• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 3/09/2019

I M 1) Determine all the roots of the equation B  "' Ε“ !% . Two possible procedures for the solution.

From B  "' Ε“ B  % B ο‚€ % Ε“ !% ο‚ˆ # ο‚‰ο‚ˆ #  we get:

B  % Ε“ ! Ê B Ε“ β€ž# οƒˆ% Ê B Ε“ β€ž # and

B ο‚€ % Ε“ ! Ê B Ε“ β€ž# οƒˆο‚ % Ε“ β€žοƒˆο‚ "οƒˆ% Ê B Ε“ β€ž #3. Or:

From B  "' Ε“ !% we get B Ε“οƒˆ% "' and so, since "' Ε“ "' †cos! ο‚€ 3sin! we get:

οƒˆ% "' Ε“οƒˆ% "' β€ ο‚Œcosο‚Œ! ο‚€ 5 #  sinο‚Œ! ο‚€ 5 #  Ε“ # β€ ο‚Šcosο‚Š5 ο‚‹ sinο‚Š5 ο‚‹ο‚‹

%1 ο‚€ 3 %1 1# ο‚€ 3 1#

for ! ΕΈ 5 ΕΈ $ to get:

5 Ε“ ! Γ€ # †cos!ο‚€ 3sin!œ # Γ  5 Ε“ " Γ€ # β€ ο‚Šcos ο‚€ 3sin ο‚‹Ε“ #3 Γ 

# #

1 1

5 Ε“ # Γ€ # †cos1 sin1 Γ  5 Ε“ $ Γ€ # β€ ο‚Œcos 1 sin 1 .

ο‚€ 3 Ε“  # $ ο‚€ 3 $ Ε“  #3

# #

I M 2) Given the matrix ο‚€ Ε“ determine the value of the parameter for which the5

" " !

! " !

" ! 5

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

matrix admits the imaginary unit as an eigenvalue. For this value of , find all the eigenvalues3 5 of the matrix and check if it is diagonalizable or not.

From - ˆœ ! we get " " 5

" " !

! " !

" ! 5

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’  οƒ’    





Ε“    Ε“ !

-

-

-

- - - to get the

eigenvalues -" Ε“-# Ε“ " and -$ Ε“5. So the matrix admits the imaginary unit as an eigenva-3 lue if and only if 5 Ε“ 3. So we get Ε“ . To check if the matrix is diagonalizable

" " !

! " !

" ! 3

ο‚€

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

or not we have to study only the multiple eigenvalue - Ε“ " and its geometric multiplicity. Since

Rank  Rank , we get and so the

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

 " †ˆ Ε“ Ε“ # 7 Ε“ $  # Ε“ "  7 Ε“ #

! " !

! ! !

" ! 3  " "

1 +

"

matrix is not a diagonalizable one.

I M 3) Given the linear system , check for the existence and

οƒš

οƒ›οƒœ

B ο‚€ #B  B ο‚€ B Ε“ "

B ο‚€ B ο‚€ 7 B ο‚€ B Ε“ #

#B ο‚€ $B ο‚€ #B ο‚€ 5B Ε“ $

" # $ %

" # $ %

" # $ %

number of its solutions on varying the parameters and .7 5

To apply Rouchè-Capelli theorem we study the Rank of the matrix and the Rank of the augmen- ted matrix:

   

   

   

   

   

   

" #  " " l " " #  " " l "

" " 7 " l # !  " 7 ο‚€ " ! l "

# $ # 5 l $ ! ! $  7 5  # l !

Γ„

having used elementary operations: V Γƒ V  V# # " and V Γƒ V  V  V$ $ # ". So:

if 7 Á $ or 5 Á #: Rank  Ε“Rank ˜l œ $ and the system has ∞%$ Ε“ ∞" solutions;

if 7 Ε“ $ and 5 Ε“ #: Rank  Ε“Rank ˜l œ # and the system has ∞%# Ε“ ∞# solutions.

(2)

I M 4) Given the two orthogonal vectors β€”" Ε“ "ß "ß !  and β€”# Ε“ "ß  "ß ! , find a third vec- tor β€”$ orthogonal to β€”" and β€”#, so as to create a basis for β€˜$. Then find the coordinates of the vector ˜ Ε“ "ß "ß "  in this basis.

If β€”$ Ε“ Bß Cß D , since we need β€”"†—$ Ε“β€”#†—$ Ε“ ! we get:

ο‚œο‘   

"ß "ß ! † Bß Cß D Ε“ B ο‚€ C Ε“ !  

"ß  "ß ! † Bß Cß D Ε“ B  C Ε“ ! whose solution is B Ε“ !ß C Ε“ !ß a D. If we choose D Ε“ "

we get β€”$ Ε“ !ß !ß "  and so the basis is β€”Ε“ο₯"ß "ß ! Γ  "ß  "ß ! Γ  !ß !ß "    .

To find the coordinates of the vector οƒ’οƒ’οƒ’οƒ’οƒ’οƒ’ οƒ’                         ˜ Ε“ "ß "ß "  in this basis we must solve the system:

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒ’ οƒ’

οƒš οƒš

 

οƒœ οƒœ

" " ! B " B ο‚€ B Ε“ " B Ε“ "

"  " ! B " B  B Ε“ " B Ε“ !

! ! " B " B Ε“ " B Ε“ "

† Ε“ Ê Ê

" " # "

# " # #

$ $ $

.

II M 1) Given 0 Bß C Ε“ B /  C /  C B, determine all the directions @œcosαßsinα for which it results W@0 !ß ! œ  W#@ @0 !ß ! .

0 Bß C Ε“ B /   C C /B is a twice differentiable function a Bß C βˆ’ο‘  β€˜#. So:

H 0@  !ß ! Ε“ f0 !ß ! † @ and H 0#@ß@  !ß ! Ε“ @ †‑ !ß ! † @X . We get f0 B ß C œ / C C /BΓ  B / C /B Ê f0  !ß ! Ε“ "ß  "; so W@0 !ß ! œ  "ß  " † cos  αßsinαœcosαsin .Ξ±

From f0 B Ε“ /  Γ  B /  we get Bß C Ε“  /  and so:

/  B /

 ß C  C / /    C / /

/

C C C

C C

B B B B

‑ ο‚Ύ B ο‚Ύ

‑ !ß ! Ε“ ! ! ÊH 0  !ß ! Ε“ † ! ! † Ε“ !

! ! ! !

ο‚Ύ ο‚Ύ #@ß@ cos sin ο‚Ύ ο‚Ύ ο‚Ύcos ο‚Ύ

Ξ± Ξ± sinΞ±

Ξ± .

Finally W@ W# Ξ± Ξ± Ξ± Ξ± Ξ± Ξ±

0 !ß ! Ε“ @ @0 !ß !  Ε“ ! Ε“ Ε“ Ε“

% %

&

    Ê cos sin Êcos sin Ê 1 or 1 .

II M 2) Given the system ο‚œ   and the point P , de-

   

0 Bß Cß D Ε“ BCD  B ο‚€ C  D Ε“ !

1 Bß Cß D Ε“ /BC /CD Ε“ ! ! Ε“ "ß "ß "

termine at least one implicit function that can be defined with it and then calculate the derivatives of such function at the proper point.

ο‚œ  

 

0 "ß "ß " Ε“ "  " ο‚€ "  " Ε“ !

1 "ß "ß " Ε“ "  " Ε“ ! and the system is satisfied.

From ` 0 ß 1 we get:

` Bß Cß D Ε“ CD  " BD ο‚€ " BC  "

/  /  / /

 

  ο‚Ύ BC BC CD CD ο‚Ύ

` 0 ß 1

` Bß Cß D "ß "ß " Ε“ ! # ! # ! Ε“ # Á !

"  # "  # "

 

   ο‚Ύ ο‚Ύ and since ο‚Ί ο‚Ί it is possible to define an implicit function B Γ„ C B ß D B    . For its derivatives we get:

.C ! .D #

.B Ε“  Ε“  # Ε“ !Γ  .B Ε“  Ε“  # Ε“  "

! ! # !

" "  # "

# ! # !

 # "  # "

ο‚Ί ο‚Ί ο‚Ί ο‚Ί

ο‚Ί ο‚Ί ο‚Ί ο‚Ί

.

II M 3) S Max/min

.c. :

olve the problem: .

ο‚œu 0 Bß C Ε“ #B  C C ΕΈ B ΕΈ "

  #

#

The objective function of the problem is a continuous function, the feasible region is a com-X pact set, and so surely exist maximum and minimum values.

(3)

Using Kuhn-Tucker's conditions, we form the Lagrangian function:

ABß Cß- -"ß #œ#B  C # -"ο‚ˆC  B #  -#B  ". 1) case -" Ε“ !ß-# Ε“ ! Γ€

οƒšοƒ





οƒοƒœ A A

wB wC

Ε“ # !

Ε“  #C Ε“ ! Á ΕΈ B C# B ΕΈ "

: no solution.

2) case -" Á !ß-# Ε“ ! Γ€

οƒšοƒ





οƒοƒœ

A -

A - -

wB "

wC " "

Ε“ # ο‚€ Ε“ !

Ε“  #C  # C Ε“  #C "  œ ! C Ε“ B#

B ΕΈ "

from which we get two systems:

οƒšοƒ





οƒοƒœ B Ε“ ! C Ε“ !

 ! !ß !

- -

" Ε“  # "

Γ€ B ΕΈ " true

and since the point   may be a minimum point;

while the second system is impossible.

οƒšοƒ





οƒοƒœ - -

"

"

Ε“  # Ε“  "

C Ε“ B# B ΕΈ "

3) case -" Ε“ !ß-# Á! Γ€

οƒš οƒš

 

 

 

 

 

οƒœ οƒœ

A -

A

- -

wB #

wC

# #

Ε“ #  Ε“ ! Ε“  #C Ε“ !

Ê ο‚ž ! "ß

Ε“ "

C Ε“ ! B Ε“ "

C

B

# ΕΈ B

Ε“ #

! ΕΈ " Γ€

! true

. Since the point   may be a maximum

point.

4) case -" Á!ß-# Á! Γ€

οƒš οƒš οƒš

  

  

  

  

  

οƒœ οƒœ οƒœ

A - -

A -

- - - -

- -

wB " #

wC "

" # " #

" "

Ε“ # ο‚€  Ε“ !

Ε“  #C  # C Ε“ ! Ê

 Ε“  #  Ε“  #

 #C " ο‚€ Ε“ !  #C " ο‚€ Ε“ !

B Ε“ C# B Ε“ " B Ε“ "

B Ε“ " C Ε“ " C Ε“  "

  and   .

(4)

οƒš οƒš

 

 

 

 

 

οƒœ οƒœ

- -

-

- -

- -

" #

"

"

#

" #

 Ε“  #

" ο‚€ Ε“ !

Ê  ! ο‚ž ! "ß

Ε“  "

Ε“ B Ε“ "

B Ε“ "

"

C Ε“ " "

C Ε“ "

. Since and the point   is nor a maxi-

mum nor a minimum point.

οƒš οƒš

 

 

 

 

 

οƒœ οƒœ

- -

-

- -

- -

" #

"

"

#

" #

 Ε“  #

" ο‚€ Ε“ !

Ê  ! ο‚ž ! "ß 

Ε“  "

Ε“ B Ε“ "

B Ε“ "

"

C Ε“  " "

C Ε“  " . Since and the point   is nor a ma- ximum nor a minimum point.

So, from Weierstrass Theorem,  "ß! is the maximum point with 0 "ß ! Ε“# while  !ß! is the minimum point with 0 !ß ! Ε“ Þ!

II M 4) Given the function 0 Bß C Ε“ B  $BC ο‚€ C  $ # nalyze the nature of its stationary points.a To nalyze the nature of the stationary points of the function we apply first and second order a conditions. For the first order conditions we pose:

f Ê 0 Ε“ $B  $C Ε“ $ B  C Ε“ ! Ê

0 Ε“ #C  $B Ε“ !

B  B Ε“ B B  Ε“ ! C Ε“ B

0 Bß C œ  ο‚Ž ο‚œ  

ο‚ž ο‚ˆ 

w # #

Bw C

# $ $

# #

$

#

and so we get two stationary points: T Ε“"  !Γ  ! and T Ε“# ο‚Œ$ *Γ  

# % Þ For the second order conditions we construct the Hessian matrix: ‑Bß C œ ο‚Ύ 'B  $ο‚Ύ.

 $ #

‑ !Γ  ! Ε“ο‚Ύ !  $ο‚Ύ  ‑ Ε“  *  !  !Γ  !

 $ # . Since # the point is a saddle point.

‑ ‑

ο‚Œ$ * ‑

# % Ε“ *  $ T

 $ #

Γ  ο‚Ύ ο‚Ύ ο‚œο« 

. Since  " the point is a minimum point.

# Ε“ * ο‚ž ! # ο‚ž ! #

Ε“ ")  * ο‚ž ! ;

Riferimenti

Documenti correlati

I M 4) To solve the problem we can apply

[r]

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‑

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order