• Non ci sono risultati.

15 1.6 The divisor

N/A
N/A
Protected

Academic year: 2021

Condividi "15 1.6 The divisor"

Copied!
95
0
0

Testo completo

(1)

UNIVERSITA DEGLI STUDI DI PADOVA

Sede Amministrativa: Universita degli Studi diPadova

Dipartimentodi Matemati a Pura e Appli ata

DOTTORATO DIRICERCAIN MATEMATICA

XV CICLO

Quantum Cohomology of Hilb

2

(P 1

 P

1

) and

Enumerative Appli ations

Coordinatore: Ch.mo Prof. Bruno Chiarellotto

Supervisore: Ch.ma Prof.ssa Barbara Fante hi

Dottoranda: Dalide Pontoni

DATA CONSEGNA TESI

31 di embre 2003

(2)
(3)

Introduzione i

Introdu tion iii

1 Some properties of Hilb 2

(P 1

P 1

) 1

1.1 The Hilberts heme asa quotient . . . . . . . . . . . . . . . . 2

1.2 The Hilberts heme asa blowup . . . . . . . . . . . . . . . . 6

1.3 The a tionofAut(Q) on H . . . . . . . . . . . . . . . . . . . 10

1.4 Divisor lassesofH . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 The lo usof non-redu ed pointsofH . . . . . . . . . . . . 15

1.6 The divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Des riptionof some e e tive urves. . . . . . . . . . . . . . . 20

1.8 Subs hemesin identto a given point . . . . . . . . . . . . . . 25

2 Gromov-Witten Invariants 29 2.1 Modulispa e of stablemaps . . . . . . . . . . . . . . . . . . . 29

2.2 Deformation theoryon M 0;n (H; ) . . . . . . . . . . . . . . . 30

2.3 The virtualfundamental lass . . . . . . . . . . . . . . . . . . 33

2.4 A smoothnessresult . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 The modulispa eM 0;0 (H;(0;0; )) . . . . . . . . . . . . . . . 38

2.6 The modulispa eM 0;0 (H;(1;0; )) . . . . . . . . . . . . . . . 40

2.7 Gromov-Witten Invariants . . . . . . . . . . . . . . . . . . . . 46

2.8 Some invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Quantum Cohomology 51 3.1 The BigQuantum CohomologyRing . . . . . . . . . . . . . . 51

3.2 A good Q-basis forA  (H) . . . . . . . . . . . . . . . . . . . . 53

3.3 The SmallQuantumCohomologyRing . . . . . . . . . . . . . 55

3.4 A presentationof QH  s (H). . . . . . . . . . . . . . . . . . . . 57

3.5 The subringgenerated bythedivisor lasses . . . . . . . . . . 67

4 Enumerativeappli ations 71 4.1 The modulispa eof hyperellipti urvesmapping to Q. . . . 71

4.2 The basi orresponden e . . . . . . . . . . . . . . . . . . . . 73

4.3 The maintheorem . . . . . . . . . . . . . . . . . . . . . . . . 75

(4)
(5)

Lo s hema diHilbertHilb 2

(P 1

P 1

) parametrizzaisottos hemi hiusi zero

dimensionalidi lunghezza duedi P 1

P 1

e risultaessere lis io, irridu ibile

e4-dimensionale. Inquestatesidiamouna presentazioneespli itadellasua

Coomologia Quantum Pi ola. Inoltre elaboriamo un algoritmo (parziale)

he i permetta di al olarne an he la Coomologia Quantum Grande, pur

non essendoingrado didarneuna presentazioneespli ita.

Entrambe le oomologie quantum sonouna deformazione dell'usualeanello

di oomologia H



(Hilb 2

(P 1

 P 1

);Q). Si ottengono aggiungendo oppor-

tune variabili formali e de nendo un prodotto  he estende il prodotto

[dell'anello di oomologia stesso.

Per ottenere i suddetti risultati utilizziamo la teoria degli spazi di moduli

di mappe stabili, he sono degli sta k nel senso di Deligne-Mumford. In

parti olare usiamo te ni he tipi he dellateoria delledeformazionioltre he

al olidi lassi fondamentalivirtualipersta kdi Deligne-Mumford. Tutto

ioegiusti atodalfatto hei oeÆ ientidelprodottosonogliinvarianti

di Gromov-Witten dello s hema di Hilbert in esame. In questo aso, essi

hannoun signi ato enumerativo, i.e. ontano il numero di urve razionali

hesoddisfano erte proprietadiintersezione, ome ad esempiopassare per

un ssatonumerodi punti. In parti olare mentre laCoomologiaQuantum

Grande oinvolge gli invarianti orrispondentiad un numero n3 di on-

dizionidiin idenza,perquellaPi ola n=3.

In ne abbiamo dimostrato ome si possano ontare le urve iperellitti he

su P 1

P 1

, di genere g  2 e bi-grado (d

1

;d

2

) ssati, he passano per

un erto numero di punti per mezzo degli invarianti di Gromov-Witten

di Hilb 2

(P 1

P 1

). Quest'ultimo risultato e un'appli azione dei al oli di

oomologiaquantumedestendel'analogorisultatoottenutodaTomGraber

perle urve iperellitti hepiane in[Gr℄.

Riteniamo heilmetodousatopertrovarequestirisultatiabbiaraggiuntoil

suolimitenaturale onlostudiodiHilb 2

(P 1

P 1

). Iltentativo diestenderlo

allo s hema di Hilbert di due punti sul blowup di P 2

in un punto o su P n

sie rivelato ineÆ a e a ausa della piu ompli ata struttura degli spazidi

moduli da prendere in onsiderazione, per i quali non disponiamo di una

buonades rizionegeometri a.

(6)
(7)

Over the last de ades a great interest in the Quantum Cohomology of a

manifoldhas grown outof the work of physi ists (see [W1 ℄, [W2 ℄), provid-

ing a ri h eld of investigation for mathemati ians. In parti ular given a

smooth omplexproje tivevariety X (ora symple ti manifold), there are

twodi erentobje ts whi h anbe alledQuantumCohomologyofX;these

aretheBigQuantumCohomology ringandtheSmallQuantumCohomology

ring.

The Big Quantum Cohomology ring is a -produ t stru ture on V R ,

whereV =H



(X;Q) andR is apowerseriesring,whi hmakesV R into

a R -algebra and redu esto the upprodu twhen putting all thevariables

to zero. The Small Quantum Cohomology ring is de ned by setting equal

to zerosome oftheformal variables, formore detailssee [F-P℄,[G-P ℄.

The -produ t is de ned in terms of the (genus zero) Gromov-Witten in-

variants of X, i.e. thevirtualnumberof genuszerom-pointedstable maps

 : C ! X with pres ribed 



[C that meet m general y les on X. We

usetheword\virtual"be ausetheGromov-Witteninvariantsneednothave

enumerativesigni an eingeneral. IntheSmallQuantumCohomologyring

onlythe 3-point Gromov-Witten invariants appear. The quantum produ t

an be shown to be ommutative, asso iative, with unit. From the asso-

iativity relations one gets a system of quadrati equations known as the

WDVV-equations(so namedafter E.Witten, R.Dijkgraaf, H.Verlinde,E.

Verlinde by B. Dubrovin). Kontsevi h and Manin in [K-M℄ remark that,

under good hypotheseson X, the WDVV-systemadmits a uniquesolution

on ea fewstartingdata areknown,and itis infa tvery overdetermined.

QuantumCohomology anbeexpli itly omputedusingvarioustools. When

H



(X;Q) is generated byH 2

(X;Q) the same authors prove the First Re-

onstru tionTheorem: itgivesanalgorithmto ndre ursivelyallthegenus

zero Gromov-Witten invariants from the 2-point invariants by means of

the WDVV-equations. The most famous appli ation is due to Kontsevi h

[Kon℄. He al ulates the number of rational urves of degree d in P 2

go-

ingthrough3d 1 points. He onlyneeds asstartingdatum the numberof

lines through two points. Other examples of omputations exploiting the

WDVV-equations an also befoundin[DF-I ℄.

There are some examples of varieties for whi h the Big and/or the Small

(8)

QuantumCohomologyringshavebeen omputed,su hasP ,P P [F-P℄,

theblowupofP 2

inr points[G-P℄,Grassmannians[Ber ℄, agvarieties[CF℄,

rationalsurfa es[C-M ℄,some ompleteinterse tions[B℄,themodulispa eof

stablebundles over Riemann surfa es [Mu℄, some proje tive bundles[Q-R℄

andsome blowupsofproje tivebundles[Ma ℄.

AsmoothvarietyX is alled onvex ifH 1

(P 1

;f



T

X

)=0for allgenuszero

stable maps f : P 1

! X. Convexity ensures that the Gromov-Witten in-

variants are enumerative. Only few of the varieties mentioned above are

non- onvex.

A signi ant exampleof a non- onvex variety is represented bythe Hilbert

s heme Hilb n

(X) of n points on a smooth omplex proje tive surfa e X.

It parametrizes the losed 0-dimensional subs hemes of X of length n; it

is smooth, proje tive, 2n-dimensional. For n = 1;2 it is easy to des ribe;

Hilb 1

(X) is X itself and Hilb 2

(X) is obtainedby blowing upX X along

thediagonalandthentakingthequotientbytheobviouslifteda tionofthe

involution. The ase where n =2, X = P 2

has been studied by Graber in

[Gr℄. The author gives a presentation of the Small Quantum Cohomology

ring of the Hilbert s heme by means of quantum deformationsof the rela-

tionsde ningthe Chow ring A



(Hilb 2

(P 2

);Q). Moreoverhe gets enumera-

tiveresultson thehyperellipti plane urvespassing throughanopportune

number of points by studying the modulispa e of genus zero stable maps

into Hilb 2

(P 2

).

Theaim of thisthesis isto study theQuantumCohomologyof the Hilbert

s hemeHilb 2

(P 1

P 1

)andto givesome enumerativeappli ationsextending

Graber'sresultstothe aseofhyperellipti urvesonP 1

P 1

. Thestru ture

ofthework isthefollowing.

Chapter 1 isdevotedto des ribingtheHilberts heme we areworking on.

In x1.1 we follow the above mentioned onstru tion of the Hilbert s heme

as a quotient by the a tion of an involution and we give the orrespond-

ing presentation of its Chow ring whi h is isomorphi to the ohomology

ring. In x1.2 we prove that Hilb 2

(P 1

P 1

) an be seen as a blowup of the

GrassmannianoflinesinP 3

alongtwolinesandalsointhis asewegivethe

orresponding presentationofits Chowring. In parti ularitturnsoutthat

theChowring isnotgeneratedbythedivisor lasses,butwe needto adda

y le lassin odimensiontwo togeta ompletesetofgenerators. Thenwe

studytheindu eda tionoftheautomorphismgroupofP 1

P 1

. TheHilbert

s heme Hilb 2

(P 1

P 1

) is not homogeneous but only almost-homogeneous,

i.e. it has a nitenumber of orbits forming a strati ation. This property

is good enough to make enumerative geometry on it, as shown inx1.3. In

paragraph1.4weanalysethehomogeneouspartofdegree1oftheChowring

ofHilb 2

(P 1

P 1

). Inthefollowingx1.5wegivethegeneratorsofthee e tive

one,postponingadetaileddes riptionofsome onne tede e tive urvesto

x1.8. Paragraphs 1.6and1.7arededi ated tothedes riptionoftwo spe ial

(9)

Finallyinx1.9westudythe y lewhosepointsare losedsubs hemesofdi-

mensionzeroandlength2in identtoagivenpointofP 1

P 1

. Itrepresents

a y le lass in A 2

(Hilb 2

(P 1

P 1

)) whi h willbe of ru ial importan efor

appli ationsinChapter 4.

In Chapter 2 we re all the notion of moduli spa e of stable maps (x2.1)

with a brief review of deformation theory in x2.2. Paragraph 2.3 olle ts

some resultsabout thevirtual fundamental lass of a modulispa e and in

x2.4, x2.5, x2.6 weapplythegeneral theoryto some modulispa esofgenus

zerostablemaps into Hilb 2

(P 1

P 1

). The hapter nisheswiththegeneral

de nitionoftheGromov-Witten invariants(x2.7) andthe al ulation(x2.8)

ofsomeinvariantsontheHilberts heme weareinterestedin. Inparti ular,

we arryoutsomeex ess al ulationsonthemodulispa esmentionedabove

involving theirobstru tion bundles.

Chapter 3 olle ts some of the main results. We re all the de nition of

the Big Quantum Cohomology ring of a non- onvex variety and the te h-

niqueswewanttouseinordertoobtainapresentationofitforHilb 2

(P 1

P 1

)

(x3.1). Thenafter xingthenotationsinx3.2,we onstru ttheSmallQuan-

tum Cohomology ring and give a presentation of it inx3.3 and x3.4. This

ispossibleonlyafter making some expli it omputation of Gromov-Witten

invariants using both te hniques from lassi al enumerative geometry and

theWDVV-equations. We on ludethe hapter restri tingourattentionto

the subalgebraS of the Chow ring generated by the divisors lasses. This

allowsusto writea(partial)algorithm al ulatingre ursivelyallthegenus

zero Gromov-Witten invariants of Hilb 2

(P 1

P 1

) starting from few initial

data. The ideaisto dividetheproblemintotwo parts. Theinvariantswith

all the arguments inthe subring S are known by the FirstRe onstru tion

theorem,onlythose involvingthegenerating y le lassin odimensiontwo

areleft and forthem we usetheWDVV-equations.

Chapter 4presentsourmainresult(theorem4.3.1)whi hsolvestheprob-

lem of ounting the hyperellipti urves of given genus and bi-degree on

P 1

P 1

passing througha ertain numberof points whi h mayalso be hy-

perellipti al onjugated (theorems 4.3.5, 4.3.10). In parti ular in x4.1 we

onstru t aspa eparametrizing maps fromahyperellipti urve toP 1

P 1

with good properties. In x4.2 we prove it is anoni ally isomorphi to the

spa e of stable maps from irredu ible rational urves into Hilb 2

(P 1

P 1

)

with good interse tion properties with the strati ation. This means that

we an redu e anenumerativeproblem inhighergenusto aquestion about

rational urves. Finally ourmain theorem is stated and proved in thelast

paragraph 4.3. It extends the result obtained byGraberin [Gr℄, Theorem

2.7, aswellasits appli ationsto theenumerativeproblem.

The main te hni al di eren es between P 1

P 1

and P 2

are related to the

problem of nding a presentationof theQuantumCohomologyrings, sin e

the Chow ring of P 1

P 1

is not generated by the divisor lasses. As said

(10)

parts and using two powerful tools as the First Re onstru tion Theorem

and the WDVV-equations. Moreover the des ription of the e e tive one

ofHilb 2

(P 1

P 1

) ismore ompli ated,and requiresto give two geometri al

des riptionsofthe Hilberts heme. We also needto onsider more e e tive

urves for the al ulation of the initial data of the algorithm omputing

(almost) all the Gromov-Witten invariants. This is be ause the group of

automorphismofP 1

P 1

hasmore orbits. Inparti ular wehaveto be are-

ful about interse tion properties of urves with the indu ed strati ation

(theorem 2.4.5).

We thinkthatthete hniquesweused inthisthesishave rea hedtheirnat-

urallimitsandthey an notbesu essfullyappliedto ndanyenumerative

result for example in the ase where X =P n

;n 3, or Bl

p P

2

. In fa t we

onsideredP n

, andfoundoutthatproblemsarisefromstudyingthe ompo-

nentsofex essdimensionofthemodulispa eofgenuszerostablemapsinto

Hilb 2

(P n

). Instead fortheblowupof P 2

ina point we were notableto nd

a simple geometri al des ription of the e e tive one of the orresponding

Hilbert s heme. Moreover also inthis ase the Chow ring of Hilb 2

(Bl

p P

2

)

is not generated by the divisor lasses. Finally the orbits of the indu ed

a tion of the automorphisms group of Bl

p P

2

give a strati ation with no

good interse tion properties.

A knowledgements: IwouldliketothankProfessorBarbaraFante hifor

havingintrodu ed meto the topi of thisthesis and forthetime shespent

dis ussingwith meaboutit.

Iamgratefulto ProfessorAngeloVistolibe ausehe madepossiblemyvisit

to the Dipartimento di Matemati a at the Universita di Bologna. During

mystayingthere I ouldlearna lotaboutthefas inating world ofsta ks.

Ithank ProfessorBruno Chiarellotto,theCo-ordinator ofmy Ph.D. ourse

at the Universita di Padova, who gave me the opportunity to visit people

fromother universities.

In parti ular I would like to thank all the friends from SISSA and ICTP

whomade thelastmonths ofmyPh.D.unforgettable.

(11)

Some properties of

Hilb 2

(P 1

 P

1

)

Inthis hapterwewill xnotationsand presentsomeresultsontheHilbert

s heme H:=Hilb 2

(P 1

P 1

) whosepoints arerepresented by0-dimensional

length-2 losed subs hemesZ ofP 1

P 1

. Therearetwo possiblegeometri

des riptions of H, as a desingularization of the se ond symmetri produ t

Sym 2

(P 1

P 1

) (see[Fo ℄)and asablowupof theGrassmannianGrass(2;4)

of lines in P 3

(see x1.2). We will give a des ription of both onstru tions

withthe orrespondingChowrings. Thenwewillstudyhowsomeparti ular

divisorsand e e tive urveson H looklike,sothat we willhave adetailed

pi tureof theambient spa e we aregoing to work on.

Notations and onventions: weworkoverC and we identifythevariety

P 1

P 1

with its imageunder theSegre embeddingP 1

P 1

! P 3

, i.e. the

smoothquadri QinP 3

. WehavetworulingsonQ,ifq

1

;q

2

arethetwopro-

je tionsonP 1

, thenq 1

1

(p)representsthe rst rulingand q 1

2

(p)these ond

one.

We onsider Chow ringswithQ- oeÆ ients. Allthevarietiesunder onsid-

erationinthis hapterhavea ellularde omposition,hen etheirChowrings

are isomorphi to theireven- odimension ohomology rings, [Ful℄ Example

19.1.11. Inparti ular we an identifythem.

Givenave torbundleEwedenotebyP(E)theproje tivebundleProj(SymE)

where E is thesheaf of se tions of E. Geometri ally, pointsof P(E) orre-

spond to hyperplanesinthe bers ofE.

We indi atea non-redu ed 0-dimensionalsubs heme Z of length2 of Q as

apair (p;v) wherep2QisthesupportofZ andv2P(T

Q;p

) isadire tion.

We allita non-redu ed pointof H.

(12)

1.1 The Hilbert s heme as a quotient

The following des ription of the Hilbert s heme H is valid for all Hilbert

s hemesof 2points ona smoothvariety[F-G ℄.

LetU be theprodu tQQ, pr

1

;pr

2

thetwo proje tions,

~

U the blowupof

U along the diagonal Æ  U. The group Z

2

a ts on U xing Æ, so there is

anindu ed a tionon theblowup

~

U. TheHilberts heme H isthe quotient

s heme

~

U=Z

2

, hen eitissmooth,proje tive,irredu ibleand 4-dimensional.

We havethe followingdiagram:

~

Æ j

- ~

U



-

H

Æ bl j

Æ

?

i -

U bl

?

pr1

-

pr

2 - Q

withi;j thenatural in lusions,bltheblowupmap, thequotient mapand

~

Æ theex eptional divisor.

Remark 1.1.1. Given thequotient map :

~

U ! H=

~

U=Z

2

, we have two

indu edhomomorphisms:





: A



(H) -

(A



(

~

U)) Z

2

A



(

~

U)



 :A



(

~

U) -

A



(H)

Theyaresu hthat 







=2 id=







. Morepre isely:









: A



(H)

-

A



(H)

-

2







 : A



(

~

U)

-

A



(

~

U) Z2

-

+



( )

where :

~

U !

~

U is thenatural involutionde ned by( )= . It

followsthatthemap





 j

A



(

~

U) Z

2

isthemultipli ationby2homomorphism.

Note that 



is an isomorphism of Q-alge bras whi h does not respe t the

degree:

A 4

(H) deg

H

-

Q

A 4

(

~

U) Z

2





?

deg

~

U

-

Q

2

?

Moreover by proje tion formula 

 is A

4

(H)-linear, where A 4

(

~

U) is made

into an A 4

(H)-algebravia 



.

Riferimenti

Documenti correlati

Once the existence of (at least some of) the characteristics of neoliberalism have been ascertained through the ideal types mentioned above, a better definition

From experimental studies carried out to assess the effects of such events on tree growth, resilience and mortality (Barbeta et al. 2017), come out the need to investigate

The aim of this study is to assess the relation between EOR and MGMT status (in terms of MGMT deregulation methylation and protein expression) by analyzing the clinical outcome (PFS

Un altra dimensione di grande importanza che incrocia la pedagogia interculturale è quella della sfera del diritto e dei diritti perchè nelle strategie di

A new proof is given of the theorem of Victor Klee which states that the support points of a closed, convex, and locally weakly compact set in a real Hausdorff locally

We point out that the axiomatic analysis of the statement The segments joining a point with the vertices of an equilateral triangle satisfy the (non-strict) triangle inequalities

Mimicking some of the Wadge’s constructions on the Baire space, there are candidate operations performing task 1... .). Mimicking some of the Wadge’s constructions on the Baire

l’adozione della Responsabilità Sociale d’impresa ha generato nei confronti delle risorse umane, hanno riguardato lo sviluppo di specifiche attività formative ad esse