and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
ContentslistsavailableatSciVerseScienceDirect
The
International
Journal
of
Biochemistry
&
Cell
Biology
j o u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / b i o c e l
An
active
mitochondrial
biogenesis
occurs
during
dendritic
cell
differentiation
Patrizia
Zaccagnino
a, Maddalena
Saltarella
a, Stefania
Maiorano
a, Antonio
Gaballo
b, Giuseppe
Santoro
c,
Beatrice
Nico
a,
Michele
Lorusso
a,∗,
Annalisa
Del
Prete
a,d,∗∗aDepartmentofBasicMedicalSciences,UniversityofBari,PiazzaG.Cesare11,70124Bari,Italy
bInstituteofBiomembraneandBioenergetics,CNR,PiazzaG.Cesare,70124Bari,Italy
cDIMO,UniversityofBari,PiazzaG.Cesare,70124Bari,Italy
dHumanitasClinicalandResearchCenter,viaManzoni56,20089Rozzano(MI),Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received6March2012
Receivedinrevisedform3July2012
Accepted24July2012
Available online xxx Keywords:
Dendriticcelldifferentiation
Mitochondrialrespiratorycomplexes
Mitochondrialbiogenesis
Anti-oxidantenzymes
a
b
s
t
r
a
c
t
Dendriticcells(DC)aresentinelsoftheimmunesystemderivingfromcirculatingmonocyteprecursors recruitedtositesofinflammation.Inapreviousreport(DelPreteetal.,2008)weshowedthat,after dif-ferentiation,DCexhibitedincreasednumberofcondensedmitochondriaanddynamicchangesintheir energymetabolism.AstudyispresentedhereshowingthattheDCdifferentiationprocessis character-izedbyincreasedexpressionlevelandactivityofmitochondrialrespiratorycomplexes,aswellasbyan increasedmitochondrialDNA(mtDNA)copynumber.Moreover,DCareequippedwithmoreefficient antioxidantprotectionsystems,overexpressedmostlikelytodetoxifyincreasedROSproduction,asa consequenceofthemuchhighermitochondrialactivity.Kineticanalysisofthethreemain mitochon-drialbiogenesis-associatedgenesrevealedthatthepeakinPPAR␥coactivator-1alpha(PGC-1␣)gene expressionwassuddenlyreachedfewhoursaftertheonsetofthedifferentiation.WhilePGC-1␣ expres-sionrapidlydeclines,themitochondrialtranscriptionfactorA(TFAM)andnuclearrespiratoryfactor-1 (NRF-1)expressiongraduallyincreased.Thesefindingsdemonstratethatanactivemitochondrial bio-genesisoccursduringDCdifferentiationandfurthersuggestthatanearlyinputbythemasterregulator ofmitochondrialbiogenesisPGC-1␣isneededtotriggerthesubsequentactivationofthedownstream transcriptionfactors,NRF-1andTFAMinthisprocess.
© 2012 Elsevier Ltd. All rights reserved.
1. Introduction
Dendriticcellsareprofessionalantigenpresentingcellsthatplay acriticalroleintheinitiationandregulationofadaptiveimmune responses(Steinman,2003).DCderivefrombonemarrow progen-itorsorfrommonocytesandtheneitherstayinthebloodstream ormigrateintoperipheraltissues,wheretheyshowanimmature phenotype.ImmatureDC,suchasLangerhanscellsintheskin,actas sentinels,continuouslytakingupantigensandundergoing activa-tion(Banchereauetal.,2000).Duringtheirmaturation,DCmigrate tosecondary lymphoid organs, where theybecome specialized immune-stimulatorycellsabletoactivatenaiveTcells(Sozzani, 2005).
Inapreviousreport,weshowedthatthedifferentiationprocess of peripheral blood monocytes to DC requires growth factor
∗ Correspondingauthor.Tel.:+390805448522;fax:+390805448538.
∗∗ Correspondingauthorat:DepartmentofBasicMedicalSciences,Universityof
Bari,PiazzaG.Cesare11,70124Bari,Italy.Tel.:+390805448522;
fax:+390805448538.
E-mailaddresses:[email protected](M.Lorusso),
[email protected](A.DelPrete).
dependent production of intracellular Reactive Oxygen Species (ROS)(DelPreteetal.,2008;seealsoSattleretal.,1999;Shengetal., 2010).As revealed by ultrastructural analysis,DC exhibited an increasednumberofcondensedmitochondriacomparedto mono-cyteprecursors.Ahigherendogenousrespiratoryactivitytogether withanincreaseinATPcontentandmitochondrialenzymecitrate synthaseactivitywasalsofound.Moreover,thepresenceof mito-chondrialComplexIinhibitorrotenoneintotheculturemedium caused inhibition of the DC differentiation process, through inhibitionofmitochondrialROSproduction(DelPreteetal.,2008). MitochondriaarebestknownfortheirroleinATPproduction throughoxidativephosphorylation,calciumhomeostasis, apopto-sis and cell signalling (Kroemer and Reed, 2000; Chan, 2006). Furthermore,mitochondriaarethemajorsourceofendogenous ROSthatplayakeyroleincellphysiologyincludingcell differenti-ationandproliferation(Kiefeletal.,2006).Mitochondriapossess theirown genomic apparatus,mtDNA, a 16.5kb closed-circular doublestrandedDNA,whichcodesforsomeoftheirproteins. Con-sequently,mitochondrialbiogenesisishighlyorchestratedbythe transcriptionalregulatorycircuitsbetweenthismtDNAandnuclear genesencodingmitochondrialproteins(GaresseandVallejo,2001; Kellyand Scarpulla,2004).Transcriptionof mtDNA requires,in addition tothemitochondrial specific DNA polymerasegamma
1357-2725/$–seefrontmatter © 2012 Elsevier Ltd. All rights reserved.
(POLG), a small number of nucleus-encoded proteins compris-ing the mitochondrial transcription factor A (TFAM) (Clayton, 1998; Scarpulla, 2002). Additional regulating elements include thetranscriptionfactorNRF-1andmembersofthePGC-1family (Scarpulla,2008).Inparticular,PGC-1␣appearsasamaster regu-latorofmitochondriabiogenesisduetoitsabilitytoactivateTFAM throughdirectinteractionwithNRF-1(GoffartandWiesner,2003; Scarpulla,2011).
Inthepresentstudytheprocessofmitochondrialbiogenesis accompanyingthedifferentiationofmonocyte precursorsinDC wasexamined. In particular, we focused onthe structural and functionalchangesinmitochondrialrespiratorycomplexesandthe expressionandactivityofanti-oxidantenzymesoccurringduring thisprocess.Moreover,adirectcomparisonoftheexpressionlevel ofmitochondrialproteinswasperformedbyusinganewtechnical approachwhichallowspuremitochondrialfractiontobeisolated frombothmonocytesandDC.Finally,themtDNAcontentandthe geneexpressionchangesoccurringduringthemonocytetoDC tran-sitionwerestudied,togetherwiththekineticsofthetranscription ofmitochondria-relatedgenesoverthe6-dayscultureperiod.
2. Materialsandmethods
2.1. Dendriticcellgenerationandcharacterization
Peripheralblood mononuclearcells(PBMC)wereisolatedby thestandardFicoll-Paque(Amersham,UK)gradientcentrifugation frombuffycoats(obtainedthroughthecourtesyofthelocalBlood Bank,PolyclinicHospital,Bari,Italy).Monocyteswerepurifiedby immunomagneticseparationusinganti-CD14conjugatedmagnetic microbeads(MiltenyiBiotec,BergischGladbach,Germany)and cul-turedfor6daysat1×106/mlinRPMI1640medium(BiochromAG,
Leonorenstr,Berlin)supplementedwithheat-inactivated10%FBS (EuroClone,Milan,Italy),GM-CSF(50ng/ml)andIL-4(20ng/ml) (R&DSystems,Minneapolis,MN).Surfacephenotypeanalysiswas performedusinghumanMo-DCdifferentiationinspector, contain-ingmonoclonalantibodiesrecognizingCD14,CD83andCD209and correspondingisotypecontrols(MiltenyiBiotec).
2.2. Mitochondriaisolationwithsuperparamagneticmicrobeads MitochondriafrommonocytesandDCwerepurifiedbyusing the superparamagnetic anti-translocase of outer mitochondrial membrane 22 (-TOM22) microbeads (Miltenyi Biotec). Briefly, monocytesandDCwerewashedtwicewithphosphate-buffered saline(PBS),andlysedbyshearingthroughaneedle(29G) approx-imately40times.Aftercelldisruption,analiquotofthelysatewas examinedfortrypanblueexclusiontoensurethat80%ofthecells werelysed.Formagneticlabelling,celllysatewasincubatedwith anti-TOM22microbeadsfor60minat 4◦C, withgentleshaking. Subsequently,cellsuspensionwasloadedontoapre-equilibrated MACScolumn,andfinally,retainedmitochondriawereeluted. Fol-lowingcentrifugation at16,000×g for1min,themitochondrial pelletwasfinallyresuspendedintheappropriatestoragebuffer. 2.3. Measurementofrespiratorycomplexactivities
Monocytes and DC were suspended in a medium contain-ing 75mM sucrose, 40mM KCl, 5mM KH2PO4, 3mM MgCl2,
0.5mMEDTA and30mMTris–HCl(pH 7.4)(BufferA)and sup-plementedwith30g/106cellsdigitoninaspreviouslydescribed
(Sgobboetal.,2007).After2min,cellsuspensionwascentrifuged and thepelletwasresuspended inhypotonic medium contain-ing25mMKH2PO4 (pH 7.2),5mMMgCl2 andtheanti-protease
cocktail tablet (Roche, Basel, CH) (BufferB). After freezingand thawingthreetimes,theproteinconcentrationwasdetermined.
EnzymeactivitiesweremeasuredusingaBeckmannDU7400 spec-trophotometer.ComplexIactivitywasassayedbyfollowingthe rotenone-sensitiveinitialrateofNADHoxidationat340–425nm (ε=6.81mM−1cm−1).200g/mlproteinwereaddedtoBufferB containing2.5mg/mlofBSA,2.2mMKCN,3.6g/mlantimycinA and71Mdecylubiquinone.Thereactionwasstartedbythe addi-tionof68MNADHfollowedby1.8g/mlrotenone.ComplexIV activitywasmeasuredfollowingtheoxidationofferrocytochrome cat550–540nm(ε=19.1mM−1cm−1).50g/mlofproteinwere addedtoBufferBsupplementedwith3.3g/mlantimycinAand 500Mdodecylmaltoside.Thereactionwasstartedbytheaddition of9Mreducedcytochromec,intheabsenceandinthepresence of1.6mMKCN.
2.4. MeasurementofintracellularATP
ATP concentration wasdetermined usinga bioluminescence somaticcellassaykit,followingthemanufacturer’sinstructions. 2×104cellswereusedforeachsample.Chemiluminescence
sig-nals were acquired with a Victor X3 Multilabel Plate Readers (PerkinElmer,SanJosè,CA,USA).
2.5. Measurementoflactateproduction
Analysisoflactatereleasedintotheculturemediumwas car-riedoutspectrophotometricallybyfollowingNAD+ reductionat
340nm,aspreviouslydescribed(DelPreteetal.,2008). 2.6. Anti-oxidantenzymeactivities
Superoxidedismutase(SOD)activitywasmeasuredusingthe SOD assay kit (CaymanChemical, Ann Arbor,MI), accordingto themanufacturer’sinstructions.Briefly,monocytesandDCwere centrifugedat16,000×gfor1minandthecellpelletwas homog-enizedusinga29Gneedleandcentrifugedat1500×gfor5minat 4◦C.Finally,thesupernatantwasusedforanalysisofSOD activ-ity. Theadditionof4mM KCNtotheassaywasusedtoinhibit bothCuZn-andextracellular-SOD,thusallowingthedetectionof theactivityofMnSODonly.OneunitofSODwasdefinedasthe amountofenzymecatalysing50%dismutationofthesuperoxide radical.Absorbancechangewasrecordedat450nmusingaVictor X3MultilabelPlateReaders.Catalaseactivitywasassayedby mon-itoringspectrophotometricallytherateofdecompositionofH2O2
at240nmaspreviouslydescribed(Pacellietal.,2011). 2.7. Westernblottinganalysis
Monocytes and DC orisolated mitochondriawere separated on 12% Tris–Tricine SDS-PAGE and blotted onto nitrocellulose membrane.Westernblot(WB)analysiswascarriedoutusingthe followingprimaryantibodies:Fe–Sprotein3(NDUFS3)ofComplex I(MitoSciencesInc.;Eugene,OR,USA),CoreIsubunitofComplexIII, COXIVofComplexIVandporin(VDAC)(Invitrogen,Carlsbad,CA, USA),TOM22andTFAM(GeneTex,Inc.,Irvine,CA,USA),MnSODand CuZnSOD(Millipore,Billerica,MA,USA),Catalase(Calbiochem,San Diego,CA,USA),andGAPDH(AbDSerotec,Dusseldorf,Germany), NRF-1(Abcam,Cambridge,UK)accordingtothemanufacturers’ suggestedconcentrations.Proteinsweredetectedby chemilumi-nescentLiteAblotreagent(EuroClone)andtherelativeopticalband densitieswerequantifiedbydensitometricanalysisusingQuantity One-4.4.1imagingsoftware(Bio-RadLaboratories).
2.8. mtDNAquantification
FordeterminationofthemtDNAcopynumber,totalDNAwas isolatedfrom5×106 monocytesandDCusingEuroGOLDTissue
DNAMiniKit(Euroclone).ContentofmtDNApercellwasmeasured byusinghumanmitochondrialDNAqPCRDetectionkit(GeneMore s.r.l.,Mo,Italy).
2.9. Real-timequantitativereversetranscription-PCR
Transcript levels were quantified by real-time reverse transcription-PCR by extracting total RNA using Trizol (Invit-rogen)frommonocytesandDC.RNAwasthenfurtherpurifiedand DNasetreated(Roche).First-strandcDNA wassynthesizedfrom 1goftotalRNAusingiScriptTMcDNASynthesisKit(Bio-Rad)and
Oligo dT-primers, according tothe manufacturer’s instructions. mRNA expression for genes of interest was performed by RT real-time PCR withtheiQ SYBRgreenSupermix (Bio-Rad) on a Bio-Rad iCycler iQ instrument. About 10% of each RT reaction was used to run real-time PCR reactions. The real-time PCR conditionswere: 20 at94◦C, 30 at59◦C, 45 at 72◦C for 45 cycles, followed bya melt curve cycle.Quantitative normaliza-tion of cDNA in each sample was performed using GAPDH as internal control. Samples were analysed in duplicate. Relative geneexpression levelsweredetermined bythe comparativeCt
method.ForRTreal-timePCRexperimentsthefollowingprimer setswereused: HNRF-1Fsense5 -CCAGACGACGCAAGCATCAG-3, HNRF-1 R antisense 5-GGGATCTGGACCAGGCCATT-3 (gene nrf-1);HTFAM F sense5-TGTTCACAATGGATAGGCAC-3 HTFAM Rantisense5-TCTGGGTTTTCCAAAGCAAG-3(genemt-tfa); Real-ESSS-FinEx2sense5-ACCCAGACTCCCATGGTTATG-3,Real-163-R antisense 5-GGACCACTCTTTCATCCCATCC-3 (gene ndufs11); Glic-1 F sense 5-GAAGGTGAAGGTCGGAGT-3, Glic-4 R anti-sense 5-CATGGGTGGAATCATATTGGAA-3 (gene Gapdh); Cyt SOD F sense 5-TGGTTTGCGTCGTAGTCTCCT-3, Cyt SOD R anti-sense 5-AATGCTTCCCCACACCTTCA-3 (gene sod1); MnSOD F sense 5-CTGGACAAACCTCAGCCCT-3, MnSOD R antisense 5 -CTGATTTGGACAAGCAGCAA-3 (gene sod2); Catalase F sense 5-TGGAAAGAAGACTCCCATCG-3, Catalase R antisense 5 -CCAGAAGTCCCAGACCATGT-3(genecatalase);PGC-1alphaFsense 5-AAACAGCAGCAGAGACAAATGC-3, PGC-1alpha R antisense 5-TTGGTTTGGCTTGTAAGTGTTGTG-3(genepgc-1alpha). 2.10. Electronmicroscopy
Monocytes,immatureDC(iDC)andmatureDC(mDC)werefixed in3%GTA(glutaraldehyde)in0.1Msodiumphosphatebuffer(pH 7.4)for2h,washedinthesamebufferandthenpostfixedin1% OsO4at4◦C.Afterward,cellsweredehydratedingradedethanol,
and embeddedin Epon 812.60nm ultrathinsections werecut withadiamondknifeonaLKB-Vultratome,stainedwithuranyl acetatefollowedbyleadcitrateandexaminedunderaZeissEM109 electronmicroscope(Zeiss,Oberkochen,Germany).Digitalimages wereanalysed and recorded with a cooled camera Gatan CMS (GatanGmbH,München,Germany).
2.11. Statisticalanalysis
Results are expressedas mean±SEM. Statistical significance wasdeterminedbyStudent’sttest.Differenceswereconsidered significantwhenp<0.05.
3. Resultsanddiscussion
Ultrastructuralanalysisrevealedasignificantincrementinthe number ofcondensed mitochondriain immature DC compared tomonocytes(DelPreteetal.,2008).Toinvestigatewhetherthe differentiationwas accompanied by structural as wellas func-tionalchangesinmitochondrialrespiratorychaincomplexes,we analysedtheexpressionlevel ofprotein subunitsof respiratory
complexes,aswellastheirspecificenzymaticactivities.Since load-ingofequalamountofproteininWB systemdidnotshowany majordifference betweenmonocytesand DCin theabundance ofthemitochondrialcomplexesproteinlevels(Fig.1A),proteins derivedfromanequalnumberofnucleiwereloaded.ThisWB anal-ysismethod,currentlyused byothers(Frankoetal.,2008),can indeedtakeintoaccounttheproteinsynthesisoccurringduring DCdifferentiationand demonstratetheactualincreasein mito-chondrialproteinsper nucleargene copy. Fromthis analysis,a statisticallysignificantincreaseintheproteinlevelofNDFUS3of ComplexI(1.79fold),CoreIofComplexIII(2.28fold),andCoxIV ofComplexIV(2.07fold)(Fig.1B)wasobservedinDCcompared tomonocytes.Theincreaseintheexpressionofproteinsubunitsof respiratoryenzymeswasaccompaniedbychangesoftheircatalytic function.Infact,asshowninFig.1C,theenzymaticactivityof Com-plexIin monocytes,corresponding to0.22±0.05nmol/min/106
cells,increasedto1.36±0.20nmol/min/106cellsinDC(6.18fold).
Similarly,DCshowed4.47foldincreaseintheactivityofComplexIV comparedtomonocytes(6.74±0.46vs1.42±0.18nmol/min/106
cells, respectively).In order tocomparedirectly theexpression of mitochondrial proteins between monocytes and DC, a new magneticsortingmethodwasusedtoisolatepurefunctional mito-chondriafromculturedcells,whichturnedoutsuitablealsofora smallnumberofhumanprimarycells(Hornig-Doetal.,2009).WB analysisshowedthattheexpressionoftheoutermembrane pro-teinsTOM22,VDAC,andNDUFS3inmitochondriaisolatedfrom anequalnucleusnumberwassignificantlyincreasedinDC com-paredtomonocytes(Fig.1D).Overall,thesefindingsindicatethat, duringthedifferentiationprocessofmonocytesintoDC, mitochon-drialactivityisgreatlyenhanced,asrevealedbytheincreaseinthe respiratoryenzymeactivitiesandintheirproteinexpressionlevels. IndifferentiatedDC,mitochondrialoxidativephosphorylation systemappearstoprovidemostofcellularATPproduction.Infactas showninFig.2theATPcontentindifferentiatedDCincreased pro-gressivelyalongwiththedifferentiationprocess.Treatmentwith therespiratorychaininhibitorrotenonereducedmarkedlytheATP content,alsocausingaverylargeincreaseoflactateproduction. Conversely,intheabsenceofrotenone,lactatereleaseintheculture mediumwasmuchlower.Thisstronglysuggeststhattheincreased electron transfer capacity upondifferentiation impliesa higher utilizationofmitochondriaforATPsynthesis.Interestingly,the acti-vationprocessofTlymphocytesthroughCD28signallinghasbeen describedtobeassociatedmainlytoenhancedglycolysis,withonly asmallproportionofglucoseoxidizedinmitochondria(Frauwirth etal.,2002).Fromtheseresultsitcanbearguedthatcell differenti-ationandactivation,whicharedefinitelydistinctprocesses,might exhibitdifferentmetabolicstate.
WehavepreviouslyshownthatapeakofROSproduction, last-ingalmost1h,tookplaceaftertheadditionofgrowthfactorsto monocytesuspension.Thepresenceofrotenoneinthemonocyte culture,aswellasthatoftheclassicalantioxidantCatalase,caused asimilardropinROSproductionandasuppressionoftheDC differ-entiationasrevealedbyasubstantialreductioninCD1aexpression. Undertheseconditionsoxygenconsumptionactivitymeasuredat day+6resultedtobestronglyinhibited(DelPreteet al.,2008). Theseexperimentsprovideevidencefora causalityrelationship betweenROSand electrontransferactivityaccompanying mito-chondrialbiogenesis.
Furthermore,sincetheprogressivelyincreaseofmitochondrial activityofDC,comparedtomonocytes,likelyrepresentsahigher potentialofROSproduction,itseemsplausiblethatDCmightbe equipped withmore efficient antioxidant enzymatic protection systems in order to detoxify ROS. To test this hypothesis, we analysed the activity and the expression of main anti-oxidant enzymes.Fig.3reportsmeasurementsoftheactivityofCatalase (A)andofthecytosolic(CuZn)andmitochondrial(Mn)superoxide
Fig.1. MitochondrialrespiratorycomplexesduringDCdifferentiation.(A)WBanalysisofmitochondrialrespiratorycomplexproteinsinmonocytesandDC.Equalamount
ofproteins(50g,upperpart)orproteinscorrespondingtoequalnumberofcells(2×106,lowerpart)fromarepresentativedonorsamplewereloadedandthemembranes
wereprobedfortheindicatedproteins.(B)Quantitativedataderivedfromthedensitometricanalysisofthebandsisreportedin(A).Valuesarereportedasmean±SEM
(n=4).(C)EnzymaticactivitiesofComplexIandComplexIVasnmol/min/106monocytesandDC.Valuesarereportedasmean±SEM(n=4).(D)WBanalysisofTOM22,
VDACandNDUFS3frommitochondrialfractionisolatedfrom6×106monocytesandDC(DC/monocytes:TOM22,6.6;VDAC,8.7;NDUFS3,6.9fold).Oneexperimentoutof
threeisrepresented(*p<0.05,**p<0.01,***p<0.001,DCvsmonocytes).
0
2
4
6
8
10
12
14
16
0 3 6
Control
Rotenone
0
200
400
600
800
0 3 6
ATP con
tent
Lact
ate produc
tion
nmol ATP/10
6cells
Lactate (
μ
M)
Days Da
ys
*
**
**
***
Fig.2. ATPcontentandlactateproductionevaluatedintheabsenceandinthepresenceoftherespiratorychaininhibitorrotenone.ATPlevelsexpressedasnmolATP/106
cellsandlactatereleasedintheculturemedium(M)weremeasuredinmonocytes(day0),atintermediatetimepoint(day3)andinDC(day6),intheabsenceandinthe
Fig.3.Anti-oxidantenzymeactivityandexpressionduringDCdifferentiation.ActivityofCatalase(A)andMnSODandCuZnSOD(B)inmonocytesandDC.Resultsare
indicatedasmean±SEM(n=4).(C)WBanalysisofproteinsfromanequalnumberofmonocytesandDC(oneexperimentoutofthreeisrepresented).(D)Geneexpressionof
Catalase,MnSODandCuZnSODbyreal-timeqPCRexperiments.Resultsareexpressedasfoldincrease(DC/monocytes).Valuesarereportedasmean±SEM(n=4)(*p<0.05,
**p<0.01,DCvsmonocytes).
dismutase (B).The enzymatic activity of Catalase in monocyte precursors(approximately3nmol/min/106cells)increasedabout
twofoldupondifferentiation.Theanalysisoftheenzymatic activ-ityofSODrevealedthatthemitochondrialMnSODformincreased muchmore(4.11±0.39vs57.78±5.3U/106 cells,monocytesvs
DC)thanthecytosolicform(14.88±0.88vs94.2±15.9U/106cells,
monocytesvs DC),suggesting that a moreintense anti-oxidant activity occurs in the mitochondrial compartment of DC. WB analysisconfirmedtheabovedata.Infact,densitometricanalysis showeda relevant increase (30.4±6.9 fold) in MnSODprotein expression,whilethecytosolicenzymes,CatalaseandCuZnSOD, resultedonlyslightlyincreaseduponDCdifferentiation(2.8±0.7 foldand4.7±0.1fold,respectively)(Fig.3C).
Changesinanti-oxidantenzymegeneexpressionoccurring dur-ing DC differentiation is shown in Fig. 3D. While the relative geneexpressionofthecytosolicenzymesCatalaseandCuZnSOD revealedasignificantincreaseinDCcomparedtomonocytes(12.7 and6fold,respectively),noinductionwasobservedintheRNAlevel ofMnSOD(0.21fold).Thisapparentlycontrastingobservationthat amajorinductionofMnSODisseenattheproteinlevelthanat theRNAlevelhasbeenalsoreportedpreviously(Angenieuxetal., 2001)andexplainedconsideringthatthelocalizationintothe mito-chondrialmatrixwouldprotectthematuremitochondrialprotein fromproteolyticdegradation.Consequently,itcanbededucedthat duringDCdifferentiationprocess,takingplacein6-daysculture,
largeincreaseintheconcentrationofmitochondrialproteins,such asMnSOD,canoccurfrommarginalincreaseofthecorresponding mRNAlevels(Angenieuxetal.,2001).Overall,thesefindings con-firmedpreviousobservations(Rivollieretal.,2006)showingthat DCareequippedwitha veryefficientanti-oxidantsystemsthat mayassurehigherresistancetooxidativeenvironments.
Thehigherefficiencyofantioxidantapparatuswefoundin mito-chondriaascompared tothecytosoliccompartmentofDC may reflectaconditionwheremostofsuperoxideisproducedinthe matrix.IthasinfactbeenreportedthatComplexIgenerated super-oxideisreleasedexclusivelyintothematrix,togetherwith50%of thesuperoxideproducedbyComplexIII(Mulleretal.,2004).On theotherhand,thekeyroleofthemitochondrialSODisillustrated by thelethalphenotypeof micelacking thematrix superoxide dismutase(Sod2)gene (Li etal.,1995).Finally,as describedfor osteogenicdifferentiationofhumanmesenchymalstemcells(Chen etal.,2008),ourobservationssuggestthatduringDCdifferentiation a coordinatedregulationbetweenmitochondrialbiogenesisand anti-oxidantdefencesystemsneedstobeorchestratedinorderto letROSproductiontriggerdifferentiationbut,atthesametime, pre-ventaccumulationofROSwhenaerobicmitochondrialmetabolism becomesdominant.
Toclarifythemechanismsunderlyingtheregulationof mito-chondrial biogenesis occurring during DC differentiation, we investigatethemtDNA copy numberand themRNAexpression
0 100 200 300 400 500
Monocytes
DC
mtDNA/cell
A B
C
0 2 4 6 8 10-1 0 1 2 3 4 5 6 7
PGC-1
NRF-1
TFAM
α
Gene expression (Fold)
0 2 4 6 8
NRF-1 TFAM
PGC-1
Gene expression (Fold)
Monocytes
DC
α
Days
Fig.4.MitochondrialbiogenesisoccurringduringDCdifferentiation.(A)mtDNAcopynumberpercell.Valuesarereportedasmean±SEM(n=4).(B)mRNAlevelsofNRF-1,
TFAM,andPGC-1␣.mRNAlevelsweredeterminedbyRTqPCRoftotalRNAnormalizedtoGAPDH.Resultsareexpressedasfoldincrease(DC/monocytes).Dataaremeans±SEM
ofindependentdeterminations(n=4).(C)Kineticstudy(day0,+1and+6)ofmRNAlevelsofthethreegenes.Resultsfromarepresentativeexperimentareexpressedasfold
increase.
levels of the main mitochondrial biogenesis-associated genes, includingPGC-1␣,TFAM,and NRF-1, bothin monocyte precur-sorsandinDC.Real-timeqPCRexperimentsrevealedthatmtDNA copieswereapproximatelyincreasedby3.5foldinDCcompared tomonocytes(Fig.4A).TheincreaseofmtDNAwasassociatedwith thetriggeringofthemitochondrialbiogenesisactivationpathway. Infact,thegeneexpressionofNRF-1andTFAM(Fig.4B)was sig-nificantincreasedinDCcomparedtomonocytes(NRF-1,4.84and TFAM,3.78fold).Unexpectedly,attheendofthedifferentiation process,DCshowedverylowlevelofPGC-1␣geneexpression,even lowerthanmonocyte precursors(0.21fold).However,akinetic studyofthethreemainmitochondrialbiogenesis-associatedgenes revealedthatthepeakinPGC-1␣geneexpressionwassuddenly reached3haftertheadditionofspecificDCdifferentiationsoluble factors(GM-CSFandIL-4)inmonocyteculturemedium.PGC-1␣ expressionrapidlydeclinedafter24hculture,whileNRF-1and TFAMshowedagradualincreaseintheirexpressionculminatingat theendofthedifferentiationprocess(Fig.4C).Thesefindings sug-gestthatanearlyinputbythemasterregulatorofmitochondrial biogenesisPGC-1␣isneededtotriggerthesubsequentactivation ofthedownstreamtranscriptionfactors,NRF-1andTFAM,during DCdifferentiation.
Ultrastructural features of mature DC (mDC) compared to immatureDC(iDC)andmonocytes,togetherwiththeexpression levelsofbothmitochondrial biogenesisproteinsandrespiratory enzymeswereanalysed.Nosubstantialdifferenceswereobserved
betweeniDCandmDContheultrathinsections(Fig.5BandC). DCappearedaselongatedorflattenedcellswiththin plasmamem-branes filopodia and eucromatic nuclei, containing numerous rounded or rod-like mitochondria, in a typical condensed form (Fig.5EandF).Monocytesshowedbothcondensedandorthodox mitochondria,theselatterhavingathininter-membranespaceand lamellarcristae(Fig.5AandD).Thequantitativeanalysisof mito-chondriaof thedifferentcelltypesisreportedin Fig.5G.From morphometricanalysisnosignificantdifferencesinthecondensed mitochondrianumberwereobservedbetweeniDCandmDC,which were,ontheotherhand,significantlyincreasedcomparedto mono-cytes. Thusthe final DC maturation step does not seem to be accompaniedbymoreactivemitochondrialbiogenesis.
Inconclusion,whatisemergingfromtheseandthepreviously reporteddata(DelPreteetal.,2008)isthatthesuddenROS pro-ductionuponadditionofthedifferentiationfactorstothemonocyte precursorsuspensioninducesarapidincreaseofPGC-1␣,aprocess lastinglessthanoneoutthesixdaysrequiredfortheir differenti-ationintoDC.Sincetheincreaseofmitochondrialnumber/activity induced by PGC-1␣may cause in principle an increase of ROS production,thentheproteinplaysaroleintheregulationofthe ROSmetabolicprogram,leadingtoover-expressionofROS detox-ifyingenzymes,inparticularMnSOD(St-Pierreetal.,2006).ROS levelinthematrix,wheresuperoxideismostlyreleased,isthus maintaineddefinitelylow tohavecells functioningnormally.In summary,thisstudydemonstrates,forthefirsttime,thatanactive
Fig.5.TEManalysis,respiratorychainenzymeexpressionandmitochondrialbiogenesisproteinsinmDC,iDCandmonocytes.Ultrastructuralanalysisofmonocytes(A),
immature(B)matureDC(C).DC(B,C)linedbytheplasmamembranewithfillipodiesandpseudopodesshowthecytoplasmwithnumerouscondensedmitochondria(E,F).
Monocytesshowmitochondriawithorthodoxic(asterisk)andcondensed(arrow)conformation(A,D).Scalebars(originalmagnification):A–C,1.42m;D–F,0.25m.(G)
Forthemorphometricanalysis,mitochondriaof10cellsforeachsamplewerecountedontheelectronmicrographsatfinalmagnificationof12,000×bycomputer-aided
analysis.Themeanvalueforallthemicrographs±SEMareindicated(*p<0.05,iDCandmDCvsmonocytes).(H)WBanalysisofmitochondriabiogenesisandrespiratory
complexproteinsubunitsinmonocytes,iDCandmDCfromarepresentativedonorsampleoutofthreeexperiments.
mitochondrialbiogenesisoccursduringthedifferentiationprocess ofmonocytesintoDC.Moreover,thefineregulationbetween PGC-1␣andtheexpressionofmitochondrialROS-detoxifyingenzymes mightrepresentapotentialtargetinthosepathologicalconditions whereDCfunctionsandmetabolicalterationsaresimultaneously involved.
Disclosures
Noconflictsofinterestaredeclaredbytheauthors.
Acknowledgements
This work was financially supported by National Research Projects(PRIN)fromMIUR(Ministerodell’IstruzioneUniversitàe Ricerca),andItalianMinistryofHealth(ProgettoGiovani Ricerca-tori2007).WethankDr.SusannaD’OriaandDr.AnnaAbbresciafor technicalassistanceandDr.ElisabettaCrollofromthelocalblood bank.
References
AngenieuxC,FrickerD,StrubJM,LucheS,BausingerH,CazenaveJP,etal.Gene
inductionduringdifferentiationofhumanmonocytesintodendriticcells:an
integratedstudyattheRNAandproteinlevels.FunctionalandIntegrative
Genomics2001;1:323–9.
BanchereauJ,BriereF,CauxC,DavoustJ,LebecqueS,LiuYJ,etal.Immunobiology
ofdendriticcells.AnnualReviewofImmunology2000;18:767–811.
ChanDC.Mitochondria:dynamicorganellesindisease,aging,anddevelopment.Cell
2006;125:1241–52.
ChenCT,ShihYR,KuoTK,LeeOK,WeiYH.Coordinatedchangesofmitochondrial
biogenesisandantioxidantenzymesduringosteogenicdifferentiationofhuman
mesenchymalstemcells.StemCells2008;26:960–8.
Clayton DA. Nuclear-mitochondrial intergenomic communication. Biofactors
1998;7:203–5.
DelPreteA,ZaccagninoP,DiPaolaM,SaltarellaM,OliverosCelisC,NicoB,etal.Role
ofmitochondriaandreactiveoxygenspeciesindendriticcelldifferentiationand
functions.FreeRadicalBiologyandMedicine2008;44:1443–51.
FrankoA,MayerS,ThielG,MercyL,ArnouldT,Horning-DoHT,etal.CREB-1alpha
isrecruitedtoandmediatesupregulationofthecytochromecpromoterduring
enhancedmitochondrialbiogenesisaccompanyingskeletalmuscle
differentia-tion.MolecularandCellularBiology2008;28:2446–59.
FrauwirthKA,RileyJL,HarrisMH,ParryRV,RathmellJC,PlasDR,etal.TheCD28
signalingpathwayregulatesglucosemetabolism.Immunity2002;16:769–77.
GaresseR,VallejoCG.Animalmitochondrialbiogenesisandfunction:aregulatory
GoffartS,WiesnerRJ.Regulationandco-ordinationofnucleargeneexpression
dur-ingmitochondrialbiogenesis.ExperimentalPhysiology2003;88:33–40.
Hornig-DoHT,GuntherG,BustM,LehnartzP,BosioA,WiesnerRJ.Isolationof
functionalpuremitochondriabysuperparamagneticmicrobeads.Analytical
Biochemistry2009;389:1–5.
KellyDP,ScarpullaRC.Transcriptionalregulatorycircuitscontrollingmitochondrial
biogenesisandfunction.GenesandDevelopment2004;18:357–68.
KiefelBR,GilsonPR,BeechPL.Cellbiologyofmitochondrialdynamics.International
ReviewofCytology2006;254:151–213.
Kroemer G, Reed JC. Mitochondrial control of cell death. Nature Medicine
2000;6:513–9.
LiY,HuangTT,CarlsonEJ,MelovS,UrsellPC,OlsonJL,etal.Dilatedcardiomyopathy
andneonatallethalityinmutantmicelackingmanganesesuperoxidedismutase.
NatureGenetics1995;11:376–81.
Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both
sidesoftheinnermitochondrialmembrane.JournalofBiologicalChemistry
2004;279:49064–73.
PacelliC,DeRasmoD,SignorileA,GrattaglianoI,diTullioG,etal.Mitochondrial
defectandPGC-1alphadysfunctioninparkin-associatedfamilialParkinson’s
disease.BiochimicaetBiophysicaActa2011;1812:1041–53.
Rivollier A, Perrin-Cocon L, Luche S, Diemer H, Strub JM, Hanau D, et al.
Highexpressionofantioxidantproteins indendriticcells:possible
impli-cations in atherosclerosis. Molecular and Cellular Proteomics 2006;5:
726–36.
SattlerM,WinklerT,VermaS,ByrneCH,ShrikhandeG,SalgiaR,etal.Hematopoietic
growthfactorssignalthroughtheformationofreactiveoxygenspecies.Blood
1999;93:2928–35.
ScarpullaRC.MetaboliccontrolofmitochondrialbiogenesisthroughthePGC-1
fam-ilyregulatorynetwork.BiochimicaetBiophysicaActa2011;1813:1269–78.
ScarpullaRC.Nuclearactivatorsandcoactivatorsinmammalianmitochondrial
bio-genesis.BiochimicaetBiophysicaActa2002;1576:1–14.
ScarpullaRC.Nuclearcontrolofrespiratorychainexpressionbynuclear
respira-toryfactorsandPGC-1-relatedcoactivator.AnnalsoftheNewYorkAcademyof
Sciences2008;1147:321–34.
SgobboP,PacelliC,GrattaglianoI,VillaniG,CoccoT.Carvedilolinhibits
mitochon-drialcomplexIandinducesresistancetoH2O2-mediatedoxidativeinsultin
H9C2myocardialcells.BiochimicaetBiophysicaActa2007;1767:222–32.
ShengKC,PieterszGA,TangCK,RamslandPA,ApostolopoulosV.Reactive
oxy-genspeciesleveldefinestwofunctionallydistinctivestagesofinflammatory
dendriticcelldevelopmentfrommousebonemarrow.JournalofImmunology
2010;184:2863–72.
SozzaniS.Dendriticcelltrafficking:morethanjustchemokines.Cytokineand
GrowthFactorReviews2005;16:581–92.
St-PierreJ,DroriS,UldryM,SilvaggiJM,RheeJ,JagerS,etal.Suppressionofreactive
oxygenspeciesandneurodegenerationbythePGC-1transcriptional
coactiva-tors.Cell2006;127:397–408.
Steinman RM. Some interfaces of dendritic cell biology. APMIS