• Non ci sono risultati.

Measurement of the production of high-pT electrons from heavy-flavour hadron decays in Pb–Pb collisions at sNN=2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the production of high-pT electrons from heavy-flavour hadron decays in Pb–Pb collisions at sNN=2.76 TeV"

Copied!
15
0
0

Testo completo

(1)

.ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received24October2016

Receivedinrevisedform12April2017 Accepted24May2017

Availableonline29May2017 Editor:L.Rolandi

Electronsfromheavy-flavourhadrondecays(charmandbeauty)weremeasuredwiththeALICEdetector in Pb–Pb collisions at acentre-of-mass of energy √sNN=2.76 TeV. The transverse momentum(pT)

differentialproductionyieldsatmid-rapiditywereusedtocalculatethenuclearmodificationfactorRAA

intheinterval3<pT<18 GeV/c.The RAA showsastrong suppressioncomparedtobinaryscalingof

ppcollisionsatthesameenergy(uptoafactorof4)inthe10%mostcentralPb–Pb collisions.Thereis acentralitytrendofsuppression,andaweaker suppression(downtoafactorof2)insemi-peripheral (50–80%)collisionsisobserved.ThesuppressionofelectronsinthisbroadpTintervalindicatesthatboth

charmandbeautyquarksloseenergywhentheytraversethehotmediumformedinPb–Pbcollisionsat LHC.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

High-energyheavy-ioncollisions providea uniqueopportunity tostudy theproperties ofthe hot anddense strongly-interacting systemcomposed ofdeconfined quarks andgluons – the quark-gluonplasma(QGP).TheformationofaQGPispredictedbylattice QCDcalculations[1–4].Acrossovertransitionfromhadronic mat-teratzerobaryochemical potentialisexpectedtotakeplaceonce thesystemtemperaturereachesvaluesaboveT

155MeVand/or theenergy densityabove

ε

0.5 GeV/fm3 [5,6].To characterise thephysical propertiesof thisshort-lived QGP(lifetime of about 10 fm/c[7])experimentalstudiesuseauto-generatedprobes,such as high-energy partons created early in the collision, thermally emittedphotons, andparticle correlationssensitiveto the collec-tiveexpansionandthedynamicsofthesystem.

Inparticular,the interactionofhigh-pT partonswiththe QGP, leadingto modifications oftheinternal jet structure (jet quench-ing),wasfirstproposedin[8]andisstudiedasasensitiveprobeof themediumproperties[9].Jetquenchingwasfirstobserved exper-imentallyviathestrongsuppressionofhightransversemomentum particleproductioninheavy-ioncollisionsattheRelativisticHeavy IonCollider(RHIC) [10–13].Similar observationshave sincebeen reportedby the Large HadronCollider (LHC) experiments at col-lision energies larger by one order of magnitude with hadrons

[14–16]andextendedtofullyreconstructedjets[17–19].

Heavyflavours(charmandbeauty)aresensitivetoolsfor stud-ies of the in-medium parton energy loss, providing qualitatively

 E-mailaddress:alice-publications@cern.ch.

different sensitivity to the medium properties as compared to gluonorlight-quarkinducedjets[20,21].Theproductionofheavy quarksiswellunderstoodintermsoftheperturbativeQCD(pQCD) formalism. Good agreement between the theoretical calculations and measurements of various heavy-flavour particle production cross sections in hadronic collisions is established over a wide rangeofcentre-of-mass energies fromRHIC [22–24],through the Tevatron[25–27]totheLHC[28–32].

Interactions between partons and the medium can occur via both inelastic (radiative parton energy loss) [33–35] and elastic (collisionalenergyloss)[36–39]processesthatdependonthe par-tontype andthepropertiesofthemedium. Theinteractionswith the medium modify the radiation pattern of the shower by in-ducing longitudinal drag (and associated longitudinal diffusion), transversediffusion,andenhancedsplittingofthepropagating par-tons.Onaverage,foragivenpartonenergy,gluonsareexpectedto losemoreenergythanquarksduetothedifferenceintheCasimir colour factor[40] controllingthe strength of thecoupling to the coloured medium. Moreover, the energy loss is predicted to de-pend onthe mass ofthe quark [41–45]. Inparticular, forquarks withenergies comparableto their massthe radiativeenergy loss isexpectedto besmaller thanformorehighly-energetic partons. Consequentlytherelativeroleofelasticprocessesforheavyquarks is enhanced andthe heavy quarks of moderate energies are ex-pected to be moresensitive, ascompared to light quarks, to the longitudinal drag and diffusion coefficients[39] that are propor-tional to the inverse of the mass of the parton. Moreover, as a result of multiple elastic collisions and possible in-medium res-onant interactions within the hot matter, low-momentum heavy quarkscouldreachthermalisationinthemedium[46].

http://dx.doi.org/10.1016/j.physletb.2017.05.060

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

The predicted hierarchy of energy loss

E

g

> E

light-q

>

E

charm

> E

beauty [41] motivated experimental studies of the suppression patterns of heavy-flavour hadrons and their decay products.Uptonowthein-mediumenergylossofheavy flavours at the LHC has been studied via open charm measurements of prompt D mesons [47,48], heavy-flavour decay muon measure-ments at forward rapidity [31], non-prompt J

, and measure-ments ofb-jet production[49].At RHIC the nuclearmodification of heavy-flavour production has been studied via its semilep-tonic decays [50,51] and via measurements of D mesons [52]. The measurement that we report covers the electron (electron andpositron) pT interval 3–18 GeV/c,probing athigh pT the in-medium interaction of b quarks with momentum of a few tens of GeV/c.

The modifications of particle yields are quantified using the nuclear modificationfactor RAA. It isconstructed by dividingthe

pT-differentialyieldinnucleus–nucleus(AA)collisions,dNAA

/

dpT, by thecrosssection inpp collisions, dσpp

/

dpT, scaledby the av-erage of the nuclear overlap function



TAA



for the considered centralityclass[53]

RAA

=

dNAA

/

dpT



TAA



d

σ

pp

/

dpT

.

(1)

Byconstruction, RAA isunitywhennonucleareffectsarepresent.

RAA values consistent withunity havebeen measured forcolour neutralparticles (direct photons, W and Z bosons) inPb–Pb col-lisions at

sNN

=

2

.

76 TeV [54–58] as well as for charged par-ticlesand heavy-flavourproductionin p–Pb collisionsat

sNN

=

5

.

02 TeV[59–61].

This paper reports on the suppression (RAA

<

1) of electrons fromsemi-leptonicdecaysofcharmandbeautyhadronsmeasured at high-transverse momentum (pT

>

3 GeV

/c)

at mid-rapidity (

|

y

|

<

0

.

6) inPb–Pb collisions at

sNN

=

2

.

76 TeV using the AL-ICEdetector.Thesuppressionismeasuredasafunctionofcollision centralityandpT intheinterval3

<

pT

<

18 GeV/c.Thenexttwo sectionsofthepaperdefinetheexperimentalsetupandthe analy-sisdetailstogetherwiththediscussionofsystematicuncertainties on the measured electron spectra. The electron yields measured in bins of centrality defined as fractions of the total hadronic cross-section of Pb–Pb collisions are then presented. Finally the pT-differentialRAAinthe0–10%,10–20%,20–30%,30–40%,40–50% and50–80%centralityclassesarepresentedandcomparedtothe measurementof muonsfromheavy-flavour hadrondecaysat for-wardrapidities[31]aswellastocalculationsofin-mediumenergy lossofheavyquarks.

2. Apparatus,datasampleandanalysis

2.1. Detectorsetup

The measurements were carriedout using theALICE detector at the LHC [62] with Pb-ion beams at a centre-of-mass energy of

sNN

=

2

.

76 TeV. A complete description of the experimen-tal setup and theperformance ofdetectors can be found in[63, 64]. Particle track reconstruction and particle identification were performedbased on informationfromthe Inner Tracking System (ITS), the Time Projection Chamber (TPC), and the Electromag-neticCalorimeter(EMCal),locatedinsideasolenoidmagnet,which generates a 0

.

5 T field parallel to the beamdirection. The event centrality determination was based on the signals from the V0 detector, which is a set of scintillator arrays. Moreover, the V0 detectortogether withtheneutronZero-DegreeCalorimeters(ZN) wasusedfortriggeringandbeambackgroundrejection.

TheITSiscomposedofsixcylindricallayers:twoSiliconPixel Detectors(SPD),twoSiliconDriftDetectors(SDD),andtwoSilicon

StripDetectors(SSD).TheSPDbarrelconsistsofstavesdistributed intwolayersaroundthebeampipeatradiusof3.9cmand7.6 cm, covering a length of 28.2 cm in the z direction. The outermost layeroftheITS(SSD)islocated43cmfromthebeamaxis.

The TPC witha radial extent of 85–247 cm, enables charged particletrackingbeyondtheITSandparticleidentificationviathe measurementoftheparticlespecific ionisationenergylosswithin theNe–CO2 gasmixture.TheTPCprovidesupto159independent spacepointsperparticletrack.

ChargedparticletracksarereconstructedintheTPCfrom pT

0

.

15 GeV/c,

|

η

|

<

0

.

9 andfullazimuth.UsingtheITSandTPCspace points the particlemomentum is determinedfromthe combined trackfitwitharesolutionofabout1%at1 GeV

/c and

about3%at 10 GeV

/c

[64].

The front face of the EMCal is positioned at about 450 cm fromthebeamaxisintheradial directionandthedetectoris ap-proximately 110 cmdeep.The detectorisalayeredPb-scintillator samplingcalorimetercovering107degreesinazimuthanda pseu-dorapidityregion

|

η

|

<

0

.

7.Thecalorimeterdesignincorporateson average a moderateactive volume densitythat results ina com-pactdetectorofabout20radiationlengths.

The V0 detectorconsists of two arrays of 32 scintillator tiles placedatdistances z

=

3

.

4 m(V0-A)andz

= −

0

.

9 m(V0-C)from the nominalinteraction point. V0-A and V0-C cover the full az-imuth, andpseudorapidity intervalsof 2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

7, respectively. The detector was used for triggering and eventcentralitydetermination.

TheZNaretwoidenticalsetsofforwardhadroniccalorimeters whicharelocatedonbothsidesrelativetotheinteractionpointat z

114 m.

2.2. Eventsampleandtrigger

The data sample used forthis analysiswas collected in 2011 anditconsistsof14

·

106 mostcentralcollisions(0–10%)and13

·

106 semi-central collisions (10–50%) recorded witha minimum-bias trigger, and 3

.

2

·

106 collisions (0–90%) triggered with the EMCal. The minimum-bias trigger was a coincidence of signals from the V0-A and V0-C detectors. The timing resolution of the V0systemisbetterthan1nsanditprovidesanefficient discrim-ination ofthe beam–beamcollisions fromthe backgroundevents produced upstream of the experiment. Additional suppression of thebackgroundwasprovidedbytiminginformationfromtheZDC. The minimum-bias triggerincluded two trigger classesfor most-centralandsemi-centralcollisions, whichwere selectedonlineby applyingthresholdsontheV0signalamplitudes.

TheEMCalprovidestwohierarchically-configuredtriggerlevels (Level-0andLevel-1).Forthisanalysisthedatawererecordedwith the L1 trigger in coincidence withthe V0 minimum-bias trigger. ThetriggerlogicoftheLevel-1triggeremployedaslidingwindow algorithm of 4

×

4 towers with a sliding step of 2 towers along either of the surface axes. An event was rejected unlessthe en-ergy summed within atleast one set of the 16 adjacent towers was greater than a threshold.Additionally, the trigger logic was configured to adjust the online threshold accordingto the event centralityestimatedfromtheanaloguesumoftheV0detector sig-nals. Thethresholdwas adjustedsuch thatthe rejectionratewas approximately constant asa function ofthe eventcentrality. The thresholdsvariedfrom7 GeVin10%mostcentraleventsto2 GeV inthemostperipheralevents.

Theofflineselectionretainedonlyeventswherethecoordinate of thereconstructed vertexalong the beamdirectionwas within

±

10 cm around the nominal interaction point. The eventvertex reconstructionisfullyefficientfortheeventcentralitiesconsidered inthisanalysis.

(3)

Fig. 1. Triggerturn-oncurves:theratioofinclusiveelectronsinEMCaltriggeredeventstominimum-biaseventsasafunctionofassociatedtrackpTincentralitybinsbetween

0%and50%.ThelowerrightpanelshowsasimilarratioobtainedwithEMCalclustersforcentrality50–80%.ThepTfromwhichthespectrafromtheminimum-biastrigger

totheEMCaltriggerareusedareindicatedwithblackdashedlines.Thescalingfactorswhichwereobtainedbyfits(redlines)aresummarised inTable 1.(Forinterpretation ofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Collisions were classified into different centrality classes in termsofpercentilesofthehadronicPb–Pb crosssectionusingthe signalamplitudesintheV0detector.Theeventcentralitywas re-latedtothenuclearoverlapfunctionTAAviaaGlaubermodel[65]. Detailsonthecentralitydeterminationcanbefoundin[53].

Toobtaintheinclusiveelectronspectrautilising minimumbias and EMCal triggers, in each centrality class, the per-event yield ofelectrons from the EMCal triggered sample was scaled to the minimum-bias yield by normalisation factors determined with a data-drivenmethod.Fig. 1showstheratioofpT-differentialyields oftheelectroncandidatetracksfromtheEMCaltriggered sample totheminimum-biastriggersampleasafunctionofthetrack pT. Theelectroncandidateswereselectedbasedontheionisation en-ergy loss in the TPC gas and the ratio of the EMCal cluster en-ergyandthemomentum oftheparticle track(detailsofelectron identificationare givenin the next section). Because of the lim-itedelectronyieldinthesemi-peripheraleventclass(50–80%)the correction for the trigger enhancement in that interval was ob-tained asthe ratio of the energy distributions of EMCal clusters forthetwotriggertypes(showninpanel (f)ofFig. 1).The inclu-sive pT spectrumofelectronsisformed bytheelectronspectrum fromminimum-biaseventsbelowthetriggerplateau(indicatedby dashedlinesinFig. 1)andthespectrum measuredwithonlythe EMCal trigger inthe plateauregion. The difference in the shape ofthecurvesinFig. 1for pT belowtheplateauisaconsequence oftheparticlemixturecontributingtotheEMCalclustersand re-sponseof theEMCal to chargedhadrons. The scaling factors and the transition from the minimum-bias sample to the triggered sample were determined by fits with a constant to the high-pT plateauregions.Thescalingfactorsforallcentralityclassesaswell as the pT at which the switch from the minimum-bias to the EMCaltriggerspectraoccursaresummarised inTable 1.The uncer-taintyonthefactors(also reportedinTable 1)wasobtainedfrom theindividual fitsandthereforeit isdriven bythe statistical un-certaintyofthemeasuredspectra.Thescalingfactorswithin cen-tralities0–50% were extractedusing theelectron tracks, whereas for centralities larger than 50% the spectrum of EMCal clusters is used. The relative difference in the scaling factors depending on whether electrons or clusters were selected was studied and shownto bebelow8.5%.Thisdifferencewas includedinthe

sys-Table 1

SummaryforcentralitydependenceoftheEMCaltriggerscalingfactor.Middle col-umn:trigger scaling factors(togetherwith their absolutestatisticaluncertainty) extractedfromtheratioofelectrons(orEMCalcluster) pTspectrainEMCal

trig-geredandminimum-biasevents.Rightcolumn:particle pTatwhichthespectrum

measuredinminimum-biaseventsandEMCaltriggeredeventsareswitchedtoform theinclusiveelectronpTspectrum.Seetextfordetails.

Centrality Scaling factor PlateauabovepT

(GeV/c) 0–10% 38±2.2 9 10–20% 32±3.5 9 20–30% 35±2.9 8 30–40% 34±2.5 6 40–50% 41±5.2 6 50–80% 89±3.5 6

tematicuncertaintyof themeasurement forall centralityclasses.

Table 1correspondstoFig. 1. 2.3. Electronreconstruction

Forthereconstructionofelectronsinthisanalysistrackswitha minimum of 100out of 159possible TPC space points were re-tained. In addition, tracks were selected using their distance of closestapproach(DCA)totheprimaryvertex.Acceptedtrackswere within

|

DCAxy

|

<

2

.

4 cm in the transverse plane and

|

DCAz

|

<

3

.

2 cm along the beam axis. Furthermore, the tracks were se-lected within a fiducial pseudorapidity acceptance of

|

η

|

<

0

.

6. Each track was required to contain at least one point measured in theSPDandat leastthree hitsout ofthe maximumof sixin theITS.Moreover,theelectroncandidateswereselectedby apply-ingacutonthespecificionisationenergyloss(dE

/

dx)withinthe TPC. ThemeasureddE

/

dx wasrequiredtobe between

1 to3σ, where

σ

isdE

/

dx resolution, fromthe expectedmean of dE

/

dx forelectrons.Thisselectionishereafterindicatedas

1

<

nTPC

σ

<

3. ThetracksextrapolatedtothesensitivevolumeoftheEMCalwere matchedwithaclusterifthecluster-trackresidualinazimuthand pseudorapidity was within awindow of

|

ϕ

|

<

0

.

05 and

|

η

|

<

0

.

05.Suchmatching criteriacorresponds to aneffectiveradius of about6 timeslarger thanthe effectiveMoliere radius forEMCal, thusitisfullyefficientforelectrontrackswithpT

>

2 GeV

/c.

(4)

Fig. 2. Left: TheratioofE/p asafunctionofnTPC

σ in10%mostcentralPb–Pbevents(pT>3 GeV/c),wherep isthechargedparticlemomentum,E isthematchedEMCal

clusterenergy,andσTPCistheresolutionontheenergylossintheTPCgasexpectedforelectrons.Right: E/p forelectronsintwotransversemomentumranges.Theblue

opensymbolsshowsthehadroncontamination–anE/p distributionforparticles3.5σ awayfromthemeanofthetrueelectronTPC-dE/dx distributionnormalised to theelectronE/p atsmallvaluesoftheratio(awayfromtheelectronsignal).(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtotheweb versionofthisarticle.)

Additionalhadronrejectionusedthecombinationoftheenergy depositedwithinEMCalandacut ontheelectromagneticshower shape[64,66].Sincetheshowerfromanelectronisfullycontained andaccuratelymeasuredbytheEMCal,theratiooftheenergy(E) measuredbytheEMCalandthemomentum(p)forelectrontracks isapproximatelyunity(E

/p

1).The E

/p distribution

is qualita-tivelydifferentinthecaseofhadrons.TheE/p asafunctionofthe nTPCσ forchargedparticles matchedwithan EMCal cluster in10% mostcentral eventsis shown in Fig. 2.From the primary tracks matchedtoanEMCalclustertheelectroncandidateswereselected usinga momentumindependent cutof 0

.

9

<

E/p

<

1

.

3. Further-more,theshapesofthemeasured showersinthecalorimetercan be characterised by the two eigenvalues (

λ

0 and

λ

1) of the co-variancematrixbuiltfromthetowercoordinatesweightedbythe logarithms ofthetower energies.Theseeigenvalues maybeused todifferentiatebetweenincidentparticlespecies[64].Aselection of

λ

21

<

0

.

3,correspondingtotheshorter-axisoftheshowershape projectedonto theEMCal surface,was applied,because the char-acteristicelectromagneticshowerofanelectronispeakedat

λ

21 of about0.25independentoftheclusterenergy.

Theremaining hadron backgroundinthe electronsample was estimatedwithadata-drivenapproachandstatisticallysubtracted from the sample. The shape of the residual hadron background

in E/p at the position of the electron peak was reconstructed

using the E/p distribution for hadron-dominated tracks selected withnTPCσ

<

3

.

5.The E/p distributionof the hadronswas then normalised tomatchthe distributionoftheelectroncandidatein 0

.

4

<

E

/p

<

0

.

7 (away fromthe trueelectron peak). An example

ofthe E/p distributionstogether withtheestimatedhadron

con-taminationfortwotransversemomentumintervalsisshowninthe rightpanelofFig. 2.Thehadroncontamination islessthan5% at pT

<

10 GeV/c inallcentralityclasses.AthighpT,itislargerthan 10%withamaximumofabout15%atpT

=

18 GeV/c.

Theefficienciesrelatedtothecutsontheionisationenergyloss inthe TPCwere estimatedwithdata-driven techniques[64].The EMCalefficiencies were calculatedusing MonteCarlosimulations of proton-proton (PYTHIA [67]) and heavy-ion collisions (HIJING

[68]) with complete detectorresponse modelled byGEANT [69]. Theproductofdetectoracceptanceandreconstructionefficiencies forinclusiveelectronsforthe10%mostcentralcollisionsisshown intheleftpanelofFig. 3.Theefficiencieswereestimatedforeach

centralityclass separately.Avariation ofabout2.5–3% wasfound betweenthemostcentral(0–10%)andperipheral(50–80%)events. 2.4. Backgroundelectronsubtraction

Themainsourcesofelectronscontributingtotheinclusive elec-tron sample in this analysis are: a) heavy-flavour hadron decay electrons;b)electronsfromleptonicdecaysofquarkonia(J

and

ϒ

mesons); c) electrons from W and Z/

γ

∗ decays; d) the so-calledphotonic electrons,originatingfromphotonconversionsand Dalitz decays ofneutralmesons (mainly

π

0 and

η

);ande) neu-tralkaondecays;however,thecontributionfromthenon-photonic electrons created in vector meson and Ke3 decays is negligible (

<

0

.

1%) [30] in the momentum range considered in this analy-sis.

Thecontributionofthephotonicelectronstotheinclusive elec-tron sample was measured by the invariant mass method. The invariant massdistributionwas determinedbypairingevery elec-tron trackfrom the inclusivesample with an oppositely-charged trackselectedwith

3

<

nσTPC

<

3toincreasethechancefor find-ingthepairs.Pairssatisfyingelectronidentificationselectionsand pairs satisfyingacut on theinvariant massofminv

<

0

.

1 GeV

/c

2 wereselectedforfurtheranalysis.Theseselectedunlike-signpairs, however,containnot onlytruephotonicelectronsbutalsoa con-tribution from random pairs. This combinatorial background to photonicelectrons was estimatedusingtheinvariant mass distri-butionofthelike-signelectrons(NeL S),anditwassubtractedfrom

thatofunlike-signpairs(NeU L S)toobtainthenumberofraw

pho-tonicelectrons:Nraw

eγ

=

NeU L S

NeL S.

The efficiency for the identification of the photonicelectrons by the invariant mass method (εeγ) was estimated from Monte Carlosimulationswithfulldetectorresponseandwasfoundtobe centralityindependent.Theefficiency,shownintherightpanelof

Fig. 3,isabout30%atpe

T

=

4 GeV

/c and

risingto55%at18 GeV

/c.

The number of photonic electrons present within the inclu-sive electron sample was calculated as the raw photonic elec-tron yield corrected for the reconstruction efficiency such that: Neγ

=

Nraweγ

/

εe

γ.Thefractionofphotonicelectrons withinthe in-clusiveelectronsample inthe10%mostcentralcollisionsisabout 30% at pT

=

3 GeV

/c,

dropsto25% at12 GeV

/c and

remains ap-proximatelyconstantathigherpT consideredinthisanalysis.

(5)

Fig. 3. Left: ProductofdetectoracceptanceandreconstructionefficiencyforinclusiveelectronsasafunctionoftheelectronpT.Thestatisticaluncertaintyissmallerthanthe

sizeofthepoints.Right: Photonicelectronreconstructionefficiencyviainvariantmass(εeγ)asafunctionofpToftheelectron.

The contribution to the inclusive electrons from J

decays was estimated using a phenomenological interpolation at

s

=

2.76 TeVofthe pT-differentialcrosssectionsmeasuredinpp colli-sionsatvariouscentre-of-massenergies[70] andscalingwiththe nuclearmodificationfactorRJAA (pT)measuredattheLHC[71,72]. In 3

<

pT

<

4 GeV/c, the contribution is 5.5% in the most cen-tralcollisions anddecreasesathigh-pT.The contributionfrom

ϒ

statesestimatedfromthe crosssectionmeasured inpp collisions

[73]wasfoundtobenegligible.

The contributionof electrons from W-boson andZ/γ∗ decays wasestimatedusingthecrosssectionobtainedfromthePOWHEG eventgenerator[74]forpp collisionsandscaledwith



TAA



assum-ingRAA

=

1.ThecontributionispTdependentandforW-bosonsit increasesfrom1%at10 GeV

/c to

about6%at17 GeV

/c whereas

thecontribution from Z

/

γ

∗ isbelow 1% for pT

<

10 GeV

/c and

increasesto2.4%at17 GeV

/c.

Theheavy-flavourdecayelectronyieldwasreconstructed from theinclusiveelectronyieldby firstsubtractingthephotonic elec-tron yield, then correcting the result of the subtraction for the efficiency,andfinally,bysubtractingthefeed-downelectronsfrom J

andW,Z/γ∗decays.

3. Systematicuncertainties

The sources of systematic uncertainty on the reconstructed heavy-flavour decay electron pT spectrum can be grouped into threecategories:

– eventselection(theeventnormalisation,includingthescaling oftheEMCaltriggereventsandtheeventcentralityselection); – electronsignal extraction (uncertaintiesoriginatingfrom

cor-rectionsrelatedtotrackingandparticleidentification); – non-heavy-flavourbackgrounddetermination.

Anoverviewofthesystematicuncertaintiesispresentedin Ta-ble 2.Forsourcesthat dependoncentrality(allbut “tracking/ma-terial” fromTable 2)theuncertaintieswereevaluatedseparatelyin eacheventclass.Inevery casea weakcentralitydependencewas found(deviations oflessthan 3%).Inthe figuresofSection 4the systematicuncertainties are represented as shaded boxes around thedatapoints.

Eventnormalisation. Acomparisonoftheeventnormalisation obtainedwiththe EMCalclustersandthenormalisationobtained fromtheinclusiveelectronsshowedamaximumdeviationof8.5%. This deviation, independent of centrality and pT, is included as theuncertaintyontheyieldobtainedwiththetriggereddata.The

Table 2

Summaryofsystematicuncertaintiesontheheavy-flavourelectronyieldsgrouped accordingtotheirsources.Whereapplicabletheuncertaintywasestimatedfortwo pTvalues,3and10GeV/c (forthelatternumbersareshowninparentheses).For

detailsontheextractionoftheuncertaintiesseetext.

Source pTdependence (GeV/c) Uncertainty (%)

EMCal trigger correction only high-pT 8.5

Centrality estimation n/a <0.1–3 Tracking/material weak within 3–14 5

E/p 3 (10) 3 (3) nTPC σ 3 (10) 3 (7) Photonic background 3 (10) 5 (5) Jelectron background 3 (10) 1 (<1) W electron background 3 (10) 0 (<1) Z/γ∗electron backgrounds 3 (10) <1 (<2)

contributiontothesystematicuncertaintyduetothe1.1% relative uncertainty onthe fractionofhadronic crosssection used inthe Glauberfittodeterminethecentralityislessthan0.1% inthe cen-tral eventclass (0–10%) and3% in the semi-peripheral centrality class(50–80%)[47,75].

Electronidentification. The systematic uncertainties on the corrections for track reconstruction, track selection and electron identificationwereassessedviamultiplevariationsoftheanalysis selections.Foreachsetofcutstheanalysiswasrepeatedand com-pared tothe results obtainedwith the defaultset ofcuts. These variationsincludedchangesintrackqualitycuts,suchasthe min-imumnumberofthe spacepointsin theTPCandassociatedhits intheITS.Theuncertaintieswereestimatedasafunctionoftrack pT andfor each centrality class separately.In addition, the elec-tron identificationcuts inthe TPC (nTPCσ ) andEMCal(E

/p range)

werevariedaroundtheirnominalvalues.Theuncertainty originat-ingfromtheknowledgeofthematerialbudgetwas estimatedvia completedetectorsimulationswiththeradiationlengthvariedby

±

7%[76].

Subtractionofphotonicbackground. The uncertainty on the subtracted background electrons from photon conversions and Dalitz decayswas obtained by varyingthe invariant masscut on theelectronpairswithin0

.

07

<

minv

<

0

.

15 GeV/c2andthe mini-mum pTofthetrackspairedwithelectroncandidatesbetween0.3 and0.6GeV

/c.

SubtractionofelectronsfromJ

. Theuncertaintyonthe sub-tractedbackgroundelectronsfromJ

decayswasestimatedfrom the experimental uncertainties on measured production yields in heavy-ioncollisions[71,77].

ElectronsfromW andZ

/

γ

. TheyieldofelectronsfromW de-cayswasvariedby

±

15%onthebasisofthecomparisonoftheW productioncrosssectionasgivenbythePOWHEGeventgenerator

(6)

Fig. 4. Differentialyieldsofelectronsfromsemi-leptonicdecays ofheavy-flavour hadronsinclassesofcentralityofPb–Pb collisionsat√sNN=2.76 TeV.

andthe existing measurements in pp collisions at the LHC [78]. ThecontributionfromZ/

γ

∗ di-electrondecaysanditsuncertainty wasestimatedusingthePOWHEGeventgeneratorandconsidered together with the uncertainties on the process production cross section measured inpp collisions [79]. Giventhesmall contribu-tionof theelectrons from Z

/

γ

∗ decays tothe electronspectrum ofthisanalysisthederiveduncertaintywasfoundbelow1%atthe highestmomentumconsidered.

4. Results

The pT-differentialinvariantyieldsofheavy-flavourdecay elec-tronscorrectedforacceptanceandefficiencyinthe0–10%,10–20%, 30–40%,40–50%and50–80%centralityclassesinPb–Pb collisions at

sNN

=

2.76TeVareshowninFig. 4.OnlytheEMCaltriggered data are shown for the 50–80% centrality class due to a lack of statisticsintheminimumbiasdatasample.

The production cross section of heavy-flavourdecay electrons inpp collisionsat

s

=

2

.

76 TeV,neededtocomputethenuclear modificationfactorRAA(Eq.(1)),wasobtainedfrommeasurements

andFONLLpQCDcalculations[80,81].ForpT

<

12 GeV

/c the

mea-surementat

s

=

2

.

76 TeV wasused[30].ForpT

>

12 GeV

/c there

isnomeasurementatthisenergy.Thus,anextrapolatedcross sec-tionwasconstructedfromthemeasurementat

s

=

7 TeV bythe ATLAS Collaboration[82,83] andthe ratioofcrosssectionsatthe twocollisionenergiesobtainedfromFONLL[84].Theuncertainties ofthe pp referencesareabout20% for pT

<

12 GeV

/c and

about 15%for pT

>

12 GeV

/c,

includingtheuncertaintyfromthescaling with

s,whichwas estimatedbyconsistently varyingtheFONLL calculationparametersatthetwoenergies[84].

Fig. 5showstheresultingRAA ofheavy-flavourdecayelectrons for all centralityclasses. The uncertainty on the average nuclear overlap function



TAA



for each centrality selection was takenas determined in [53]. It varies from 4% in the 10% most central events to 7% in the 50–80% centrality class, and it is shown as a box at RAA

=

1 in the figure.In all cases,taking intoaccount the pT trend of the RAA and the statistical uncertainties of the measurement athigh-pT, theelectron productionyields are sup-pressedrelativetoanincoherentsuperpositionofpp collisions.In the 10% most central events the RAA reaches values below 0.4, while for the more peripheral events the suppression is weaker. This centrality dependenceof the suppression patternis qualita-tivelyconsistentwithin-mediumenergylossofheavyquarksdue to a decrease of medium’sinitial energy densityandthe system sizefromcentraltoperipheralcollisions.

Inproton–leadcollisions, whereformationofa hot,denseand long lived QGPis not expected, the suppression is not observed. The nuclearmodificationfactor RpPb measuredforelectronsfrom heavy-flavour hadron decays is consistent with unity [61]. This control measurement inp–Pb collisions confirms that the strong suppression in Pb–Pb collisions is a result of final state effects. The left panel of Fig. 6shows the comparisonbetween RpPb for minimum-bias p–Pb collisions at

sNN

=

5

.

02 TeV and RAA for the10%mostcentralPb–Pb collisions.Theresultreportedherefor electrons at mid-rapidity is consistent withthe measurement of the suppressionpatternformuonsfromthesemi-leptonicdecays of heavy-flavour hadrons at forward rapidity [31], in both, most centralandsemi-peripheralcollisions(seeFig. 6).Thelepton

mea-Fig. 5. RPbPbofelectronsfromheavy-flavourhadrondecaysincentralitybinsofPb–Pb collisionsat√sNN=2.76 TeV.ThesolidbandatRPbPb=1 bracketstheuncertainty

(7)

Fig. 6. Left: RPbPbofelectronsandmuons[31]fromheavy-flavourhadrondecaysin10%mostcentralPb–Pb collisionsshowntogetherwithRpPbofelectronsfromminimum biasproton–leadcollisionsat√sNN=5.02 TeV[61].Right: RPbPbofelectronsinsemi-peripheralPb–Pb collisions(50–80%selectionforelectronsand40–80%formuons.

Fig. 7. RPbPbofelectronsfromheavy-flavourhadrondecaysmeasuredin10%most

centralPb–Pb collisionsat√sNN=2.76 TeV comparedtovarioustheoretical

calcu-lations[86–98].

surementsshow remarkablesimilarityin thesuppression pattern that,within the uncertainties, doesnot exhibit a rapidity depen-dence.

The pT spectrum of electrons is sensitive to both charm and beauty quark energy loss. From the decay kinematics and the pT-differential cross sections of parent hadrons with charm and beauty,it followsthat electrons of pT below5 GeV/c are mostly sensitive to charm energy loss. On the other hand, in pp col-lisions a large fraction (more than 60%) of the electrons with pT

>

10 GeV

/c originate

fromb-quarks[82,66,30,85,81].The elec-tronyieldathigh-pT isthereforeexpectedtocontainasignificant contributionfromBmesonswithpTupto30 GeV

/c.

Consequently, thestrongsuppressionofelectronsforpT

>

10 GeV

/c is

consistent within-mediumenergylossofb-quarks.

5. Comparisonwithmodels

The RAA ofelectrons fromheavy-flavourhadron decaysinthe mostcentral Pb–Pb collisions is compared to theoretical models thatinclude heavyquark interactions withthe medium inFig. 7. Mostofthesemodelswere previouslycompared tothe RAA ofD mesons in most central Pb–Pb collisions [75,48] as well as the positive ellipticflow ofthe Dmesons andelectrons from heavy-flavour hadron decays in semi-central Pb–Pb collisions [99,100].

We note that thesemodelsdiffer inthetheoretical realisation of the medium properties, and of its dynamics, and also in imple-mentationsofthehadronisationandofhadron–hadroninteractions inthelatestagesoftheheavy-ioncollision.Alsotheheavy-quark cross-section usedasinput tothe calculationmaydifferbetween themodels(PYTHIA,FONLLandPOWHEG).

Djordjevic. The calculation by Djordjevic et al. [86] at pT

>

5 GeV/c isconsistentwiththemeasurementwithinthe uncertain-tiesincludingtheslowincreaseoftheRAAasafunctionofelectron

pT. The model takes into account both radiative and collisional contributions toparton energyloss.Specifically, theradiative en-ergy loss calculationsare an extension of theDGLV [101] model towardsafinitesizedynamicalmedium,finitemagneticmass,and runningcoupling.Themodeldoesequallywellinreproducingthe magnitudeandpT dependenceoftheDmesonsRAA[48].

Vitev. ThecalculationsbyVitev etal.[90]alsocapturethe mag-nitude of the suppression and reproduce the pT dependence of theelectronsseeninthedata.Thein-mediummodificationofthe heavy quark distribution anddecayprobabilities are evaluated in aco-movingplasma.Thepredictionsforheavy-flavourdecay elec-tronsuppressionareobtainedwithanimprovedperturbativeQCD descriptionofheavyflavourdynamicsinathermalmediumwhere theformation anddissociationofheavy-flavourmesonsare com-bined withparton-level charmandbeautyquarkradiative energy loss.Themodelincludingthedissociationofheavy-flavourhadrons capturesalsothesuppressionofDmesons.

WHDG. The band corresponding tothe WHDG model calcula-tions [87–89]isconsistent withthemeasurementwithin the un-certainties; however, it systematically underpredicts the suppres-sionbelow12GeV

/c.

Interestingly,thesamecalculationcompared to the Dmesons RAA reproduced the datavery well. The model includes elastic aswell as inelastic energy loss of heavy-quarks, andthepath length (geometric)fluctuationswithin astatic ther-malcoloured mediumwithitsdensityastheonlyfreeparameter determined via a statistical comparison of the model with the chargedparticleproductioninheavy-ioncollisions.

TAMU. The RAA obtained within the TAMU model of heavy

quark transport within a strongly coupled thermal medium in-cluding theelastic scatterings withthe medium (resonance scat-teringandcoalescence processes)[91]underpredicts the suppres-sion at low-pT while it captures the magnitude of the data for

pT

>

12 GeV

/c.

We note that TAMU also underpredicts the D mesonsRAAanditssuccessfortheelectronsathigh-pTmaybe re-latedtotheb-quarkenergylossforwhichthefractionfromelastic processesisincreasedascomparedtocharmquarks.Ontheother

(8)

hand,TAMUreproduces the measured v2 of Dmesonsand elec-tronsfromheavy-flavourhadrondecaysaccurately[99,100].

BAMPS. The BAMPS [96–98] calculation, which is a partonic transport modelusingtheBoltzmann equation,is shownfortwo scenarios. The BAMPScoll. calculation considering only the colli-sional energyloss in an expandingquark-gluon plasma overesti-matesthemagnitudeofthesuppressionwithintheregioncovered by the measurement. The calculation obtained within the same framework where both the elastic and radiative processes were considered(BAMPScoll.+rad.)describesthedataratherwell.A sim-ilarconclusioncanbedrawnfromthecomparisontotheD-meson RAA. On the other hand,the BAMPScoll. reproduces qualitatively the v2 ofDmesonsandelectrons fromheavy-flavourhadron de-cays,buttheBAMPScoll.+rad. underestimatestheDmesonv2[99,

100].

MC@sHQ+EPOS2. The results of the Monte Carlo model

in-cludinga hydrodynamic calculation of themedium coupled with collisional and radiative parton energy loss MC@sHQ+EPOS2 [93]

areconsistentwiththemeasurementwithintheuncertainties.The modelbestdescribesthe dataat pT

>

12 GeV/c. Thismodel also worksbetterfortheDmesons RAAatpT

>

10 GeV/c ascompared tolower momentum(meson pT below10 GeV/c). Theauthors of themodelemphasise thatthescatteringinthehadronicphaseis notpresentintheircalculationandcanhavesubstantialeffecton the low-pT suppressionand ellipticflow calculationsthat under-predictsthemeasurement[99,100].

Cao, Qin, Bass. The calculation by Cao,Qin,andBass [92] re-produces the measured RAA at high-pT (above 12 GeV

/c)

while itunderpredicts thesuppression forlow-pT.The modelevaluates thedynamicsofenergylossandflowofheavy quarkswithinthe frameworkofaLangevinequationcoupledtoa(2

+

1)-dimensional viscoushydrodynamicmodelthatsimulatesthespace–time evolu-tionof theproduced hot anddense QCD matter. Thiscalculation reproduced thesuppression ofDmesonsvery accurately,bothin strengthandthe pT-dependence.

POWLANG. Theresultoftheheavy-quarktransportcalculation usingtherelativisticLangevinequationwithcollisionalenergyloss, POWLANG[94,95],isshownfortwochoicesofheavy-flavour trans-port coefficientswithin thequark-gluon plasma.In thePOWLANG HTL [94] the coefficients are evaluated by matching the weak-couplingcalculationswithhard-thermal-loop(HTL) resultforsoft collisionswithaperturbativeQCDcalculationforhardscatterings. ThisHTLvariantpredicts a fallingtrend with pT of theelectrons that isincompatible withthe dataand overpredictsthe suppres-sionathighmomentum.Conversely,thecalculation thatincludes the transport coefficients obtained fromthe Lattice QCD simula-tions[95]predictstherising RAA.However,itreportslargervalues thanthemeasuredonesanditisincompatiblewiththemeasured magnitude of the suppression. The width of the theory curves envelopes thespread inthe resultsof thecalculation that is ob-tained when considering two different decoupling temperatures Tdec (155 MeV and 170 MeV) from the hydrodynamic evolution ofthefireball.Therelatively smallwidthofthebandssuggestsa weaksensitivityofthesuppressiontotheTdec.Similartothe elec-tron case,POWLANG HTL capturesthe suppressionforDmesons below 5 GeV

/c predicting

much lower RAA at high-pT than ob-servedinthedata.Interestingly,asinthecaseoftheTAMUmodel, thePOWLANGHTLcalculationsprovideafairdescriptionoftheD mesonsv2 measuredattheLHC.

Giventhelevelofagreementofthetheoreticalmodelswiththe dataonv2 and RAAofpromptDmesons[75,48,99]andelectrons fromheavy-flavourdecays,thefollowinggeneralconclusionsarise: – models incorporating the complete dynamical and thermal

evolutionofthemediumarefavouredbythedata;

– the measurementindicates the needforboth, collisionaland radiative,energylossofheavy quarkstobeconsideredto ex-plain themagnitude andthe pT dependence ofthe suppres-sion.

6. Summary

The pT-differential yields of electrons fromsemi-leptonic de-cays of charm and beauty hadrons were measured at 3

<

pT

<

18 GeV/c inseveralcentralityclassesofPb–Pb collisionsat

sNN

=

2

.

76 TeV atmid-rapidity. Thenuclear modificationfactor RAA for the 10% mostcentral eventsshowsa strong suppression of elec-trons fromheavy-flavour hadron decays. Consistent withthe ex-pectationofadecreaseofthemedium’sinitialenergydensityand a decreasingsystemsizefromcentraltoperipheralcollisions, the suppression issignificantly weakerin moreperipheralevents.No significant suppressionisobservedinp–Pbcollisions,indicating a strong in-medium energyloss of both charm andbeauty quarks in Pb–Pb collisions. Inparticular, the strongsuppression at high-momentum indicates that b-quarks lose a substantial fraction of their energy. The suppression of electrons is quantitatively con-sistent with measurements of RAA of muonsfrom semi-leptonic heavy-flavourdecaysin2

.

5

<

y

<

4,disfavouringa strong depen-denceofenergylossonrapidity intherange

|

y

|

<

4.Theoretical calculations that include collisional and radiative in-medium en-ergylossforbothcharmandbeautyquarksreproducethe experi-mentalfindings.Inparticular,modelsincorporatingthedynamical evolutionofthemediumarepreferredbythedata.

Acknowledgements

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the following fundingagenciesfortheir supportin buildingand run-ning the ALICE detector: A.I. Alikhanyan National Science Labo-ratory (Yerevan Physics Institute) Foundation (ANSL), State Com-mittee of Science and World Federation of Scientists (WFS), Ar-menia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Na-cionalde DesenvolvimentoCientíficoe Tecnológico(CNPq), Finan-ciadora de Estudose Projetos(Finep) andFundaçãode Amparoà PesquisadoEstadodeSãoPaulo(FAPESP),Brazil;Ministryof Edu-cationofChina (MOEofChina),MinistryofScience&Technology of China (MOST of China) and National Natural Science Founda-tion of China (NSFC), China; Ministry of Science, Education and Sports andCroatian ScienceFoundation,Croatia; Centrode Inves-tigacionesEnergéticas,MedioambientalesyTecnológicas(CIEMAT), Cuba;MinistryofEducation,YouthandSportsoftheCzech Repub-lic,Czech Republic;Danish NationalResearchFoundation (DNRF), TheCarlsbergFoundationandTheDanishCouncilforIndependent Research–Natural Sciences,Denmark; Helsinki Institute ofPhysics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)and Insti-tut National de Physique Nucléaire et de Physique des Particules (IN2P3) andCentre Nationalde la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie(BMBF)andGSI Helmholtzzentrum für Schweri-onenforschung GmbH, Germany; Ministry of Education, Research andReligiousAffairs,Greece;NationalResearch,Developmentand Innovation Office, Hungary; Department of Atomic Energy, Gov-ernment of India (DAE), India; Indonesian Institute of Science,

(9)

Education and National Science Centre, Poland; Ministry of Ed-ucation and Scientific Research, Institute of Atomic Physics and RomanianNationalAgencyforScience,TechnologyandInnovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of EducationandScienceoftheRussianFederationandNational Re-search Centre Kurchatov Institute, Russia; Ministry of Education, Science,Researchand SportoftheSlovak Republic, Slovakia; Na-tional Research Foundation of South Africa, South Africa; Korea Institute ofScienceandTechnology Information andNational Re-search Foundation ofKorea (NRF),South Korea;Centro de Inves-tigacionesEnergéticas,MedioambientalesyTecnológicas(CIEMAT) andMinisteriode Cienciae Innovacion, Spain;Knut&Alice Wal-lenberg Foundation (KAW) and Swedish Research Council (VR), Sweden;EuropeanOrganizationforNuclearResearch,Switzerland; National Science and Technology Development Agency (NSDTA), OfficeoftheHigher Education CommissionunderNRU projectof ThailandandSuranareeUniversity ofTechnology (SUT), Thailand; TurkishAtomic Energy Agency (TAEK),Turkey; NationalAcademy ofSciences ofUkraine,Ukraine; ScienceandTechnology Facilities Council (STFC), United Kingdom; National Science Foundation of theUnitedStatesofAmerica(NSF)andUnitedStatesDepartment ofEnergy,OfficeofNuclearPhysics(DOENP),UnitedStates. References

[1]H.Satz,Colordeconfinementinnuclearcollisions,Rep.Prog.Phys.63(2000) 1511,arXiv:hep-ph/0007069.

[2]S.A. Bass, M.Gyulassy, H. Stoecker,W.Greiner,Signatures ofquarkgluon plasma formation in high-energy heavy ion collisions: a critical review, J. Phys.G25(1999)R1–R57,arXiv:hep-ph/9810281.

[3]E.V.Shuryak,TheoryandphenomenologyoftheQCDvacuum.7.Macroscopic excitations,Phys.Rep.115(1984)151.

[4]J.Cleymans,R.Gavai,E.Suhonen,Quarksandgluonsathightemperatures anddensities,Phys.Rep.130(1986)217.

[5]S.Borsanyi,G.Endrodi,Z.Fodor,A.Jakovac,S.D.Katz,S.Krieg,C.Ratti,K.K. Szabo,TheQCDequationofstatewithdynamicalquarks,J. HighEnergyPhys. 11(2010)077,arXiv:1007.2580[hep-lat].

[6]T.Bhattacharya,etal.,QCDphasetransitionwithchiralquarksandphysical quarkmasses,Phys.Rev.Lett.113 (8)(2014)082001,arXiv:1402.5175 [hep-lat].

[7]ALICE Collaboration, K. Aamodt, et al., Two-pion Bose–Einstein correla-tions in pp collisions at √s=900 GeV, Phys. Rev.D 82 (2010) 052001, arXiv:1007.0516[hep-ex].

[8] J.D.Bjorken,Energylossofenergeticpartonsinquark–gluonplasma: possi-ble extinctionofhighpT jetsinhadron–hadroncollisions,

FERMILAB-PUB-82-059-THY,FERMILAB-PUB-82-059-T.

[9]JETCollaboration,K.M.Burke,et al.,Extractingthe jettransportcoefficient fromjetquenchinginhigh-energyheavy-ioncollisions,Phys.Rev.C90 (1) (2014)014909,arXiv:1312.5003[nucl-th].

[10]STARCollaboration,J.Adams,etal.,Experimentalandtheoreticalchallenges inthesearch forthequark gluonplasma:the STARcollaboration’scritical assessmentoftheevidencefromRHICcollisions,Nucl.Phys.A 757(2005) 102–183,arXiv:nucl-ex/0501009.

[11]PHENIX Collaboration, K. Adcox,et al., Formation ofdense partonic mat-terinrelativisticnucleus–nucleuscollisionsatRHIC:experimentalevaluation bythePHENIXcollaboration,Nucl.Phys.A757(2005)184–283, arXiv:nucl-ex/0410003.

[18]CMS Collaboration, S. Chatrchyan, et al., Observation and studies of jet quenchinginPbPbcollisions at nucleon–nucleoncenter-of-massenergy= 2.76 TeV,Phys.Rev.C84(2011)024906,arXiv:1102.1957[nucl-ex]. [19]ALICECollaboration,J.Adam,etal.,Measurementofjetsuppressionin

cen-tralPb–Pb collisionsat √sNN =2.76 TeV, Phys. Lett.B746(2015)1–14,

arXiv:1502.01689[nucl-ex].

[20]A.Andronic,etal.,Heavy-flavourandquarkoniumproductionintheLHCera: fromproton–protontoheavy-ioncollisions,Eur.Phys.J.C76 (3)(2016)107, arXiv:1506.03981[nucl-ex].

[21]F.Prino,R.Rapp,OpenheavyflavorinQCDmatterandinnuclearcollisions, arXiv:1603.00529[nucl-ex].

[22]PHENIXCollaboration,A.Adare,etal.,Heavyquarkproductioninp+p and

energylossandflowofheavyquarksinAu+Aucollisionsat√sN N=200 GeV,

Phys.Rev.C84(2011)044905,arXiv:1005.1627[nucl-ex].

[23]STARCollaboration,J.Adams,etal.,Opencharmyieldsind+Aucollisions at s(NN)**(1/2)= 200-GeV,Phys. Rev.Lett.94(2005) 062301, arXiv:nucl-ex/0407006.

[24]STARCollaboration,L.Adamczyk,etal.,MeasurementsofD0andD produc-tioninp+p collisionsat √s=200 GeV,Phys.Rev.D86(2012)072013, arXiv:1204.4244[nucl-ex].

[25]CDFCollaboration, D.Acosta,etal.,Measurementofpromptcharmmeson productioncrosssectionsinpp collisions¯ at√s=1.96 TeV,Phys.Rev.Lett. 91(2003)241804,arXiv:hep-ex/0307080.

[26]D0 Collaboration, V.M.Abazov,et al., Search for scalar topquarksinthe acoplanarcharmjetsandmissingtransverseenergyfinalstateinp¯p

colli-sionsat√s=1.96-TeV,Phys.Lett.B665(2008)1–8,arXiv:0803.2263 [hep-ex].

[27]D0Collaboration,V.M.Abazov,etal.,MeasurementofB0

s mixingparameters

fromtheflavor-taggeddecayB0

sJ/ψφ,Phys.Rev.Lett.101(2008)241801,

arXiv:0802.2255[hep-ex].

[28]CMSCollaboration,S.Chatrchyan,etal.,Inclusiveb-jetproductioninpp

col-lisionsat√s=7 TeV,J. HighEnergyPhys.04(2012)084,arXiv:1202.4617 [hep-ex].

[29]ATLASCollaboration,G.Aad,etal.,Measurementofthe inclusiveanddijet cross-sectionsofb− jetsinpp collisionsat√s=7 TeVwiththeATLAS de-tector,Eur.Phys.J.C71(2011)1846,arXiv:1109.6833[hep-ex].

[30]ALICE Collaboration, B.B. Abelev, et al., Measurement of electrons from semileptonicheavy-flavorhadrondecaysinpp collisionsat√s=2.76 TeV, Phys.Rev.D91 (1)(2015)012001,arXiv:1405.4117[nucl-ex].

[31]ALICECollaboration,B.Abelev,etal.,Productionofmuonsfromheavyflavour decaysatforwardrapidityinppandPb–Pbcollisionsat√sN N =2.76TeV,

Phys.Rev.Lett.109(2012)112301,arXiv:1205.6443[hep-ex].

[32]ALICECollaboration,B.Abelev,etal.,D+s mesonproductionatcentralrapidity

inproton–protoncollisionsat√s=7 TeV,Phys.Lett.B718(2012)279–294, arXiv:1208.1948[hep-ex].

[33]M.Gyulassy,M.Plümer,Jetquenchingasaprobeofdensematter,Nucl.Phys. A527 (0)(1991)641–644.

[34]X.-N.Wang,M. Gyulassy,M. Plumer,TheLPMeffectinQCDandradiative energy lossinaquark gluonplasma, Phys.Rev.D 51(1995) 3436–3446, arXiv:hep-ph/9408344.

[35]R.Baier,Y.L.Dokshitzer, A.H.Mueller,S.Peigne, D.Schiff,Radiativeenergy lossandp(T)broadeningofhigh-energypartonsinnuclei,Nucl.Phys.B484 (1997)265–282,arXiv:hep-ph/9608322.

[36]M.H.Thoma,M.Gyulassy,Quarkdampingandenergylossinthehigh tem-peratureqcd,Nucl.Phys.B351 (3)(1991)491–506.

[37] E.Braaten,M.H.Thoma,Energylossofaheavyfermioninahotqedplasma, Phys. Rev. D 44 (Aug 1991) 1298–1310, http://link.aps.org/doi/10.1103/ PhysRevD.44.1298.

[38] E.Braaten,M.H.Thoma,Energy lossofaheavyquark inthequark–gluon plasma, Phys. Rev.D 44 (Nov 1991)R2625–R2630, http://link.aps.org/doi/ 10.1103/PhysRevD.44.R2625.

[39]A.Majumder,Elastic energylossand longitudinalstraggling ofahardjet, Phys.Rev.C80(2009)031902,arXiv:0810.4967[nucl-th].

(10)

[40]ParticleDataGroupCollaboration,K.A.Olive,etal.,Reviewofparticlephysics, Chin.Phys.C38(2014)090001.

[41]Y.L.Dokshitzer,D.Kharzeev,HeavyquarkcolorimetryofQCDmatter,Phys. Lett.B519(2001)199–206,arXiv:hep-ph/0106202.

[42]N. Armesto,C.A. Salgado, U.A. Wiedemann,Medium induced gluon radia-tionoffmassivequarksfillsthedeadcone,Phys.Rev.D69(2004)114003, arXiv:hep-ph/0312106.

[43]M.Djordjevic,M.Gyulassy,HeavyquarkradiativeenergylossinQCDmatter, Nucl.Phys.A733(2004)265–298,arXiv:nucl-th/0310076.

[44] B.-W. Zhang, E. Wang, X.-N. Wang, Heavy quark energy loss in a nu-clearmedium,Phys.Rev.Lett.93(Aug2004)072301,http://link.aps.org/doi/ 10.1103/PhysRevLett.93.072301.

[45]S.Wicks,W.Horowitz,M.Djordjevic,M.Gyulassy,Heavyquarkjetquenching withcollisionalplusradiativeenergylossandpathlengthfluctuations,Nucl. Phys.A783(2007)493–496,arXiv:nucl-th/0701063.

[46]H. van Hees, V.Greco, R. Rapp, Heavy-quark probes of the quark–gluon plasmaatRHIC,Phys.Rev.C73(2006)034913,arXiv:nucl-th/0508055. [47]ALICECollaboration,J.Adam,etal.,Centralitydependenceofhigh-pT D

me-sonsuppressioninPb–Pbcollisionsat√sNN=2.76 TeV,J. HighEnergyPhys.

11(2015)205,arXiv:1506.06604[nucl-ex].

[48]ALICECollaboration, J.Adam,et al., Transversemomentumdependence of D-mesonproductioninPb–Pbcollisionsat√sNN=2.76 TeV,J. HighEnergy

Phys.03(2016)081,arXiv:1509.06888[nucl-ex].

[49]CMSCollaboration,S.Chatrchyan,etal.,Evidenceofb-jetquenchinginPbPb collisions at √sN N =2.76 TeV, Phys. Rev.Lett. 113 (13) (2014) 132301,

arXiv:1312.4198.Erratum:Phys.Rev.Lett.115 (2)(2015)029903.

[50]PHENIX Collaboration, A. Adare, et al., System-size dependence of open-heavy-flavorproductioninnucleus–nucleuscollisionsat √sN N =200 GeV,

Phys.Rev.C90 (3)(2014)034903,arXiv:1310.8286[nucl-ex].

[51]STARCollaboration,B.I.Abelev,etal.,Transversemomentumandcentrality dependenceofhigh-p_T non-photonicelectronsuppressioninAu+Au colli-sionsat √s_N N=200 GeV,Phys.Rev.Lett.98(2007)192301, arXiv:nucl-ex/0607012.Erratum:Phys.Rev.Lett.106(2011)159902.

[52]STARCollaboration, L.Adamczyk,et al., Observationof D0 meson nuclear

modifications in Au+Au collisions at √sN N=200 GeV, Phys. Rev. Lett.

113 (14)(2014)142301,arXiv:1404.6185[nucl-ex].

[53]ALICECollaboration,B.Abelev,etal.,CentralitydeterminationofPb–Pb col-lisionsat√sN N =2.76TeVwithALICE,Phys.Rev.C88 (4)(2013)044909,

arXiv:1301.4361[nucl-ex].

[54]CMSCollaboration,S.Chatrchyan,etal.,Measurementofisolatedphoton pro-ductionin pp andPbPbcollisionsat √sN N=2.76 TeV, Phys.Lett. B710

(2012)256–277,arXiv:1201.3093[nucl-ex].

[55]CMSCollaboration, S.Chatrchyan,et al., Studyof W bosonproduction in PbPbandpp collisionsat√sN N=2.76 TeV,Phys.Lett.B715(2012)66–87,

arXiv:1205.6334[nucl-ex].

[56]CMSCollaboration, S. Chatrchyan, et al., Study of Z boson production in PbPbcollisions at √sN N = 2.76TeV, Phys. Rev.Lett.106(2011) 212301,

arXiv:1102.5435[nucl-ex].

[57]ATLASCollaboration,G.Aad,etal.,MeasurementofZboson productionin Pb+Pbcollisionsat√sNN=2.76 TeVwiththeATLASdetector,Phys.Rev.Lett.

110(2013)022301,arXiv:1210.6486[hep-ex].

[58]ATLASCollaboration,G.Aad,etal.,Measurementoftheproductionandlepton chargeasymmetryofW bosonsinPb+Pbcollisionsat√sN N=2.76 TeV with

theATLASdetector,Eur.Phys.J.C75 (1)(2015)23,arXiv:1408.4674[hep-ex]. [59]ALICECollaboration,B.B.Abelev,etal.,Transversemomentumdependenceof inclusiveprimarycharged-particleproduction inp–Pbcollisionsat√sNN=

5.02 TeV,Eur.Phys.J.C74 (9)(2014)3054,arXiv:1405.2737[nucl-ex]. [60]ALICECollaboration,B.B.Abelev,etal.,MeasurementofpromptD-meson

pro-ductioninp–Pbcollisions at√sN N = 5.02TeV, Phys.Rev.Lett. 113 (23)

(2014)232301,arXiv:1405.3452[nucl-ex].

[61]ALICECollaboration,J.Adam,et al.,Measurementofelectronsfrom heavy-flavourhadrondecays inp–Pbcollisionsat√sNN=5.02 TeV, Phys.Lett.B

754(2016)81–93,arXiv:1509.07491[nucl-ex].

[62]L.Evans,P.Bryant,LHCmachine,J. Instrum.3(2008)S08001.

[63]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J. Instrum.3(2008)S08002.

[64]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEexperiment attheCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl-ex].

[65]M.L.Miller,K.Reygers,S.J.Sanders,P.Steinberg,Glaubermodelinginhigh energynuclearcollisions,Annu.Rev.Nucl.Part.Sci.57(2007)205–243,arXiv: nucl-ex/0701025.

[66]ALICECollaboration,B.Abelev,etal.,Measurementofelectronsfrombeauty hadrondecaysinpp collisionsat√s=7 TeV,Phys.Lett.B721(2013)13–23, arXiv:1208.1902[hep-ex].

[67]T.Sjostrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J. High EnergyPhys.05(2006)026,arXiv:hep-ph/0603175.

[68]X.-N.Wang,M.Gyulassy,HIJING:aMonteCarlomodelformultiplejet pro-ductioninpp,pAandAAcollisions,Phys.Rev.D44(1991)3501–3516.

[69] R.Brun,F.Bruyant,M.Maire,A.C.McPherson,P.Zanarini,GEANT3. [70]F.Bossu,Z.C.delValle,A.deFalco,M.Gagliardi,S.Grigoryan,G.Martinez

Garcia,PhenomenologicalinterpolationoftheinclusiveJ/psicrosssectionto proton–protoncollisionsat2.76TeVand5.5TeV,arXiv:1103.2394[nucl-ex]. [71]ALICECollaboration, J.Adam,etal.,Inclusive,promptand non-promptJ/ψ

productionatmid-rapidityinPb–Pbcollisionsat√sNN=2.76TeV,J. High

EnergyPhys.07(2015)051,arXiv:1504.07151[nucl-ex].

[72]ALICECollaboration,B.B.Abelev,etal.,Centrality,rapidityandtransverse mo-mentum dependence of J/ψ suppressionin Pb–Pb collisionsat √sNN =

2.76 TeV,Phys.Lett.B734(2014)314–327,arXiv:1311.0214[nucl-ex]. [73]CMSCollaboration,S.Chatrchyan,etal.,Measurementoftheϒ(1S),ϒ(2S),

andϒ(3S)crosssectionsinppcollisionsat√s=7TeV,Phys.Lett.B727 (2013)101–125,arXiv:1303.5900[hep-ex].

[74]C.Oleari,ThePOWHEG-BOX,Nucl.Phys.Proc.Suppl.205–206(2010)36–41, arXiv:1007.3893[hep-ph].

[75]ALICECollaboration,B.Abelev,etal.,Suppressionofhightransverse momen-tumDmesonsincentralPb–Pbcollisionsat√sN N=2.76 TeV,J. HighEnergy

Phys.09(2012)112,arXiv:1203.2160[nucl-ex].

[76]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofcharged parti-cleproductionatlargetransversemomentuminPb–Pbcollisionsat√sNN=

2.76 TeV,Phys.Lett.B720(2013)52–62,arXiv:1208.2711[hep-ex]. [77] CMSCollaboration,V.Khachatryan,etal.,J/psiresultsfromCMSinPbPb

col-lisions,with150 μb−1data.

[78]ATLASCollaboration,G.Aad,etal.,MeasurementsoftheWproductioncross sectionsinassociationwithjetswiththeATLASdetector,Eur.Phys.J.C75 (2) (2015)82,arXiv:1409.8639[hep-ex].

[79]ATLASCollaboration,G.Aad,etal.,Measurementofthelow-massDrell–Yan differentialcrosssection at√s =7TeVusingtheATLAS detector,J. High EnergyPhys.06(2014)112,arXiv:1404.1212[hep-ex].

[80]M.Cacciari,S.Frixione,P.Nason,The p(T)spectruminheavyflavor photo-production,J. HighEnergyPhys.0103(2001)006,arXiv:hep-ph/0102134. [81]M.Cacciari,S.Frixione,N.Houdeau,M.L.Mangano,P.Nason,G.Ridolfi,

The-oretical predictionsfor charmand bottomproduction at the LHC,J. High EnergyPhys.10(2012)137,arXiv:1205.6344[hep-ph].

[82]ALICECollaboration,B.Abelev,etal.,Measurementofelectronsfrom semilep-tonicheavy-flavourhadrondecaysinppcollisionsat√s=7TeV,Phys.Rev. D86(2012)112007,arXiv:1205.5423[hep-ex].

[83]ATLASCollaboration,G.Aad,etal.,Measurementsoftheelectronandmuon inclusivecross-sectionsinproton-protoncollisionsat √s=7 TeVwith the ATLASdetector,Phys.Lett.B707(2012)438–458,arXiv:1109.0525[hep-ex]. [84]R.Averbeck,etal.,Referenceheavyflavourcrosssectionsinppcollisionsat

s=2.76TeV,usingapQCD-driven√s-scalingofALICEmeasurementsat √

s=7 TeV,arXiv:1107.3243[nucl-ex].

[85]ALICE Collaboration,B.B.Abelev,etal.,Beautyproductioninppcollisionsat

s=2.76TeVmeasuredviasemi-electronicdecays,Phys.Lett.B738(2014) 97–108,arXiv:1405.4144[nucl-ex].

[86]M. Djordjevic, M. Djordjevic, B. Blagojevic,RHIC and LHCjet suppression innon-centralcollisions,Phys.Lett.B737(2014)298–302,arXiv:1405.4250 [nucl-th].

[87]S.Wicks,W.Horowitz,M.Djordjevic,M.Gyulassy,Elastic,inelastic,andpath length fluctuations injet tomography, Nucl. Phys. A784 (2007)426–442, arXiv:nucl-th/0512076.

[88]W.Horowitz,M.Gyulassy,ThesurprisingtransparencyofthesQGPatLHC, Nucl.Phys.A872(2011)265–285,arXiv:1104.4958[hep-ph].

[89]W.Horowitz,Testing pQCDand AdS/CFTenergylossatRHICandLHC,AIP Conf.Proc.1441(2012)889–891,arXiv:1108.5876[hep-ph].

[90]R. Sharma, I. Vitev, B.-W. Zhang, Light-cone wave function approach to openheavyflavordynamicsinQCDmatter,Phys.Rev.C80(2009)054902, arXiv:0904.0032[hep-ph].

[91]M.He,R.J.Fries,R.Rapp,Heavyflavoratthelargehadroncolliderinastrong couplingapproach,Phys.Lett.B735(2014)445–450,arXiv:1401.3817 [nucl-th].

[92]S.Cao,G.-Y.Qin,S.A.Bass,Heavy-quarkdynamicsandhadronizationin ultra-relativisticheavy-ioncollisions:collisionalversusradiativeenergyloss,Phys. Rev.C88 (4)(2013)044907,arXiv:1308.0617[nucl-th].

[93]M. Nahrgang,J. Aichelin, P.B. Gossiaux, K. Werner, Influence ofhadronic bound states above Tc on heavy-quarkobservables inPb + Pb collisions

at at the CERN largehadron collider,Phys. Rev.C 89 (1)(2014) 014905, arXiv:1305.6544[hep-ph].

[94]W.Alberico,A.Beraudo,A.DePace,A.Molinari,M.Monteno,etal., Heavy-flavourspectrainhighenergynucleus–nucleuscollisions,Eur.Phys.J.C71 (2011)1666,arXiv:1101.6008[hep-ph].

[95]A.Beraudo, A. DePace,M. Monteno, M.Nardi, F.Prino,Heavy flavorsin heavy-ioncollisions:quenching,flowandcorrelations,Eur.Phys.J.C75 (3) (2015)121,arXiv:1410.6082[hep-ph].

[96]J.Uphoff,O.Fochler,Z.Xu,C.Greiner,Ellipticflowandenergylossofheavy quarksinultra-relativisticheavyioncollisions,Phys.Rev.C84(2011)024908, arXiv:1104.2295[hep-ph].

(11)

M. An

7

,

C. Andrei

80

,

H.A. Andrews

104

,

A. Andronic

100

,

V. Anguelov

96

,

C. Anson

89

,

T. Antiˇci ´c

101

,

F. Antinori

110

,

P. Antonioli

107

,

R. Anwar

126

,

L. Aphecetche

116

,

H. Appelshäuser

61

,

S. Arcelli

27

,

R. Arnaldi

113

,

O.W. Arnold

97

,

36

,

I.C. Arsene

21

,

M. Arslandok

61

,

B. Audurier

116

,

A. Augustinus

35

,

R. Averbeck

100

,

M.D. Azmi

18

,

A. Badalà

109

,

Y.W. Baek

69

,

S. Bagnasco

113

,

R. Bailhache

61

,

R. Bala

93

,

S. Balasubramanian

141

,

A. Baldisseri

15

,

R.C. Baral

58

,

A.M. Barbano

26

,

R. Barbera

28

,

F. Barile

33

,

G.G. Barnaföldi

140

,

L.S. Barnby

35

,

104

,

V. Barret

72

,

P. Bartalini

7

,

K. Barth

35

,

J. Bartke

120

,

i

,

E. Bartsch

61

,

M. Basile

27

,

N. Bastid

72

,

S. Basu

137

,

B. Bathen

62

,

G. Batigne

116

,

A. Batista Camejo

72

,

B. Batyunya

68

,

P.C. Batzing

21

,

I.G. Bearden

83

,

H. Beck

96

,

C. Bedda

31

,

N.K. Behera

51

,

I. Belikov

66

,

F. Bellini

27

,

H. Bello Martinez

2

,

R. Bellwied

126

,

L.G.E. Beltran

122

,

V. Belyaev

77

,

G. Bencedi

140

,

S. Beole

26

,

A. Bercuci

80

,

Y. Berdnikov

88

,

D. Berenyi

140

,

R.A. Bertens

129

,

54

,

D. Berzano

35

,

L. Betev

35

,

A. Bhasin

93

,

I.R. Bhat

93

,

A.K. Bhati

90

,

B. Bhattacharjee

44

,

J. Bhom

120

,

L. Bianchi

126

,

N. Bianchi

74

,

C. Bianchin

139

,

J. Bielˇcík

39

,

J. Bielˇcíková

86

,

A. Bilandzic

36

,

97

,

G. Biro

140

,

R. Biswas

4

,

S. Biswas

81

,

4

,

S. Bjelogrlic

54

,

J.T. Blair

121

,

D. Blau

82

,

C. Blume

61

,

F. Bock

76

,

96

,

A. Bogdanov

77

,

L. Boldizsár

140

,

M. Bombara

40

,

M. Bonora

35

,

J. Book

61

,

H. Borel

15

,

A. Borissov

99

,

M. Borri

128

,

E. Botta

26

,

C. Bourjau

83

,

P. Braun-Munzinger

100

,

M. Bregant

123

,

T.A. Broker

61

,

T.A. Browning

98

,

M. Broz

39

,

E.J. Brucken

46

,

E. Bruna

113

,

G.E. Bruno

33

,

D. Budnikov

102

,

H. Buesching

61

,

S. Bufalino

31

,

26

,

P. Buhler

115

,

S.A.I. Buitron

63

,

P. Buncic

35

,

O. Busch

132

,

Z. Buthelezi

67

,

J.B. Butt

16

,

J.T. Buxton

19

,

J. Cabala

118

,

D. Caffarri

35

,

H. Caines

141

,

A. Caliva

54

,

E. Calvo Villar

105

,

P. Camerini

25

,

F. Carena

35

,

W. Carena

35

,

F. Carnesecchi

12

,

27

,

J. Castillo Castellanos

15

,

A.J. Castro

129

,

E.A.R. Casula

24

,

C. Ceballos Sanchez

9

,

J. Cepila

39

,

P. Cerello

113

,

J. Cerkala

118

,

B. Chang

127

,

S. Chapeland

35

,

M. Chartier

128

,

J.L. Charvet

15

,

S. Chattopadhyay

137

,

S. Chattopadhyay

103

,

A. Chauvin

97

,

36

,

V. Chelnokov

3

,

M. Cherney

89

,

C. Cheshkov

134

,

B. Cheynis

134

,

V. Chibante Barroso

35

,

D.D. Chinellato

124

,

S. Cho

51

,

P. Chochula

35

,

K. Choi

99

,

M. Chojnacki

83

,

S. Choudhury

137

,

P. Christakoglou

84

,

C.H. Christensen

83

,

P. Christiansen

34

,

T. Chujo

132

,

S.U. Chung

99

,

C. Cicalo

108

,

L. Cifarelli

12

,

27

,

F. Cindolo

107

,

J. Cleymans

92

,

F. Colamaria

33

,

D. Colella

56

,

35

,

A. Collu

76

,

M. Colocci

27

,

G. Conesa Balbastre

73

,

Z. Conesa del Valle

52

,

M.E. Connors

141

,

ii

,

J.G. Contreras

39

,

T.M. Cormier

87

,

Y. Corrales Morales

113

,

I. Cortés Maldonado

2

,

P. Cortese

32

,

M.R. Cosentino

123

,

125

,

F. Costa

35

,

J. Crkovská

52

,

P. Crochet

72

,

R. Cruz Albino

11

,

E. Cuautle

63

,

L. Cunqueiro

35

,

62

,

T. Dahms

36

,

97

,

A. Dainese

110

,

M.C. Danisch

96

,

A. Danu

59

,

D. Das

103

,

I. Das

103

,

S. Das

4

,

A. Dash

81

,

S. Dash

48

,

S. De

49

,

123

,

A. De Caro

30

,

G. de Cataldo

106

,

C. de Conti

123

,

J. de Cuveland

42

,

A. De Falco

24

,

D. De Gruttola

30

,

12

,

N. De Marco

113

,

S. De Pasquale

30

,

R.D. De Souza

124

,

A. Deisting

100

,

96

,

A. Deloff

79

,

C. Deplano

84

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

35

,

P. Di Nezza

74

,

B. Di Ruzza

110

,

M.A. Diaz Corchero

10

,

T. Dietel

92

,

P. Dillenseger

61

,

R. Divià

35

,

Ø. Djuvsland

22

,

A. Dobrin

84

,

35

,

D. Domenicis Gimenez

123

,

B. Dönigus

61

,

O. Dordic

21

,

T. Drozhzhova

61

,

A.K. Dubey

137

,

A. Dubla

100

,

L. Ducroux

134

,

A.K. Duggal

90

,

P. Dupieux

72

,

R.J. Ehlers

141

,

D. Elia

106

,

E. Endress

105

,

H. Engel

60

,

E. Epple

141

,

B. Erazmus

116

,

F. Erhardt

133

,

B. Espagnon

52

,

S. Esumi

132

,

G. Eulisse

35

,

J. Eum

99

,

D. Evans

104

,

S. Evdokimov

114

,

G. Eyyubova

39

,

L. Fabbietti

36

,

97

,

D. Fabris

110

,

J. Faivre

73

,

A. Fantoni

74

,

M. Fasel

87

,

76

,

L. Feldkamp

62

,

A. Feliciello

113

,

G. Feofilov

136

,

J. Ferencei

86

,

A. Fernández Téllez

2

,

E.G. Ferreiro

17

,

A. Ferretti

26

,

A. Festanti

29

,

V.J.G. Feuillard

72

,

15

,

J. Figiel

120

,

M.A.S. Figueredo

123

,

S. Filchagin

102

,

D. Finogeev

53

,

F.M. Fionda

24

,

E.M. Fiore

33

,

M. Floris

35

,

S. Foertsch

67

,

P. Foka

100

,

S. Fokin

82

,

E. Fragiacomo

112

,

A. Francescon

35

,

A. Francisco

116

,

Riferimenti

Documenti correlati

Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features,

With the aim of describing the correlation between early childhood caries (ECC) and the phenomenon of child neglect, a ques- tionnaire which recorded socio-economic and

The goals of this study are to (1) explore the disparity of both †Pseudorhina and Squatina, and among the clades within extant Squatina (Fig.  1 A), (2) observe whether

The high energy range implies that the K-edge absorption technique based on beam filtration, as previously described (see Sec. A possible solution is to use Compton scattered

Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling.. Carlotta Giorgi 1,* , Massimo Bonora 1,* , Sonia Missiroli 1 ,

Our Little Sister Diario Di Kamakura 7; Alle tre sorelle Koda, un giorno, arriva la notizia della morte del padre.. La

GBS strains showed 100% susceptibility to penicillin. Erythromycin resistance rate was 26 %, and clindamycin resistance rate was 22%, in accordance to literature. Of 13 isolates