• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019

I M 1) Determine all the roots of the equation B  "' œ !% . Two possible procedures for the solution.

From B  "' œ B  % B  % œ !%#  #  we get:

B  % œ ! Ê B œ „# % Ê B œ „ # and

B  % œ ! Ê B œ „#  % œ „ "% Ê B œ „ #3. Or:

From B  "' œ !% we get B œ% "' and so, since "' œ "' †cos!  3sin! we get:

% "' œ% "' †cos!  5 #  sin!  5 #  œ # †cos5  sin5 

%1  3 %1 1#  3 1#

for ! Ÿ 5 Ÿ $ to get:

5 œ ! À # †cos! 3sin!œ # à 5 œ " À # †cos  3sin œ #3 à

# #

1 1

5 œ # À # †cos1 sin1 à 5 œ $ À # †cos 1 sin 1 .

 3 œ  # $  3 $ œ  #3

# #

I M 2) Given the matrix  œ determine the value of the parameter for which the5

" " !

! " !

" ! 5

 

 

 

 

 

 

 

 

 

 

 

 

matrix admits the imaginary unit as an eigenvalue. For this value of , find all the eigenvalues3 5 of the matrix and check if it is diagonalizable or not.

From - ˆœ ! we get " " 5

" " !

! " !

" ! 5

 

 

 

 

 

      

œ    œ !

-

-

-

- - - to get the

eigenvalues -" œ-# œ " and -$ œ5. So the matrix admits the imaginary unit as an eigenva-3 lue if and only if 5 œ 3. So we get œ . To check if the matrix is diagonalizable

" " !

! " !

" ! 3

 

 

 

 

 

 

 

 

 

 

 

 

or not we have to study only the multiple eigenvalue - œ " and its geometric multiplicity. Since

Rank  Rank , we get and so the

 

 

 

 

 

 

 

 

 

 

 

 

 " †ˆ œ œ # 7 œ $  # œ "  7 œ #

! " !

! ! !

" ! 3  " "

1 +

"

matrix is not a diagonalizable one.

I M 3) Given the linear system , check for the existence and



B  #B  B  B œ "

B  B  7 B  B œ #

#B  $B  #B  5B œ $

" # $ %

" # $ %

" # $ %

number of its solutions on varying the parameters and .7 5

To apply Rouchè-Capelli theorem we study the Rank of the matrix and the Rank of the augmen- ted matrix:

   

   

   

   

   

   

" #  " " l " " #  " " l "

" " 7 " l # !  " 7  " ! l "

# $ # 5 l $ ! ! $  7 5  # l !

Ä

having used elementary operations: V Ã V  V# # " and V Ã V  V  V$ $ # ". So:

if 7 Á $ or 5 Á #: Rank  œRank ˜l œ $ and the system has ∞%$ œ ∞" solutions;

if 7 œ $ and 5 œ #: Rank  œRank ˜l œ # and the system has ∞%# œ ∞# solutions.

(2)

I M 4) Given the two orthogonal vectors —" œ "ß "ß !  and —# œ "ß  "ß ! , find a third vec- tor —$ orthogonal to —" and —#, so as to create a basis for ‘$. Then find the coordinates of the vector ˜ œ "ß "ß "  in this basis.

If —$ œ Bß Cß D , since we need —"†—$ œ—#†—$ œ ! we get:

   

"ß "ß ! † Bß Cß D œ B  C œ !  

"ß  "ß ! † Bß Cß D œ B  C œ ! whose solution is B œ !ß C œ !ß a D. If we choose D œ "

we get —$ œ !ß !ß "  and so the basis is —œ"ß "ß ! à "ß  "ß ! à !ß !ß "    .

To find the coordinates of the vector                           ˜ œ "ß "ß "  in this basis we must solve the system:

 

 

 

 

 

 

 

 

 

" " ! B " B  B œ " B œ "

"  " ! B " B  B œ " B œ !

! ! " B " B œ " B œ "

† œ Ê Ê

" " # "

# " # #

$ $ $

.

II M 1) Given 0 Bß C œ B /  C /  C B, determine all the directions @œcosαßsinα for which it results W@0 !ß ! œ  W#@ @0 !ß ! .

0 Bß C œ B /   C C /B is a twice differentiable function a Bß C −  ‘#. So:

H 0@  !ß ! œ f0 !ß ! † @ and H 0#@ß@  !ß ! œ @ †‡ !ß ! † @X . We get f0 B ß C œ / C C /Bà B / C /B Ê f0  !ß ! œ "ß  "; so W@0 !ß ! œ  "ß  " † cos  αßsinαœcosαsin .α

From f0 B œ /  à B /  we get Bß C œ  /  and so:

/  B /

 ß C  C / /    C / /

/

C C C

C C

B B B B

‡  B

‡ !ß ! œ ! ! ÊH 0  !ß ! œ † ! ! † œ !

! ! ! !

  #@ß@ cos sin   cos 

α α sinα

α .

Finally W@ W# α α α α α α

0 !ß ! œ @ @0 !ß !  œ ! œ œ œ

% %

&

    Ê cos sin Êcos sin Ê 1 or 1 .

II M 2) Given the system    and the point P , de-

   

0 Bß Cß D œ BCD  B  C  D œ !

1 Bß Cß D œ /BC /CD œ ! ! œ "ß "ß "

termine at least one implicit function that can be defined with it and then calculate the derivatives of such function at the proper point.

  

 

0 "ß "ß " œ "  "  "  " œ !

1 "ß "ß " œ "  " œ ! and the system is satisfied.

From ` 0 ß 1 we get:

` Bß Cß D œ CD  " BD  " BC  "

/  /  / /

 

   BC BC CD CD

` 0 ß 1

` Bß Cß D "ß "ß " œ ! # ! # ! œ # Á !

"  # "  # "

 

     and since   it is possible to define an implicit function B Ä C B ß D B    . For its derivatives we get:

.C ! .D #

.B œ  œ  # œ !à .B œ  œ  # œ  "

! ! # !

" "  # "

# ! # !

 # "  # "

   

   

.

II M 3) S Max/min

.c. :

olve the problem: .

u 0 Bß C œ #B  C C Ÿ B Ÿ "

  #

#

The objective function of the problem is a continuous function, the feasible region is a com-X pact set, and so surely exist maximum and minimum values.

(3)

Using Kuhn-Tucker's conditions, we form the Lagrangian function:

ABß Cß- -"ß #œ#B  C # -"C  B #  -#B  ". 1) case -" œ !ß-# œ ! À





 A A

wB wC

œ # !

œ  #C œ ! Á Ÿ B C# B Ÿ "

: no solution.

2) case -" Á !ß-# œ ! À







A -

A - -

wB "

wC " "

œ #  œ !

œ  #C  # C œ  #C "  œ ! C œ B#

B Ÿ "

from which we get two systems:





 B œ ! C œ !

 ! !ß !

- -

" œ  # "

À B Ÿ " true

and since the point   may be a minimum point;

while the second system is impossible.





 - -

"

"

œ  # œ  "

C œ B# B Ÿ "

3) case -" œ !ß-# Á! À

 

 

 

 

 

 

 

A -

A

- -

wB #

wC

# #

œ #  œ ! œ  #C œ !

Ê  ! "ß

œ "

C œ ! B œ "

C

B

# Ÿ B

œ #

! Ÿ " À

! true

. Since the point   may be a maximum

point.

4) case -" Á!ß-# Á! À

  

  

  

  

  

  

  

A - -

A -

- - - -

- -

wB " #

wC "

" # " #

" "

œ #   œ !

œ  #C  # C œ ! Ê

 œ  #  œ  #

 #C "  œ !  #C "  œ !

B œ C# B œ " B œ "

B œ " C œ " C œ  "

  and   .

(4)

 

 

 

 

 

 

 

- -

-

- -

- -

" #

"

"

#

" #

 œ  #

"  œ !

Ê  !  ! "ß

œ  "

œ B œ "

B œ "

"

C œ " "

C œ "

. Since and the point   is nor a maxi-

mum nor a minimum point.

 

 

 

 

 

 

 

- -

-

- -

- -

" #

"

"

#

" #

 œ  #

"  œ !

Ê  !  ! "ß 

œ  "

œ B œ "

B œ "

"

C œ  " "

C œ  " . Since and the point   is nor a ma- ximum nor a minimum point.

So, from Weierstrass Theorem,  "ß! is the maximum point with 0 "ß ! œ# while  !ß! is the minimum point with 0 !ß ! œ Þ!

II M 4) Given the function 0 Bß C œ B  $BC  C  $ # nalyze the nature of its stationary points.a To nalyze the nature of the stationary points of the function we apply first and second order a conditions. For the first order conditions we pose:

f Ê 0 œ $B  $C œ $ B  C œ ! Ê

0 œ #C  $B œ !

B  B œ B B  œ ! C œ B

0 Bß C œ     

  

w # #

Bw C

# $ $

# #

$

#

and so we get two stationary points: T œ"  !à ! and T œ# $ *à 

# % Þ For the second order conditions we construct the Hessian matrix: ‡Bß C œ  'B  $.

 $ #

‡ !à ! œ !  $  ‡ œ  *  !  !à !

 $ # . Since # the point is a saddle point.

‡ ‡

$ * ‡

# % œ *  $ T

 $ #

à    

. Since  " the point is a minimum point.

# œ *  ! #  ! #

œ ")  *  ! ;

Riferimenti

Documenti correlati

I M 4) To solve the problem we can apply

[r]

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order