• Non ci sono risultati.

Beer J. M, Foster P. J., Siddal R. G, “Calculation methods of radiative heat transfer”, HTFS Design Report 22, AEA Technology, (1971)

N/A
N/A
Protected

Academic year: 2021

Condividi "Beer J. M, Foster P. J., Siddal R. G, “Calculation methods of radiative heat transfer”, HTFS Design Report 22, AEA Technology, (1971) "

Copied!
4
0
0

Testo completo

(1)

Bibliografia

144

Bibliografia

“Ansys CFX versions 5.7, Users Manual” Ansys Inc., 2004.

Beer J. M, Foster P. J., Siddal R. G, “Calculation methods of radiative heat transfer”, HTFS Design Report 22, AEA Technology, (1971)

Borghi R., “Réactions Chimiques en Milieu Turbulent”, Thèse de Doctorat, Université Pierre et Marie Curie, Paris, (1978)

Capria A., De Cesaris A. L., Dubini M., Giugliano M., “Controllo delle Emissioni in Atmosfera da Impianti Industriali”, Istituto per l’Ambiente, (1992)

Cavaliere A., de Joannon M, “Mild Combustion”, Progress in Energy and Combustion Science, 30, 329-366, (2004)

Cavigiolo A., Galbiati M.A., Effuggi A., Gelosa D., Rota R., “Mild Combustion In a Laboratory-Scale Apparatus”, Combustion Science and Technology, 175, 1347-1367, (2003)

Coelho P. J., Peters N., “Numerical Simulation of a Mild Combustion Burner”, Combustion and Flame, 124, 503-518, (2001)

Chomiak J., “Combustion: A Study in Theory, Fact and Application”, Energy and Engineering Series, Abacus Press, (1989)

Christo F. C., Dally B. B., “Modelling Turbulent Reacting Jets Issuing into a Hot and Diluted Coflow”, Combustion and Flame, In Press, (2005)

Dally B.B., Fletcher D.F., Masri A.R., “Modelling of Turbulent Flames Stabilised on a Bluff Body”, Combustion Theory and Modelling, 2, 193-219, (1998a)

Dally B.B., Masri A.R., Barlow R.S., Fiechtner G.J., “Instantaneous and Mean Compositional Structure of Bluff-Body Stabilised Nonpremixed Flames”, Combustion and Flame, 114, 119-148, (1998b)

Dally B.B., Riesmeier E., Peters N., “Effect of fuel mixture on moderate and intense low oxygen dilution combustion”, Combustion and Flame, 137, 418-431, (2004)

De Soete G., “Overall Reaction Rates of NO and N

2

Formation from Fuel Nitrogen”, 15

th

Symposium (International) on Combustion, The Combustion Institute, (1974)

Donatini F., Gheri P., Paulozza A., Schiavetti M., Tognotti L., “Flameless Combustion Process and Fluid Dynamic Analysis”, Proceedings of GENOVA 2004,

59° Congresso dell’Associazione Termotecnica Italiana, Genova

http://www.aeromech.usyd.edu.au/thermofluids/main_frame.htm.

(2)

Bibliografia

145 Falcitelli M., Pasini S., Tognotti L., “Modelling Practical Combustion Systems and Predicting NO

x

Emissions with an Integrated CFD Based Approach”, Computers & Chemical Engineering, 26, 1171, (2002)

Hottel H.C., Sarofim, A.F., “Radiative Transfer”, McGraw-Hill, New York, (1967)

Jones W. P., Lindstedt R. P., "Global Reaction Schemes for Hydrocarbon Combustion,"

Combustion and Flame, 73, 233-249, (1988)

Kuo K. K., “Principles of Combustion”, John Wiley & Sons, New York, (1986)

Launder B. E., "The Prediction of Laminarization with a Two-Equation Model of Turbulence”, Journal of Heat and Mass Transfer, 15, 301-314, (1972)

Launder B. E., Morse A. P., Rodi W., Spalding D. B., “The Prediction of Free Shear Flows-A Comparison of Six Turbulence Models”, NASA SP-311, (1972)

Lockwood F.C., Shah N.G., “A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures”, 18th Symposium (International) on Combustion,

The Combustion Institute, 1405-1414, (1981)

Magnussen B. F., Hjertager B. H., “On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion”, 16th Symposium (International) on Combustion, The Combustion Institute, 719-729, (1976)

Mastorakos E., Taylor A. M., Whitelaw J. H., “Turbulent Counterflow Flames with Reactants Diluted by Hot Products”, Joint Meeting of the British and German Sections, The Combustion Institute, Cambridge, (1993)

Mauri M., “Fenomeni di Trasporto”, Dispense del Corso di Principi di Ingegneria Chimica, Università di Pisa, A.A. 2003-2004;

Milani A., Saponaro A., “Tecnologie di Combustione senza Fiamma”, La termotecnica, Gennaio/Febbraio, 87-94, (2000)

Miller J. A., Bowman C. T., “Mechanism and Modelling of Nitrogen Chemistry in Combustion”, Progress in Energy and Combustion Science, 15, 287-338, (1989) Modest M. F., “Heat Transfer Handbook”, Chapter VIII, Radiative Heat Transfer, John Wiley

& Sons, New York, (2003)

Morse A. P., “Axisymmetric Turbulent Shear Flows with and without swirl”, PhD Thesis, London University, (1977)

Özdemir B. I., Peters N., “Characteristics of the Reactions Zone in a Combustor Operating at Mild Combustion”, Experiments in Fluid, 30, 683-695, (2001)

Paulozza A., “Analisi Processistica e Sperimentale della Combustione Senza Fiamma di

Metano e Idrogeno”, Tesi di Laurea, Università di Pisa, (A.A. 2003-3004)

(3)

Bibliografia

146 Peters N., “Fifteen Lectures on Laminar and Turbulent Combustion”, Ercoftac Summer School, Aachen, (1992);

Peters N., “Four Lectures on Turbulent Combustion”, Ercoftac Summer School, Aachen, (1997)

Plessing T, Peters N., Wünning J. G., “Laser Optical Investigation of Highly Preheated Combustion with Strong Exhaust Gas Recirculation”, 27th Symposium (International) on Combustion, The Combustion Institute, 3197-3204, (1998)

Poinsot T., Veynante D., “Theoretical and Numerical Combustion”, Edwards, Philadelphia, (2001)

Pope S. B., “An explanation of the Turbulent Round-Jet/Plane-Jet Anomaly”, AIAA Journal, 16, 279-281, (1978)

Pozzoli A., Migliavacca G., Perini M., Parodi E., “La Combustione Senza Fiamma: Aspetti Teorici e Applicazioni Tecnologiche nell’Impiantistica di Processo”, La Rivista dei Combustibili, 56, 263-272, (2002)

Prandtl L., “Investigation on turbulent flow”, Zeitcchrift fur angewandte Mathematik und Mechanik, 5, 136-139, (1925)

“Proceedings of the 5th International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames”, (2000)

Rhie C.M., Chow W.L., “A numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA Paper 82-0998, (1982)

Sarkar S., Erlebacher B., Hussaini M., Kreiss H., “The Analysis and Modelling of Dilational Terms in Compressible Turbulence”, Journal of Fluid Mechanics, 227, 473-493, (1991)

Smagorinsky J., "General Circulation Experiments with the Primitive Equations", Monthly Weather Review, 91, 99-164, (1963)

Smith T. F., Shen Z. F., Friedman J. N.. “Evaluation of Coefficients for the Weighted Sum of Gray Gases Model”. Journal of Heat Transfer, 104, 602-608, (1982)

Spalart P.R., Jou W.H., Strelets M., Allmaras S.R., “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach”, 1st AFOSR International Conference on DNS/LES, (1997)

Spalding D.B., ”Mixing and Chemical Reaction in Steady Confined Turbulent Flames”, 13

th

Symposium (International) on Combustion, The Combustion Institute, 649–657,

(1971)

(4)

Bibliografia

147 Telger K., Roth W., “Betriebserfahrungen beim Einsatz von Brennern mit flammloser Oxidation”, Gas Wärme International, 44, 332-337, (1995)

Warnatz J., Mass U., Dibble R. W, “Combustion”, Springer Verlag, 219-221, (1996)

Westbrook C., Dryer F., “Chemical Kinetic Modelling of Hydrocarbon Combustion”, Progress in Energy and Combustion Science, 10, 1-57, (1984)

Westbrook C. K., Dryer F. L., “Simplified Reaction Mechanism for the Oxidation of Hydrocarbon Fuels in Flames”, Combustion Science and Technology, 27, 31-43, (1981) Westenberg A. A., "Kinetics of NO and CO in Lean, Preximed Hydrocarbon-Air Flames“,

Combustion Science and Technology, 4, 59, (1971)

Wünning J. G., “Flammlose Oxidation yon Brennstoff mit hochvorgewärmter Luft”, Chemica Ingenieur Tech, 63, 1243-1245, (1991)

Wünning J. G., “Flox® - Flameless Combustion”, Thermprocess Symposium, (2003)

Wünning J. A., Wünning J. G., “Flameless Oxidation to Reduce Thermal NO Formation”, Progress in Energy and Combustion Science, 23, 81-94, (1997)

Yakhot V., Orszag, S. A.. “Renormalization Group Analysis of Turbulence”, Journal of Scientific Computing, 1, 1-51, (1986)

Zabetakis M. G., “Flammability Characteristics of Combustible Gases and Vapours”, U.S.

Department of the Interior, Bureau of Mines, Bulletin 627, (1965)

Riferimenti

Documenti correlati

After the digital acquisition, the second step consists in the analysis and investigation of the epidermal images acquired: several works in literature have been proposed for

The influence of temperature of fuel, doping of ethylene and mass flow of fuel and air on emissions level (NO X , CO, THC)

Rapid combustion on rewetting experiment on Bagaiserwar using wet peat MC ± 60%, caused by characteristic of rewetted peat, below dry peat sample.. Even though the moisture

NT in Figure 1 a) suggests that the volatile profile of untreated pomegranate juices was preserved by non-thermal preservation treatments, while thermal pasteurization led

“On Mathematical Modeling of Turbulent Combustion with special emphasis on Soot Formation and Combustion”. 16 th Symposium (International) on Combustion, Combustion

For an autocatalytic reaction to take place in a BATCH reactor, some minimal amount of product P must be present to make sure that the reaction rate is not

The ideal combustion process occurs with a droplet acting as a fuel vapour source and an envelope flame surrounding the droplet... Multiple

It is seen that, with the growth of γ , the induction time increases, while the rate of growth of temperature does not change significantly from what is observed for lower values of