• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 19/03/2016I M 1) Putting the complex number in trigonometric form we get:Dœœœ3$33$33$33$3

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 19/03/2016I M 1) Putting the complex number in trigonometric form we get:Dœœœ3$33$33$33$3"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 19/03/2016 I M 1) Putting the complex number in trigonometric form we get:

D œ3  $3  3  $3"* ' ") $ œ3  $3  3  $3$ # # $ œ

œ % œ %  % œ % # #  # % # (  (

# # % %

3  %3$ # 3   3 œ  3

cos 1 sen 1.

The fourth roots of D are D œ % # cos(  sen( œ

% %

%   % 1 3 1

œ % # ( Î%  #5  ( Î%  #5 œ

% %

  % cos 1 1 sen 1 1

3

œ % # (  5  (  5 œ !ß "ß #ß $

"' # "' #

  % cos 1 1 sen 1 1

3 , .5

The imaginary part of % D is positive iff sen (  5  ! and this is true iff

"'1 1#

!  (  5  Ê  (  5  * Ê œ !ß "

"'1 1# 1 ) )

5 . The requested roots are:

D œ % # (  ( œ

"' "'

!   % cos 1 3sen 1

œ % # #  #  # #  #  #

#

 %     3   ;

D œ % # "&  "& œ

"' "'

"   % cos 1 3sen 1

œ % #  #  #  # #  #  #

#

 %      3   .

I M 2) By the Sylvester Theorem Dim Ker Dim Imm œDim ‘% œ %. If Dim Ker œ # trivialy follows Dim Imm œRank  œ #.

To find and such that Rank7 5   is we reduce matrix by elementary operations#  on the lines:

   

   

   

   

   

   

   

   

   

   

   

   

" " #  # " " #  #

" # " " ! "  " $

$ # 7 5 !  " 7  ' 5  '

Ê Ê

V  V

V  $V V  V

# "

$ " $ #

Ê œ #

" " #  #

! "  " $

! ! 7  ( 5  *

 

 

 

 

 

 

 

 

 

 

 

  and from the last matrix it follows that Rank  iff

7  ( œ ! and 5  * œ ! Ê 7 œ (  and 5 œ  *.

So the matrix is equal to  Kernel

 

 

 

 

 

 

 

 

 

 

 

 

" " #  #

" # " "

$ # (  *

. To find a basis for the remember that belongs to the Ker—  0 if  —† œ, that in system form is:

 

 

 

B  B  #B  #B œ ! B  B  #B  #B œ !

B  #B  B  B œ ! B  B  $B œ !

$B  #B  (B  *B œ !  B  B  $B œ !

Ê Ê

" # $ % " # $ %

" # $ % # $ %

" # $ % # $ %

(2)

Ê B œ  $B  &B 0 B œ B  $B

" $ %  

# $ % , and so a generic element of Ker is:

— œ  $B  &B B  $B B ß B $ %ß $ %ß $ %œ B$ $ " "ß !  B &  $ !ß "ß ß  % ß ß  and a basis for Ker 0 is UKer 0 œ $ " "ß ! ß &  $ !ß "ß ß   ß ß .

To find a basis for the Immage remember that belongs to Imm˜  0 if  —† œ˜, that in system form is:

 

 

 

B  B  #B  #B œ C B  B  #B  #B œ C

B  #B  B  B œ C B  B  $B œ C  C

$B  #B  (B  *B œ C  B  B  $B œ C  $C

Ê Ê

" # $ % " " # $ % "

" # $ % # # $ % # "

" # $ % $ # $ % $ "

Ê

B  B  #B  #B œ C B  B  $B œ C  C

! œ C  C  %C



" # $ % "

# $ % # "

$ # "

.

So a generic element of Imm 0 is a vector ˜œ C C C "ß #ß $ with C  C  %C œ !$ # "

or C œ %C  C$ " #; ˜œ C C %C  C "ß #ß " #œ C " ! %  C ! "" ß ß  # ß ß " and a basis for Imm 0 is UImm 0 œ" ! % ß ! "ß ß   ß ß ".

I M 3) To find the characteristic polynomial of we calculate:

: œ  œ œ

$  # "

" %  5

" #  $ 

   

 

 

 

 

 

 

-  -ˆ

-

-

-

œ œ #   %  #  %  œ

#  ! % 

" %  5

" #  $ 

%  5

#  $ 

 

 

 

 

 

       

- -

-

-

- - - -

- œ #  - - #- "#  #5  %   -# -œ

œ #  - - # #  #5  "'- .

Note that a5ß : # œ !  , this implies that - œ # is an eigenvalue of the matrix ß a5. If ; - œ-#  #  #5  "'- , - œ # is a multiple eingenvalue for iff:

; # œ %  %  #5  "' œ ! Ê 5 œ  )  . In this case the three eingevalues for are

-" œ ! and -#ß$ œ #. To study the diagonalizability of we must check the dimension

of the eingespace associated to - œ #, that is:

$   # œ $  œ

" # "

" #  )

" #  &

Rank  Rank 

 

 ˆ

 

 

 

 

 

 

 

 

 

 

 

 

œ $  œ $  # œ "

" # "

! !  *

! !  '

Rank  .

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix isn't diagonalizable since the algebraic multiplicity of  - œ # is greater than its geometric multiplicity.

I M 4) Two similar matrices have equal characteristic polynomials, and so we get:

: œ  œ "  # œ  %  "

" $ 

  -  -ˆ  -  - -

-

# and

: œ  œ  7 œ  5  7

" 5 

  -  -ˆ  -  - -

-

# .

The two polynomials are equal iff 5 œ % and 7 œ  ".

To find a matrix œ : : we must satisfy  † œ † Ê

: :

 ""#" "###

(3)

Ê " # † : : œ : : † !  " Ê

" $ : : : : " %

    #""" ##"#  ""#" ##"#   

Ê :  #: :  #: œ : %:  :

:  $: :  $: : %:  :

 """" #"#" "#"# ####  ##"# "### ""#". In system form we have:

 

 

 

 

 

 

 

:  #: œ : :  #: œ :

:  #: œ %:  : :  #: œ $: : œ #

:  $: œ : :  $: œ :

:  $: œ %:  : :  : œ :

Ê Ê

"" #" "# "" #" "#

"# ## "# "" "" ## "# ""

"" #" ## "" #" ##

"# ## ## #" "# #" ##

:  : : œ :  :

#" "#

## "# #"

.

Choosing, for instance, : œ # and : œ ", one possible matrix is ! #

" $

"# #"   .

II M 1) For any pair of unit vectors @ß A, H@ßA# 0 Bß C œ @ †‡ 0 †AX where ‡ 0 is the Hessian matrix of . From this it follows easily that 0 H 0 Bß C#@ß@  œH#@ß@0 Bß C . So H 0 Bß C#@ß@  H#@ß@0 Bß C œ !  iff H 0 Bß C œ !#@ß@   . Since:

f0 œ œ 

   

 

#B ß  #C # #B  " %BC

%BC # #C  "

/ / 0 / /

/ /

B C B C B C B C

B C B C

# # # #

# # # #

# # # #

and ‡   # # 

we have:

H 0 Bß C œ œ

# #

/ /

/ /

@ß@#

B C B C

B C B C

#

#

      

 

# #

ß # #B  " %BC

%BC # #C  "

  

 

#

#

#

#

# # # #

# # # #

œ#B  "# /B C# #%BC/B C# ##C  "# /B C# # œ #B  C#/B C# #. So we have H 0 Bß C œ !#@ß@   iff B  C œ !.

II M 2) The equation is satisfied at point T œ !ß " , since 0 Bß C œ  logB  C# # BC Êlog "  ! œ !. Then

f0 œ #B #C  f0 œ 

ß !ß " ß #

B  C# #  C B  C# #  B with    " , and so

C !ß "

!ß "

w w

B Cw

   

! œ  0   œ "

0 #.

For the second order derivative we have: Cww BBww  # BCww † C w CCww † Cw # ,

Cw

œ  0 0 0

0

 

‡ 0 œ ‡0 œ #

 

 

 

 

 

 

 

 

 

 

 

   

# C B %BC

%BC # B C

# #

# #

B C B C

B C B C

# ## # ##

# ## # ##

 "

 " !ß "  "

 "  #

, and so

Cww  #  " †   # † #

 ! œ  # œ  Þ

# %

"

  "#    "#

II M 3) From C œ0 B ß B " # and B ß B" #œ 1> ß > ß >" # $, by the chain rule (derivative of a composite function) we get: ` ` ` B ß B

` > ß > ß > ` B ß B ` > ß > ß >

     

     

C C

œ †

" # $ " # " # $

" #

or

" $ %œ  † "  " #

! # "

` `

`B `B

C C

" # that in system form gives:

(4)





 

`

`B `

` `

`B `B `

` `

`B `B

`B

`B " #

C

C C

C C

C C

"

" #

" #

"

#

œ "

 # œ $ Ê Ê œ

#  œ %

œ "

œ #

 ` C

` B ß B  " #

    .

II M 4) The triangle of vertexes X    !ß ! , "ß ! and  !ß " is red-drawed in the figure:

X is a compact set and the function 0 is continuous so it admits absolute maximum and minimum on ; X a Bß C − X B  , and are both not negative and trivially follows thatC min 0 œ ! at point  !ß ! . For the maximum we observe that when at least one bet- ween B and increases, then increases, thus MaxC 0  0 must be searched on the upper border of having equation X C œ "  B. If we define:

1 B œ0B "  B œß  B $ "  B , we get:$

1w B œ $B  $# "  B# œ $B # "  B# #B œ $ #B  "   and 1w B   ! iff $ #B  "  ! Ê B "Î#.

Function increases from point 1 "Î#ß "Î# to the vertexes  "ß ! and  !ß " of X (grey arrows in the figure): by the simmetry of we conclude that Max0  0 œ " at points

 "ß ! and  !ß " . Point "Î#ß "Î# is a relative minimum point.

In the figure there are drawn zero level curve (yellow) and positive level curves (blue).

Riferimenti

Documenti correlati

a To nalyze the nature of the stationary points of the function we apply first and second order

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Surely the function admits maximum value and

[r]

Al termine del corso è previsto un test finale che verifica l’apprendimento con esercitazioni simili a quelle trovate nel corso riguardanti l’intero contenuto suddiviso per i

Mostra le connessioni tra le varie rappresentazioni usando colori, frecce

Mostra le connessioni tra le varie rappresentazioni usando colori, frecce

Tempi, spazi e relazioni nel sertão di Guimarães