• Non ci sono risultati.

The transverse structure of the nucleon (resolving the quark motion inside a nucleon)

N/A
N/A
Protected

Academic year: 2022

Condividi "The transverse structure of the nucleon (resolving the quark motion inside a nucleon)"

Copied!
60
0
0

Testo completo

(1)

The transverse structure of the nucleon

(resolving the quark motion inside a nucleon)

Mauro Anselmino, Torino University and INFN, JLab, December 15, 2006

the need for parton intrinsic motion

transverse momentum dependent distribution

and fragmentation functions (TMD)

spin and k: transverse Single Spin Asymmetries SSA in SIDIS

Spin effects in unpolarized e+e → h1h2 X at BELLE what do we learn from TMD’s?

(2)

Plenty of theoretical and experimental evidence for transverse motion of partons within nucleons and of hadrons within fragmentation jets

GeV/c

0.2

fm

1   

x p

uncertainty principle

gluon radiation

±1

± ±

k

qT distribution of lepton pairs in D-Y processes

Partonic intrinsic motion

p p

Q2 = M2

qT qL

l+

l

 *

(3)

pT distribution of hadrons in SIDIS

Hadron distribution in jets in e+e processes

Large pT particle production in

pNhX

Transverse motion is usually integrated, but there might be important

spin-k correlations

p xp

k

frame c.m.

* phX

(4)

M. Arneodo et al (EMC): Z. Phys. C 34 (1987) 277

) ,

ˆ ( d )

, (

d f x Q

2 lq lq

D

qh

z Q

2

q

q lhX

lp

  

Intrinsic motion in unpolarized SIDIS, [ O (

s0

)]

q p x Q

  2

2

2

2 q

Q  

p l

q y p

  in collinear parton model

2 2

2

ˆ 1 ( 1 )

ˆ

d  ˆ

lqlq

su    y

thus, no dependence on azimuthal angle Фh at zero-th order in pQCD

the experimental data reveal that

h h

h X

lh

lq

/ d Φ A B cos Φ C cos 2 Φ

d  ˆ

  

(5)

Cahn: the observed azimuthal dependence is related to the intrinsic kof quarks (at least for small PT values)

These modulations of the cross section with azimuthal angle are

assuming collinear fragmentation, φ = Φh

) 0 , sin

, cos

(

k k

k

 

 

 

 

 

  

 2

1 cos

22

ˆ 1

Q y k

Q sx k

s  O

 

 

 

 

 

 

cos

22

1 1 2

) 1

ˆ (

Q k y

Q y k

x s

u  O

h h

h lhX lq

Φ C

Φ B

A u

Φ s ˆ ˆ cos cos 2 d

d  ˆ

2

2

  

(6)

SIDIS with intrinsic k

kinematics

according to Trento conventions (2004)

)

; ,

( )

; ,

ˆ ( d )

; ,

(

d

lplhX

 

q

f

q

x k

Q

2

lqlq

y k

Q

2

D

qh

z p

Q

2

factorization holds at large Q2, and

P

T

k

 

QCD Ji, Ma, Yuan

(7)

The full kinematics is complicated as the produced hadron has also intrinsic transverse momentum with respect to the fragmenting parton

k

k

z

p

P

T

p

h

k

2

/ Q

2

neglecting terms of order one has

p k

P

T

z

(8)

assuming:

one finds:

with

clear dependence on and (assumed to be constant)

Find best values by fitting data on Φh and PT dependences

(9)

EMC data, µp and µd, E between 100 and 280 GeV

(10)

Large PT data explained by NLO QCD

corrections

(11)

dashed line: parton model with unintegrated distribution and fragmentation functions solid line: pQCD contributions at LO and a K factor (K = 1.5) to account for NLO effects

(12)

S p

p '

– p

PT

θ

  sin θ

d d

d

d    

T

A

N

S p P

– p '

5

;

4

;

3

;

2

;

1

;

M M M M M

5 independent helicity amplitudes

 Im

5

(

1 2 3 4

)

AN

pp pp

z y

x

Example:

Transverse single spin asymmetries: elastic scattering

(13)

 0

A

N needs helicity flip + relative phase + –

+ +

Im

x

+

+ + +

s q

N

E

Am

at quark level but large SSA observed at hadron level!

QED and QCD interactions conserve helicity, up to corrections

O ( m

q

/ E )

Single spin asymmetries at partonic level. Example:

qq '  qq '

(14)

BNL-AGS √s = 6.6 GeV 0.6 < pT < 1.2

E704 √s = 20 GeV 0.7 < pT < 2.0

E704 √s = 20 GeV 0.7 < pT < 2.0

experimental data on SSA

X p

p

 

X p

p

 

observed transverse Single Spin Asymmetries

 

d d

d d

A

N

(15)

and AN stays at high energies ….

STAR-RHIC √s = 200 GeV 1.2 < pT < 2.8

(16)

) ˆ (

d )

( )

(

d

/ /

, , , , ,

/

x f x D z

f

a b p b ab cd c

g q q d c b a

p

a

   

PDF FF

pQCD elementary interactions a

b c

0

D

X

X

ˆ

f

f

(collinear configurations)

X pp  

0

factorization theorem

p

p

(17)

X p

p  

0

RHIC data s  200 GeV

X p

p  

(18)

Transverse Λ polarization in unpolarized p-Be scattering at Fermilab

X N

p  

 

d d

d

P d

(19)

p p p

p

p

p

p p

 

d d

d d

AN









 

d d

d d

ANN

(20)

“Sivers moment”

X l

N

l

 

 

d d

d A d

 

 

) d d

( d d

) sin(

) d d

( d 2 d

) sin(

2 sin( )

S

S S

Φ Φ UT S

Φ Φ

Φ Φ

Φ Φ

A Φ

Φ S

(21)

“Collins moment”

 

d d

d A d

X l

N

l

 

 

 

) d d

( d d

) sin(

) d d

( d 2 d

) sin(

2 sin( )

S

S S

Φ Φ UT S

Φ Φ

Φ Φ

Φ Φ

A Φ

Φ S

(22)

and now ….?

Polarization data has often been the graveyard of fashionable theories.

If theorists had their way, they might

just ban such measurements altogether out of self-protection.

J.D. Bjorken

St. Croix, 1987

(23)

  P sin Φ ) * p c.m. frame

ASpP

T

T π

S

 

needs k dependent quark distribution in p and/or pdependent fragmentation of polarized quark

z y

Φ

S

Φ

π x

X

p

S

PT

Transverse single spin asymmetries in SIDIS

in collinear configurations there cannot be (at LO) any PT

(24)

spin-k

correlations? orbiting quarks?

Transverse Momentum Dependent distribution functions Space dependent distribution functions (GPD)

) ,

( x k

q

) , ( b x q

k

?

b

(25)

q p T

q

N

f

M

f   k

1

/

2

p

kφ S q

p

q

φ S

p q

ˆ ) ( ˆ

) ,

2 ( 1

) ,

( )

, (

/ / /

p p

S p

q q q

h N

q q h

h

p z D

p z D

z D

ˆ ) ( ˆ

) ,

2 ( 1

) , ( )

, (

/ / /

k p S

k

k x f

k x f

x f

p q N

p p q

q

Amsterdam group notations

q q h

h

N H

M z

Dp

1

/ 2

spin-k

correlations

Sivers function Collins function

(26)

q p

q

N

h

M f   k

1

/

p

Sq kφ

q

p

q

φ S p Λ

ˆ ) ( ˆ

) ,

2 ( 1

) ,

2 ( ) 1 ,

(

/ / /

p p

S p

q q N

q q h

p z D

p z D

z D

ˆ ) ( ˆ

) ,

2 ( 1

) , 2 (

) 1 ,

(

/ / /

k p S

k

p q q N

p p q

q

k x f

k x f

x f

Amsterdam group notations

q q T

N D

M z

D p

1

/ 2

spin-k

correlations

Boer-Mulders function polarizing F.F.

(27)

8 leading-twist spin-k

dependent distribution functions

(28)

Sivers function

dependence on S

T

in cross section

The Sivers mechanism for SSA in SIDIS processes

) ,

ˆ ( ) ,

2 ( 1

/ 2 2

6



D z p

z J z dQ

x d f

d

d

qh

h lq

lq p

q q

  k k

(29)

Sivers angle

SSA:

after integration over k

one obtains:

) sin(

h S

A    

) 1

,

(  

h

T z

J z zk

P p

(30)

 

 

] [

d

sin ] [

2 d

sin

d d

Φ

Φ d

d A

Φ

Φ

data are presented for the sinΦ moment of the analyzing power

Pk

p

T

z

(31)

Parameterization of the Sivers function

1 1  

N

q

q = u, d.

The Sivers function for sea quarks and antiquarks is assumed to be zero.

(32)

M.A., U.D’Alesio, M.Boglione, F. Murgia, A.Kotzinian, A Prokudin

from Sivers mechanism

) sin( S

A

UT

(33)

Deuteron target

 

dh

h

p u d N p

u N

UT f f D D

A h S    

) / / 4

sin(

(34)

First pmoments of extracted Sivers functions, compared

with models

M.A, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin

data from HERMES and COMPASS

) ,

4 (

/ 2

) 1 ( 1 )

1 (

d k m f x k

f f

p q N p

q T q

N

k

hep-ph/0511017

1

?

1

d T u

T

f

f

 

(35)

The first and 1/2-transverse moments of the Sivers quark distribution functions. The fits were constrained mainly (or solely) by the preliminary HERMES data in the indicated x-range. The

curves indicate the 1-σ regions of the various parameterizations.

) , ( )

(

2 1

) 2 / 1 (

1

f x k

M d k

x

f

T q

k

Tq

M. Anselmino, M. Boglione, J.C. Collins, U. D’Alesio, A.V. Efremov, K. Goeke, A. Kotzinian, S. Menze, A. Metz, F. Murgia, A. Prokudin, P. Schweitzer, W. Vogelsang, F. Yuan

) , 2

2 1

(

2 2

) 1 (

1

f x k

M d k

f

T q

k

Tq

(36)

predictions for JLab, proton target, 6 GeV

0.4 ≤ zh ≤ 0.7 0.02 ≤ PT ≤ 1 GeV/c 0.1 ≤ xB ≤ 0.6

0.4 ≤ y ≤ 0.85 Q2 ≥ 1 (GeV/c)2 W2 ≥ 4 GeV2 1 ≤ Eh ≤ 4 GeV

(37)

predictions for JLab, proton target, 12 GeV

0.4 ≤ zh ≤ 0.7 0.02 ≤ PT ≤ 1.4 GeV/c 0.05 ≤ xB ≤ 0.7

0.2 ≤ y ≤ 0.85 Q2 ≥ 1 (GeV/c)2 W2 ≥ 4 GeV2 1 ≤ Eh ≤ 7 GeV

(38)

ˆ ) ) (

, ( )

, (

ˆ ) ( ˆ

) ,

2 ( ) 1

, ( )

, (

1 /

/ / /

k M x

f k

x f

k x f

k x f

x f

a T p

a

p a N p

p a a

 

k p

S

k p

S k



 

   Ta

p a

N f

M

f k 1

/

2

S

 k

k

number density of partons with longitudinal momentum fraction x and

transverse momentum k, inside a proton with spin S

0 ) ,

/

(

2

 

a

dx d k

k

f

a p

x k

M. Burkardt, PR D69, 091501 (2004)

What do we learn from the Sivers distribution?

(39)

  ˆ ( , )

2 cos ˆ

sin ˆ

ˆ ) ( ˆ

) ,

ˆ ( 2

) 1 ,

ˆ (

/ 2

/ / 2

 

     

k x f

k dk dx

k x f

k x f

d dx

p a N S

S

p a N p

a a

ji

k p

S k

k k

Then we can compute the total amount of intrinsic momentum carried by partons of flavour a

for a proton moving along the +z-axis and polarization vector

i j

S  cos 

S

ˆ  sin 

S

ˆ

S

a

) k sin(

ˆ )

( ˆ     

p k

S

S

(40)

 

sin ˆ cos ˆ GeV/c

13

. 0

GeV/c

cos ˆ sin ˆ

14

. 0

03 . 0

02 . 0 0.05 0.06 -

j i

k

j i

k

S S

d

S S

u

u

k

d

k

?

 0

u k d

k

Sivers functions extracted from AN data in

X p

p  give also opposite results, with

036 .

0

032 .

0  

u

k

d

k

Numerical estimates from SIDIS data

U. D’Alesio

(41)

Collins mechanism for SSA

q

q’ initial quark transverse spin is transmitted to the final

quark

 q l

q

l 1 ( 1 )

2

) 1

( 2

y y d

d

d d

q q

q q

q q

q q

 

(in collinear configuration, here ↑,↓ means perpendicular to the leptonic plane)

ˆ

 d

ˆ ) ( ˆ

) ,

2 ( ) 1 ,

( )

,

(

/ /

/

 

Sq

pq

p

q h N q

q h

h z p D z p D z p

D

C h

S q

q

 (

p

ˆ 

p

ˆ

)  sin(

Φ

Φ

)  sin

Φ S

(42)

The polarization of the fragmenting quark q' can be computed in QED

depolarization factor

q

N

T

q d D

d

d    ˆ

x y

 

C

Φ

Φ

S

Φ

h

S

q

S

q

l l

S h

C

Φ Φ

Φ     sin Φ

C

 sin( Φ

h

Φ

S

)

y q y

q

x q x

q

y S S y

y S S y

) ) (

1 ( 1

) 1

( ) 2

(

) ) (

1 ( 1

) 1

( ) 2

(

2 2

 

 

(43)

 

 

] [

) sin(

] d

2 [d

) sin(

d d

Φ Φ

A

S h

S h

S Φ h

Φ UT h S

Collins effect in SIDIS

)

, ( )

, ˆ (

) sin(

) ,

ˆ (

) ,

(

/ 2 /

2

2 / 1

2 )

sin(

 

 

 

q q p q p

lq lq S

h

q h q h S

lq N lq q

S h

Φ Φ UT

p z D

k x dQ f

d d

Φ Φ

z dQ D

k d x h

d

A

h S

k

p k

:

1 or q

h qT transversity distribution

ˆ ) ( ˆ

) , ( )

,

( /

/

p Sq pq p

q h N q

h

ND z D z p

(44)

fit to HERMES data on sin(Φh ΦS )

A

UT

2 | |

h

1

  qq

assuming

W. Vogelsang and F. Yuan Phys. Rev. D72, 054028 (2005)

(45)

A. V. Efremov, K. Goeke and P. Schweitzer

(h1 from quark-soliton model)

(46)
(47)

Collins function from e

+

e

processes

(spin effects without polarization)

e+e- CMS frame:

2 , 10 . 52 GeV

s

s z E

h

X h h q

q e

e

 

BELLE @ KEK

e+

1

P

h 2

P

h



e-

e+

thrust-axis

z y

x

1

p

2

p

(48)

single quark or antiquark are not polarized, but there is a strong correlation between their spins

 

2 2 2

4 sin 3 cos

ˆ cos

ˆ

e

q

s d

d d

d





) ,

( )

, cos (

ˆ

cos

, / 1 1 / 2 2

2 2 1 2 2

1 1 2

2 1

p p

p

p D z D z

d d d

d d

dz dz

d

q h q

spins h q

spins X

h h e e

cross section for detecting the final hadrons inside the jets

contains the product of two Collins functions

 

 

q q h q h q

q h q

N q

h N q

z D

z D

e

z D

z D

e

d dz dz

d d d

dz dz

d

A ( ) ( )

) ( )

) ( cos (cos

1 sin 8

1 1

cos 2

1

cos

2 /

1 / 2

/ 2 / 1

2 2 0

2

2 1

0 2

1 1

2 1

2

1

 

N

D ( z ) d

2

p

N

D ( z , p ), etc. 

0

 

1

 

2

(49)

Cosine modulations clearly visible

0 2

1 0

0

) cos

(  

P N P

N

 

2

1

 

0 0) ( N N

M. Grosse Perdekamp, A. Ogawa, R. Seidl

Talk at SPIN2006

BELLE data

(50)

P1

) , ( ) cos(

1 1 2 1 1 2

1

1 P z z

A A

L

U  

U = unlike charged pions

L = like charged pions

) ( )

( 2

) ( )

( 5

) ( )

( 5

) ( ) ( 7 ) ( ) ( 5

) ( )

( 7

) ( )

( 5

cos 1

sin 8

) 1 , (

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 2 2

1 1

z D z

D z

D z

D z

D z

D

z D z D z

D z D

z D z

D z

D z

z D z P

U N U

N F

N U

N U

N F

N

U U

F F

U N U

N F

N F

N

etc.

,

, /

/ U

N u

N F

N u

ND   DD   D

(51)

fit of HERMES data on

A

UTsin(hS)

Collins functions and transversity distributions from a global best

fit of HERMES, COMPASS and BELLE data

M.A., M. Boglione, U.D’Alesio, A.Kotzinian, F. Murgia, A Prokudin, C. Türk, in preparation

(52)

fit of COMPASS data on

A A

UTUTsin(sin(hhSS))

(53)

fit of BELLE data on

P

1

( z

1

, z

2

)

(54)

Extracted favoured and unfavoured Collins functions

positivity bound Efremov et al.

Vogelsang, Yuan

(55)

Extracted transversity distributions

Soffer bound

(56)

Predictions for Collins asymmetry

at JLab, proton target, 6 GeV

(57)

Predictions for Collins asymmetry

at JLab, proton target, 12 GeV

(58)

Sivers function and orbital angular momentum

Sivers mechanism originates from

SL

q

then it is related to the quark orbital angular momentum D. Sivers

For a proton moving along z and polarized along y

? ) 2

,

1

(

0 /

q y p

q

N

L

k x f

dx  

Open issues and wild ideas …

(59)

Sivers function and proton anomalous magnetic momentum

M. Burkardt, S. Brodsky, Z. Lu, I. Schmidt

Both the Sivers function and the proton anomalous magnetic moment are related to correlations of proton wave functions with opposite helicities

? )

,

1

(

0 /

2

p q q

N

f x k C

d

dx   

k

in qualitative agreement with large z data:

d u Φ

Φ UT

Φ Φ

UT

S S

A A

) sin(

) sin(

(60)

Conclusions

Towards the transverse spin and momentum structure of the nucleon via azimuthal and P

hT

dependence in SIDIS

Information on quark intrinsic motion Spin-k

correlation from Sivers function

Orbiting quarks?

Extracting Collins function and accessing transversity

Much more data needed …

Riferimenti

Documenti correlati

Di questi nuovi operatori, 600 saranno selezionati per essere esclusivamente dedicati alla presa in carico dei beneficiari del Reddito di inclusione e alla collaborazione con i

delle seguenti condizioni: a) l'interessato ha espresso il consenso al trattamento dei propri dati personali per una o più specifiche finalità; b) il trattamento

18 The effect on disability progression continued to be significant at each time point and similar treatment effects were seen irrespective of on- study relapses, giving further

Consequently, clinicians can expect their patients to be more attentive to some esthetic factors than to others.’’ However, no systematic review analyzed the perception of

Altri ancora, senza svolgere i conti richiesti, si sono affidati alle proprie conoscenze e hanno applicato altre tecniche semplificate per stabilire la retta

Il secondo obiettivo riguarda invece l’osservazione e l’analisi dello spazio linguistico plurilingue della casa famiglia in cui sono ospitati i pazienti dell’ospedale e in

Thus, the decreases in endogenous TGFa production and in p2lras protein levels occur simultaneously and precede the growth arrest and morphological changes in