correctly­reject­spectra­not­belonging­to­the­modelled­ classes. The­results­are­summarised­in­Figure­4,­which­can­be­ seen­as­a­kind­of­graphical­representation­of­the­confu-sion­matrix­obtained­by­applying­the­classification­tree­to­ the­test­set.­Indeed,­each­point­in­the­graph­represents­ a­spectrum­of­the­test­set­and­it­is­coloured­according­to­ the­corresponding­actual­class,­while­the­position­of­the­ points­on­the­y-axis­is­based­on­the­class­predicted­from­ the­tree-structured­classification­model. The­same­results­are­also­reported­in­Table­5­in­terms­ of­SENS­and­SPEC­values­for­each­considered­class,­and­ of­NER­of­the­overall­tree-structured­model. Generally,­satisfactory­classification­results­have­been­ obtained­for­all­the­modelled­classes,­resulting­in­a­NER­ value­equal­to­98.4 %.­The­SENS­values­are­always­greater­ than­90 %,­and­for­PS­and­PVC­all­the­test­set­spectra­ have­been­correctly­predicted.

Figure 3. Final implementation of the tree-structured classification model for plastic waste sorting.

(11)

Concerning­the­results­expressed­in­terms­of­speci-ficity,­for­all­the­classes,­SPEC­values­close­to­1­were­ obtained,­indicating­that­the­classification­tree­correctly­ rejected­ the­ great­ part­ of­ spectra­ not­ belonging­ to­ the­considered­class.­Indeed,­Figure­4­shows­that­the­ majority­of­the­test­set­spectra­belonging­to­the­category­ of­other­plastics­(OTHER),­which­was­not­included­in­the­ classification­tree,­was­correctly­rejected­from­all­the­ considered­classes­and­thus­labelled­as­“not-assigned”­ (NA).­In­more­detail,­70.9 %­of­spectra­belonging­to­ class­OTHER­was­predicted­as­NA,­while­only­a­minority­ of­these­spectra­from­other­plastics­was­erroneously­ assigned­to­PET­and­PS­classes­(12.4 %­and­14.7 %, respectively). These­results­confirm­that­the­proposed­tree-­structured­ classification­model­is­able­to­effectively­recognise­the­ spectra­of­the­analysed­materials,­minimising­at­the­same­ time­possible­false­positives­due­to­spectra­belonging­to­ materials­that­were­not­considered­during­model­calibra-tion. Furthermore,­the­classification­tree­was­applied­to­the­ test­images,­i.e.­to­the­images­containing­objects­of­two­ different­materials,­in­order­to­evaluate­the­classification­ performances­at­the­pixel­level.­As­an­example,­Figure­5­ shows­the­prediction­images­obtained­from­the­hyper-spectral­images­containing­PP­+­PVC­(Figure­5A),­PAPER­ +­HDPE­(Figure­5B),­LDPE­+­OTHER­(Figure­5C)­and­PET­ +­PS­(Figure­5D).­In­order­to­facilitate­the­interpretation­ of­the­results,­the­RGB­images­of­the­corresponding­ waste­samples­have­also­been­included­together­with­the­ prediction­images.­In­the­prediction­images,­all­the­pixels­ predicted­as­belonging­to­a­defined­class­have­been­ coloured­according­to­the­legend.­In­particular,­grey­is­ associated­with­those­pixels­that­have­not­been­assigned­ to any class.

Based­ on­ the­ prediction­ images,­ it­ is­ possible­ to­ observe­that­the­majority­of­the­pixels­of­each­single­ object­are­correctly­assigned­to­the­corresponding­mate-rial­type.­Misclassifications­mainly­occur­at­the­edges­of­ the­objects­or­in­some­areas­of­the­background,­due­to­

Figure 4. Prediction results obtained from the final implementation of the tree-structured classification model.

HDPE LDPE PAPER PET PP PS PVC BACK SENS­% 99.9 92.1 96.7 99.8 99.5 100.0 100.0 98.9 SPEC­% 100.0 100.0 100.0 97.7 100.0 97.4 100.0 99.2

NER­% 98.4

Table 5. Results in prediction obtained by applying the classification tree to the test set. BACK is the abbre-viation for background.

(12)

the­noise­caused­by­specular­reflections­of­the­conveyor­ belt. In­more­detail,­in­Figure­5A­and­Figure­5D­all­the­pixels­ of­the­objects­depicted­in­the­images­are­correctly­classi-fied,­while­in­Figure­5B­the­pixels­of­the­larger­HDPE­bottle­ located­at­its­upper­edge­are­not­assigned.­Considering­ Figure­5C,­the­majority­of­the­pixels­of­the­LDPE­object­ are­correctly­assigned,­while­some­of­them­are­classified­ as­HDPE­or­not­assigned.­In­the­same­image,­the­objects­ made­of­plastic­polymers­not­included­in­the­classifica-tion­model­have­been­globally­not­assigned­to­any­class.

Conclusions

In­ practical­ applications­ of­ hyperspectral­ imaging­ to­ classification­aims,­e.g.­in­sorting­plants,­it­is­necessary­ to­implement­classification­methods­able­to­effectively­ handle­a­large­number­of­classes,­to­correctly­classify­ samples­belonging­to­the­considered­categories,­and­to­ correctly­recognise­and­reject­possible­foreign­objects. The­present­study­was­aimed­at­the­development­of­ a­classification­rule­for­the­discrimination­of­multiple­ categories­through­a­tree-structured­model,­in­which­ the­classification­at­each­node­was­performed­by­Soft­ PLS-DA,­an­extension­of­the­PLS-DA­algorithm.­The­ basic­engine­of­Soft­PLS-DA­is­the­same­as­PLS-DA,­but­ class­assignment­is­subjected­to­some­additional­criteria­ involving­the­calculation­of­further­thresholds­based­on­ Q­residuals­and­on­y­predictions.­These­additional­thresh-olds­allow­the­rejection­of­unknown­samples­which­are­ not­compliant­with­the­classes­of­interest. The­proposed­approach­was­tested­on­a­case­study­ related­to­the­discrimination­of­the­different­recyclable­

Figure 5. Prediction images and corresponding RGB images of the samples: PP+PVC (A), PAPER+HDPE (B), LDPE+OTHER (C) and PET+PS (D).

(13)

plastic­polymers­that­are­commonly­used­for­packaging.­ On­the­one­hand,­the­use­of­a­tree-structured­classifica-tion­model­allowed­eight­different­classes­to­be­efficiently­ handled,­a­situation­in­which­a­single­discrimination­step­ would­rarely­give­satisfactory­results.­On­the­other­hand,­ Soft­PLS-DA­proved­to­be­a­flexible­algorithm­thanks­to­ the­possibility­of­rejecting­foreign­objects,­whose­pres-ence­is­a­plausible­situation­in­recycling­plants,­since­it­is­ not­possible­to­completely­control­the­incoming­materials.­ Furthermore,­coupling­Soft-PLS-DA­with­a­sparse-based­ variable­selection­allowed­us­to­improve­the­classification­ performances­and­to­decrease­the­number­of­spectral­ variables,­reducing­at­the­same­time­the­computational­ efforts. The­external­validation­of­the­classification­tree­demon-strated­ the­ effectiveness­ of­ the­ proposed­ approach,­ reaching­a­NER­value­equal­to­98.4 %.­These­satisfactory­ results­were­also­confirmed­by­the­pixel-level­prediction­ performed­on­a­set­of­test­images. A­further­improvement­of­this­application­will­consist­ in­the­extension­of­the­prediction­from­a­pixel-level­to­an­ object-level­approach,­by­assigning­each­plastic­sample­ to­a­defined­class­based­on­the­class­attribution­of­the­ majority­of­its­pixels.­In­the­specific­case­under­inves-tigation,­this­task­can­be­accomplished­by­coupling­the­ hyperspectral­camera­with­an­RGB­camera­for­object­ shape­detection.­Indeed,­the­much­higher­spatial­reso-lution­of­RGB­imaging­could­allow­to­better­define­the­ edges­of­each­imaged­object,­to­identify­labels­partly­ covering­the­samples,­and­to­further­classify­the­samples­ of­a­given­plastic­material­based­on­its­colour.

Acknowledgements

The­ authors­ acknowledge­ financial­ support­ for­ this­ research­by­CNIGROUP­–­Vision­systems­business­unit­ through­the­POR-FESR­2014-2020­project­RICIPLA.­The­ authors­also­wish­to­thank­Philipp­Haumann­and­Edoardo­ Covertino­(CNIGROUP­–­Vision­systems­business­unit,­ Alfonsine,­Italy)­for­the­help­during­image­acquisition­and­ for­technical­support.

References

1.­ A.­Gowen,­C.­O’Donnell,­P.J.­Cullen,­G.­Downey­ and­J.M.­Frias,­“Hyperspectral­imaging–an­emerging­ process­analytical­tool­for­food­quality­and­safety­ control”,­Trends Food Sci. Technol. 18(12),­590­(2007).­ doi:­https://doi.org/10.1016/j.tifs.2007.06.001 2.­ Y.Y.­Pu,­Y.Z.­Feng­and­D.W.­Sun,­“Recent­progress­

of­hyperspectral­imaging­on­quality­and­safety­ inspection­of­fruits­and­vegetables:­a­review”,­

Compr. Rev. Food Sci F. 14(2),­176­(2015).­doi:­

https://doi.org/10.1111/1541-4337.12123 3. C. Ferrari, G. Foca, R. Calvini and A. Ulrici, “Fast

exploration­and­classification­of­large­hyperspectral­ image­datasets­for­early­bruise­detection­on­apples”,­

Chemometr. Intell. Lab. Syst. 146,­108­(2015).­doi:­

https://doi.org/10.1016/j.chemolab.2015.05.016 4.­ G.­ElMasry,­F.D.­Barbin,­D.W.­Sun­and­

P.­Allen,­“Meat­quality­evaluation­by­hyper-spectral­imaging­technique:­an­overview”,­Crit.

Rev. Food Sci. Nutr. 52(8),­689­(2012).­doi:­

https://doi.org/10.1080/10408398.2010.507908 5.­ K.­Sendin,­P.J.­Williams­and­M.­Manley,­“Near­

infrared­hyperspectral­imaging­in­qual-ity­and­safety­evaluation­of­cereals”,­Crit.

Rev. Food Sci. Nutr. 58(4),­575­(2018).­doi:­

https://doi.org/10.1080/10408398.2016.1205548 6.­

E.­Dufour,­“Recent­advances­in­the­analy-sis­of­dairy­product­quality­using­methods­ based­on­the­interactions­of­light­with­mat-ter”,­Int. J. Dairy Technol. 64(2),­153­(2011).­doi:­

https://doi.org/10.1111/j.1471-0307.2010.00665.x 7.­ Y.­Roggo,­A.­Edmond,­P.­Chalus­and­

M.­Ulmschneider,­“Infrared­hyperspectral­imag-ing­for­qualitative­analysis­of­pharmaceutical­ solid­forms”,­Anal. Chim. Acta 535,­79­(2005).­doi:­

https://doi.org/10.1016/j.aca.2004.12.037 8.­ A.A.­Gowen,­C.P.­O’Donnell,­P.J.­Cullen­and­

S.E.J.­Bell,­“Recent­applications­of­chemical­imaging­ to­pharmaceutical­process­monitoring­and­quality­ control”,­Eur. J. Pharm. Biopharm. 69(1), 10 (2008). doi:­https://doi.org/10.1016/j.ejpb.2007.10.013 9.­

J.M.­Amigo,­“Practical­issues­of­hyperspec-tral­imaging­analysis­of­solid­dosage­forms”,­

Anal. Bioanal. Chem. 398,­93­(2010).­doi:­

https://doi.org/10.1007/s00216-010-3828-z 10.­A.­Ulrici,­S.­Serranti,­C.­Ferrari,­D.­Cesare,­

G.­Foca­and­G.­Bonifazi,­“Efficient­chemomet-ric­strategies­for­PET–PLA­discrimination­in­ recycling­plants­using­hyperspectral­imaging”,­

Chemometr. Intell. Lab. Syst. 122,­31­(2013).­doi:­

(14)

11.­P.­Tatzer,­M.­Wolf­and­T.­Panner,­“Industrial­appli- cation­for­inline­material­sorting­using­hyperspec-tral­imaging­in­the­NIR­range”,­Real-Time Imaging 11(2),­99­(2005).­doi:­https://doi.org/10.1016/j. rti.2005.04.003 12.­R.­Palmieri,­G.­Bonifazi­and­S.­Serranti,­“Recycling-oriented­characterization­of­plastic­frames­and­ printed­circuit­boards­from­mobile­phones­by­elec-tronic­and­chemical­imaging”,­Waste Manag. 34(11), 2120­(2014).­doi:­ https://doi.org/10.1016/j.was-man.2014.06.003 13.­J.M.­Amigo,­H.­Babamoradi­and­S.­Elcoroaristizabal,­ “Hyperspectral­image­analysis.­A­tutorial”,­Anal. Chim.

Acta 896,­34­(2015).­doi:­https://doi.org/10.1016/j.

aca.2015.09.030

14.­P.­Paclik,­R.­Leitner­and­R.P.W.­Duin,­“A­study­on­

design­of­object­sorting­algorithms­in­the­industrial­ application­using­hyperspectral­imaging”,­J.

Real-Time Image Proc. 1(2),­101­(2006).­doi:­https://doi.

org/10.1007/s11554-006-0018-5 15.­L.­Eriksson,­J.­Trygg­and­S.­Wold,­“PLS‐trees®, a top‐down­clustering­approach”,­J. Chemometr. 23(11), 569­(2009).­doi:­https://doi.org/10.1002/cem.1254 16.­K.H.­Liland,­A.­Kohler­and­V.­Shapaval,­“Hot­PLS—a­ framework­for­hierarchically­ordered­taxonomic­ classification­by­partial­least­squares”,­Chemometr.

Intell. Lab. Syst. 138,­41­(2014).­doi:­https://doi.

org/10.1016/j.chemolab.2014.07.010

17.­W.­Song,­H.­Wang,­P.­Maguire­and­O.­Nibouche,­

“Nearest­clusters­based­partial­least­squares­discrimi-nant­analysis­for­the­classification­of­spectral­data”,­

Anal. Chimica Acta 1009,­27­(2018).­doi:­https://doi.

org/10.1016/j.aca.2018.01.023

18.­S.­Chevallier,­D.­Bertrand,­A.­Kohler­and­P.­Courcoux,­

“Application­of­PLS‐DA­in­multivariate­image­analy-sis”,­J. Chemometr. 20(5),­221­(2006).­doi:­https://doi. org/10.1002/cem.994

19.­M.­Barker­and­W.­Rayens,­“Partial­least­squares­for­

discrimination”,­J. Chemometr. 17(3),­166­(2003).­doi:­

https://doi.org/10.1002/cem.785

20.­N.F.­Pérez,­J.­Ferré­and­R.­Boqué,­“Calculation­of­

the­reliability­of­classification­in­discriminant­par-tial­least-squares­binary­classification”,­Chemometr.

Intell. Lab. Syst. 95(2),­122­(2009).­doi:­https://doi.

org/10.1016/j.chemolab.2008.09.005 21.­P.­Oliveri,­“Class-modelling­in­food­analytical­

chemistry:­Development,­sampling,­optimisa-tion­and­validation­issues–A­tutorial”,­Anal. Chim.

Acta 982,­9­(2017).­doi:­https://doi.org/10.1016/j.

aca.2017.05.013 22.­S.­Wold,­“Pattern­recognition­by­means­of­disjoint­ principal­components­models”,­Pattern Recognit. 8(3),­127­(1976).­doi:­ https://doi.org/10.1016/0031-3203(76)90014-5 23.­Y.­Zheng,­J.­Bai,­J.­Xu,­X.­Li­and­Y.­Zhang,­“A­dis-crimination­model­in­waste­plastics­sorting­using­ NIR­hyperspectral­imaging­system”,­Waste Manag. 72,­87­(2018).­doi:­ https://doi.org/10.1016/j.was-man.2017.10.015 24.­G.­Bonifazi,­G.­Capobianco­and­S.­Serranti,­“A­hier-archical­classification­approach­for­recognition­ of­low-density­(LDPE)­and­high-density­polyeth-ylene­(HDPE)­in­mixed­plastic­waste­based­on­ short-wave­infrared­(SWIR)­hyperspectral­imaging”,­

Spectrochim. Acta A 198,­115­(2018).­doi:­https://doi.

org/10.1016/j.saa.2018.03.006

25.­P.­Geladi­and­B.R.­Kowalski,­“Partial­least-squares­

regression:­a­tutorial”,­Anal. Chim. Acta 185, 1 (1986).­doi:­ https://doi.org/10.1016/0003-2670(86)80028-9

26.­A.­Höskuldsson,­“PLS­regression­methods”,­

J. Chemometr. 2(3),­211­(1988).­doi:­https://doi.

org/10.1002/cem.1180020306

27.­D.­Ballabio­and­V.­Consonni,­“Classification­tools­

in­chemistry.­Part­1:­linear­models.­PLS-DA”,­

Anal. Methods 5,­3790­(2013).­doi:­https://doi.

org/10.1039/c3ay40582f

28.­O.Y.­Rodionova,­A.V.­Titova­and­A.L.­Pomerantsev,­

“Discriminant­analysis­is­an­inappropriate­method­ of­authentication”,­TrAC Trends Anal. Chem. 78,­17­(2016).­doi:­https://doi.org/10.1016/j. trac.2016.01.010 29.­A.L.­Pomerantsev­and­O.Y.­Rodionova,­“Multiclass­ partial­least­squares­discriminant­analysis:­Taking­ the­right­way—A­critical­tutorial”,­J. Chemometr. 32, 3030­(2018).­doi:­https://doi.org/10.1002/cem.3030 30.­C.­Botella,­J.­Ferré­and­R.­Boqué,­“Classification­ from­microarray­data­using­probabilis-tic­discriminant­partial­least­squares­with­ reject­option”,­Talanta 80,­321­(2009).­doi:­ https://doi.org/10.1016/j.talanta.2009.06.072 31.­J.E.­Jackson­and­G.S.­Mudholkar,­“Control­proce- dures­for­residuals­associated­with­principal­com-ponent­analysis”,­Technometrics 21,­341­(1979).­doi:­ https://doi.org/10.1080/00401706.1979.10489779

(15)

32.­ASTM­D7611­/­D7611M-13e1,­Standard

Practice for Coding Plastic Manufactured Articles for Resin Identification.­ASTM­International,­

West­Conshohocken,­PA,­USA­(2013).­

https://www.astm.org

33.­D.­Ballabio,­F.­Grisoni­and­R.­Todeschini,­

“Multivariate­comparison­of­classifica-tion­performance­measures”,­Chemometr.

Intell. Lab. Syst. 174,­33­(2018).­doi:­

https://doi.org/10.1016/j.chemolab.2017.12.004 34.­K.A.­Lê­Cao,­S.­Boitard­and­P.­Besse,­“Sparse­PLS­

discriminant­analysis:­biologically­relevant­feature­ selection­and­graphical­displays­for­multiclass­ problems”,­BMC bioinformatics 12,­253­(2011).­doi:­

https://doi.org/10.1186/1471-2105-12-253

35.­E.­Szymańska,­E.­Brodrick,­M.­Williams,­A.N.­Davies,­

H.J.­van­Manen­and­L.M.­Buydens,­“Data­size­reduc-tion­strategy­for­the­classification­of­breath­and­air­ samples­using­multicapillary­column-ion­mobility­ spectrometry”,­Anal. Chem. 87(2),­869­(2015).­doi:­

https://doi.org/10.1021/ac503857y

36.­R.­Calvini,­A.­Ulrici­and­J.M.­Amigo,­“Practical­

comparison­of­sparse­methods­for­classifica-tion­of­Arabica­and­Robusta­coffee­species­ using­near­infrared­hyperspectral­imaging”,­

Chemometr. Intell. Lab. Syst. 146,­503­(2015).­doi:­

https://doi.org/10.1016/j.chemolab.2015.07.010 37.­P.­Filzmoser,­M.­Gschwandtner­and­V.­Todorov,­

“Review­of­sparse­methods­in­regression­and­ classification­with­application­to­chemo-metrics”,­J. Chemometr. 26,­42­(2012).­doi:­

https://doi.org/10.1002/cem.1418

38.­M.A.­Rasmussen­and­R.­Bro,­“A­tutorial­on­

the­Lasso­approach­to­sparse­modeling”,­

Chemometr. Intell. Lab. Syst. 119,­21­(2012).­doi:­

https://doi.org/10.1016/j.chemolab.2012.10.003 39.­R.­Calvini,­J.M.­Amigo­and­A.­Ulrici,­“Transferring­

results­from­NIR-hyperspectral­to­NIR-multispectral­ imaging­systems:­a­filter-based­simulation­applied­to­ the­classification­of­Arabica­and­Robusta­green­cof-fee”,­Anal. Chimica Acta 967,­33­(2017).­doi:­https:// doi.org/10.1016/j.aca.2017.03.011

Highlighting­Young­Investigators

In­this­series­we­are­highlighting­the­contributions­of­young­researchers­who­are­leading­exciting­new­research­ paths­in­Spectral­Imaging.­Contributors,­primarily­PhD­students­or­Postdoctoral­researchers­under­the­age­of­40,­ are­selected­by­the­editorial­board,­based­on­having­published­or­presented­substantially­novel­research­in­Spectral­ Imaging.­Nominations­will­be­accepted­and­should­include­a­statement­(no­longer­than­one­page)­on­the­researcher’s­ novel­research­in­Spectral­Imaging,­along­with­a­CV.­Please­send­nominations­to­JSI’s­Editor-in-Chief,­Aoife­Gowen­ ([email protected]). Dr Rosalba Calvini­was­born­in­Genova­(Italy)­in­1988.­She­obtained­her­PhD­(cum­laude)­ in­Agri-Food­Sciences­Technologies­and­Biotechnologies­in­2017,­defending­a­thesis­titled­ “Chemometric­tools­for­food­characterization­through­RGB­and­hyperspectral­imaging”.­ Since­2017,­she­has­been­a­post-doctoral­researcher­at­the­Department­of­Life­Sciences,­ University­of­Modena­and­Reggio­Emilia. Her­research­interests­include­the­application­and­development­of­chemometric­algo-rithms­for­hyperspectral­and­digital­image­analysis­with­a­focus­on­variable­selection­and­ data­dimensionality­reduction,­the­use­of­spectroscopy­(mainly­NIR­spectroscopy)­for­the­ characterisation­of­raw­materials­or­complex­food­matrices,­and­the­application­of­data­fusion­strategies­for­the­joint­ analysis­of­data­deriving­from­different­analytical­instrumentations. She­has­co-authored­multiple­papers­in­international­peer-reviewed­scientific­journals­and­presented­the­results­of­ her­research­activities­in­several­national­and­international­conferences.­She­has­been­involved­in­teaching­chemo-metrics­applied­to­image­analysis­in­PhD­and­professional­courses.­She­has­been­co-supervisor­of­multiple­thesis­for­ the­MSc­in­Food­Control­and­Security­(University­of­Modena­and­Reggio­Emilia)­and­of­one­PhD­thesis­in­Agri-Food­ Sciences,­Technologies­and­Biotechnologies.

Figura

Figure 1. Average spectra of each material type calculated from training and test sets without any pre- pre-processing (A and B), and after SNV (C and D) and detrend (E and F) as data prepre-processing.
Figure 2. Tree-structured classification models.
Table 2. SENS values obtained with Soft PLS-DA in calibration (CAL), cross-validation (CV) and prediction of the  test set (TS) for each node of the classification tree.
Table 4. SENS values obtained with sparse-based variable  selection coupled with Soft PLS-DA in calibration (CAL),  cross-validation (CV) and prediction of the test set (TS) for  each node of the classification tree.
+3

Riferimenti

Documenti correlati

Impact on output using approximate SRAM with bit dropping 132 5.4 Quality aware approximate memories, an example application on dig- ital FIR

In line with previous research, the findings of this study confirm, even in the group of Italian participants, that (a) there is a connection between attitudes toward

Il cyberspazio diviene allora il luogo ideale per la deflagrazione della scintilla interiore, cassa di risonanza del patrimonio innato dell’intero genere umano, capitale

To understand if non-detections imply instead the presence of a high- energy cutoff in the prompt spectrum, one simple method consists in extrapolating the best fit spectral model

Infinitesimal variations of Hodge structures for cubic threefolds We are concerned here with infinitesimal variations of Hodge structures for the cubic threefold V and for

Uno slancio decisivo alla New Dance inglese viene dato, nel 1978 dalla rassegna internazionale di danza nota col nome di Dance Um- brella, vetrina, per molti anni,

Figure 14: Distribution of Y -vorticity and in-plane velocity vectors in the mixing channel cross-section at Y = −1.3 predicted with (a) Fluent and (b) Nek5000.. However, the flow

sloping piece of land. Relative to the latter, the oratory’s ceiling is at a height of about 6.50m. On its western side, the oratory shares a border with the rectory. The building