• Non ci sono risultati.

VI Bibliografia

N/A
N/A
Protected

Academic year: 2021

Condividi "VI Bibliografia"

Copied!
12
0
0

Testo completo

(1)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

VI

Bibliografia

[1]

Saunders G. Overview of drug therapy for Multiple Myeloma. Oncol Pharm Pract 2005; 11(3):83-100

[2]

Gado k, Gopcsa L, Poloczi K, Domjan G. Therapy of Multiple Myeloma. Magy Onkol 2001; 45(1):23-30

[3]

Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der Danielian M, Wu V, Newman R, Lichtensteina AK, Berenson JR. Myeloma Ig heavy chain V region

sequences reveal prior antigenic selection and marked somatic mutation but no interclonal diversity. J Immunol 1995, 155:2487

[4]

Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K. Evidence

that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992; 80: 2326

[5]

Lewis JP, Mackenzie MR. Non-random chromosomal aberrations associated with multiple myeloma. Hematol Oncol 1984; 2:307

[6]

Deawald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of

cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66:380

[7]

Gould J, Alexanian R, Goodacre A, Pathak S, Hecht B, Barlogie B. Plasma

cell karyotypes in multiple myeloma. Blood 1988; 71:453

[8]

Weh HJ, Gutensohn K, Selbach J, Kruse R, Wacker-Backhaus G, Seeger D, Fett W, Hossfeld DK. Karyotype in multiple myeloma and plasma cell

(2)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[9]

Lai JL, Zandecki M, Mary JY, Bernardi F, Izydorzyk V, Flactif M, Morel P, Jouet JP, Bauters F, Facon T. Improved cytogenetics in multiple myeloma- A

study of 151 patients including 117 patients at diagnosis. Blood 1995; 85:2490

[10]

Sawyer JR, Waldron JA, Jagannath S, Barologie B. Cytogenetic findings in

200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82:41

[11]

Zandecki M, Bernardi F, Lai JL, Izydorczik V, Bauters F, Cosson A. Image

analysis in multiple myeloma at diagnosis. Cancer Genet Cytogenet 1994; 74:115

[12]

Sole F, Woessner S, Acin P, Perez-Losada A, Florensa L, Besses C, Sans-Sabrafen J. Cytogenetic abnormalities in 13 patients with multiple myeloma. Cancer Genet Cytogenet 1996; 86:162

[13]

Tabernero D, San Miguel JF, Garcia-Sanz R, Najera L, Garcia-Isidoro M, Perez-Simon JA, Gonzalez M, Wiegant J, Raap AK, Orfao A. Incidence of

chromosome numerical changes in multiple myeloma. Am J Pathol 1995; 149:153

[14]

Taniwaki M, Nishida K, Ueda Y, Takashima T. Non-random chromosomal

rearrangements and their implications in clinical features and out come of multiple myeloma and plasma cell leukemia. Leuk Lymphoma 1995; 21:25

[15]

Ferti A, Panani A, Arapakis G, Raptis S. Cytogenetic study in multiple

myeloma. Cancer Genet Cytogenet 1984; 12:247

[16]

Jonveaux P, Berger R. Chromosome studies in plasma cell leukemia and

multiple myeloma in transformation. Genes Chromosom Cancer 1992; 4:321

[17]

Drach J, Angerler J, Schuster J, Rothermundt C, Thalhammer R, Haas OA, Jager U, Fiegl M, Geissler K, Ludwig H, Huber H. Interphase fluorescence in

(3)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

situ hybridization identifies chromosomal abnormalities in plasma cells from patients with monoclonal gammopathy of undetermined significance. Blood

1995; 86:3915

[18]

Flactif M, Zandecki M, Lai JL, Bernardi F, Obein V, Bauters F, Facon T.

Interphase fluorescence in situ hybridization (FISH) as a powerful tool for the detection of aneuploidy in multiple myeloma. Leukemia 1995; 9:2109

[19]

Hallek M, Bergsagel PL, Anderson KC. Multiple Myeloma: Increasing

evidence for a multistep transformation process. Blood 1998; 91:3-21

[20]

Klein B, Bataille R. Cytochine network in human multiple myeloma. Hematol Oncol Clin North Am 1992; 6:273

[21]

Klein B. Cytochine, cytochine receptors, transduction signals and oncogenes

in multiple myeloma. Semin Hematol 1995; 32:4

[22]

Klein B, Zhang X-G, Content J, Houssiau F, Aarden L, Piechaczyk M, Bataille R. Paracrine rather than autocrine regulation of myeloma-cell growth

and differentiation by interleukin-6. Blood 1989; 73:517

[23]

Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A, Kishimoto T. Autocrine generation and

requirement of BSF-2/IL-6 for human multiple myeloma. Nature 1988; 332:83

[24]

Zhang XG, Bataille R, Widjenes J, Klein B. Interleukin-6 dependence of

advanced malignant plasma cells dyscrasia. Cancer 1992; 69:1373

[25]

Chen-Kiang S, Hsu W, Natkunam Y, Zhang X. Nuclear signaling by

(4)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[26]

Lu ZY, Gu ZJ, Zhang XG, Wijdenes J, Neddermann P, Rossi JF, Klein B.

Interleukin-10 induces interleukin-11 responsiveness in human myeloma cell lines. FEBS Lett 1995; 377:515

[27]

Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M, Boiron JM, Bataille R, Klein B. Reproducible obtaining of human myeloma cell lines as a

model for tumor stem cell study in human multiple myeloma. Blood 1994; 83:3654

[28]

Schwabe M, Cox GW, Bosco MC, Prohaska R, Kung HF. Multiple cytokines

inhibit interleukin-6- dependent murine hybridoma/plasmacytoma proliferation.

Cell Immunol 1996; 168:117 [29]

Lokhorst HM, Meuwissen OJ, Bast EJ, Dekker AW. VAD chemiotherapy for

refractory multiple myeloma. Br J Haematol 1989; 71(1):25-30

[30]

Singhal S, Mehta J, Desikan R. Antitumor activity of thalidomide in refractory

multiple myeloma. N Engl J Med 2003; 341:1565-1571

[31]

Richardson PG, Barlogie B, Berenson J. A phase 2 study of bortexomib in

relapsed, refractory myeloma. N Engl J Med 2003; 348:2609-2617

[32] Richardson PG, Sonneveld P, Schuster MW. Bortezomib or high-dose

dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;

352:2487-2498

[33] Rajkumar SV, Hayman SR, Lacy MQ. Combination therapy with

lenalidomide plus dexamethasone for newly diagnosed myeloma. Blood 2005; 106:4050-4053

[34] Richardson PG, Blood E, Mitsiades CS. A randomized phase 2 study of

lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006; 108: 3458-3464

(5)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[35]

McBride WG. Thalidomide and congenital abnormalities. Lancet 1961;

2:1358

[36] D’amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor

of angiogenesis. Proc Natl Acad Sci USA 1994; 91:4082-4085

[37] Dimopoulos MA, Anagnostopoulos A, Weber D. Treatment of plasma cell

dyscrasias with thalidomide and its derivatives. J Clin Oncol 2003;

21:4444-4454

[38]

Adams J, Palombella VJ, Sausville EA. Proteasome inhibitors: a novel

classo f potent and effective antitumor agents. Cancer Res 1999; 59:2615-2622

[39]

Orlowski RZ, Stinchcombe TE, Mitchell BS. Phase I trial of the proteasome

inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin

Oncol 2002; 20:4420-4427

[40]

Hideshima T, Richardson P, Chauhan D. The proteasome inhibitor PS-341

inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61:3071-3076

[41] Mateos MV, Hernandez JM, Hernandez MT. Bortezomib plus melphalan and

prednisone in elderly untreated patients with nultiple myeloma: result of a multicenter phase 1/2study. Blood 2006; 25:4459-4465

[42] Anderson KC. Bortezomib therapy for myeloma. Curr Hematol Rep 2004; 65

[43]

Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple

(6)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[44] Masdehors, P.Omura S, Merle-Beral H. Increased sensitivity of CLL-derived

lymphocytes to apoptotic death activation by the protesome-specific inhibitor lactacystic. Br Haematolol 1999; 105:752-757

[45] Schenkein D. Proteasome inhibitors in the treatment of B-cell malignancies.

Clin Lymphoma 2002; 3:49-55

[46] Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer

2004; 3:349-460

[47] Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatian KM. Inhibition of

nuclear kB activation attenuates apoptosis resistence in lymphoid cells. Blood

1998; 91:4624-4631

[48]

Karin M, Yamamoto Y, Wang QM. The IKK NF-kB system: a trasure trove

for drug development. Nat Rev Drug Discov 2004; 3:17-26

[49]

Chauhan D, Uchiyama H, Akbarali Y. Multiple Myeloma cell

adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kB. Blood 1996; 87:1104-1112

[50] Ma MH, Yang HH, Parker K. The proteasome inhibitor PS-341 markedly

enhances sensitivity of multiple myeloma tumor cells to chemioterapeutic agents. Clin Cancer Res 2003; 9:1136-1144

[51]

Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple Myeloma. Mol Cancer Ther 2005; 4:4

[52]

Richardson PG, Sonneveld MS, Irwin D. Bortezomib demonstrates superior

efficacy to high-dose dexamethasone in relapsed multiple myeloma. American

(7)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[53] Cory S, Adams JM. The Bcl-2 family: regulators of the cellular life-or-death

switch. Nat Rev Cancer 2002; 2:647-656

[54] Peters JM, Franke WW, Kleinshmidt JA. Distinct 19S and 20S

subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem, 1994;269(10):7709-18

[55]

Lodish H, Berk A, Matsodaira P, Kaiser CA, Krieger M, Scott MP, Zipusky SL, Darnell J. Molecular Cell Biology 2004, 5th ed., ch.3, pp 66-72. New York: WH Freeman

[56]

Ciechanover A, Hod Y Hershko A. A heat-stable polypeptide component of

an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res

Commun, 1978;81(4):1100-1105

[57]

Varshavsky A. Regulated protein degradation. Trends Biochem Sci 2005;

30:283-386

[58]

Nandi D, Tahliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J. Biosci. 2006; 31(1):137-155

[59] Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell

Biol,2001;2:169-178

[60] Hicke L. Protein regulation by monoubiquitin. Ar Rev Mol Cell Biol 2001;

2:195-201

[61] Semple CA. The comparative proteomics of ubiquitination in mouse.

Genome Res 2003; 13:1389-1394

[62]

(8)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[63] Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N,

Tsukihara T. The structure of the mammalian 20S proteasome at 2.75Ǻ

resolution. Structure 2002; 10:609-618

[64] Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ.

Immunoproteasome assembly: cooperative incorporation of interferon-gamma-inducible subunuts. J.Exp.Med 1998; 187:97-194

[65] Gilmor TD. The Rel/NF-kB signal transduction pathway: introduction.

Oncogene,1999;18(49): 6842-4

[66]

Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kB in

hippocampal synaptic plasticity. Synapse 2000; 35(2):151-159

[67]

Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin

enhancer sequences. Cell 1986; 46(5): 705-716

[68]

Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB

complex. Cell,1998;95(6): 749-58

[69] Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora

A. The transcription factor nuclear kappaB and cancer. Clin Oncol 2007;

19(2):154-161

[70]

Abazis-Stamboulieh A, Oikonomou P, Papadoulis N, Panayotidis P, Vrakidou E, Tsezou A. Association of interleukin-1A, interleukin-1B and

interleukin-1 receptor antagonist gene polymorphisms with multiple myeloma.

Leukemia and Lymphoma 2007; 48:11;2196-2203

[71]

Chen H, Wilkins LM, Aziz N, Cannings C, Wyllie DH, Bingle C, Rogus J, Beck JD, Ofenbacher S, Cork MJ, Rafie-Kolpin M, Hsieh CM, Kornman KS, Duff

(9)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

GW. Single nucleotide polymorphisms in the human interleukin-1B gene affect

transcription according to haplotype context Human Molecular

Genetics,2006;vol. 15,n. 4,519-529

[72] Wilson AG, Symons JA, McDowill TL, McDevitt HO, Duff GW. Effects of a

polymorphism in the human tumor necrosis factor α promoter on transcriptional

activation. Proc. Natl. Acad. Sci. 1997; 44:3195-3199

[73]

Morgan GJ, Adamson PJ, Mensah K, Spink CF, Law GR, Keen LJ, Roman E, Davies FE, Rollinson S, Child JA, Bidwell JL. Haplotypes in the tumor

necrosis factor region and myeloma. BJH 2005; 129:358-365

[74]

Furutani Y, Notake M, Yamayoshi M, Yamagishi J, Nomura H, Ohue M, Furuta R, Fukui T, Yamada M, Nakamura S. Cloning and characterization of the

cDNAs for human and rabbit interleukin-1 precursor. Nucleic Acids Res 1985; 13:5869-5882

[75]

Lord PCW, Wilmoth LMG, Mizel SB, McCall CE. Expression of interleukin-1

alpha and beta genes by human blood polymorphonuclear leukocytes.

J.Clin.Invest. 1991; 87:1312-1321

[76] Sabatino M, Boyce B, Aufdemorte T, Bonewald L, Mundy GR. Infusion of

recombinant human interleukins 1 alpha and 1 beta cause hypercalcemia in normal mice. Proc.Nat.Acad.Sci.1988; 85:5235-5239

[77] Hodgquist KA, Nett MA, Unanue ER, Chaplin DD. Interleukin 1 is processed

and released during apoptosis. Proc.Nat.Acad.Sci.1991; 88:8485-8589

[78] Bailly S. di Giovine FS, Blakemore AIF, Duff GW. Genetic polymorphism of

(10)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[79] Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM,

Dinarello CA. Nucleotide sequence of human monocyte interleukin 1 precursor

cDNA. Proc.Nat.Acad.Sci.1984; 81:7907-7911

[80] Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ,

Martin J, Carrascal T, Walsh P, Reznikov LL, Kim SH, Novick D, Rubinstein M, Dinarello CA. Il-18 regulates IL1beta-dependant hapetic melanoma metastasis

via vascular cell adhesion molecule-1. Proc.Nat.Acad.Sci.2000; 97:734-739

[81] Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange

of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kB and beta-amyloid precursor protein. Cell 2002; 110:55-67

[82]

Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-1-beta

promotes oligodendrocytes death trough glutamate excitotoxicity. Ann.Neurol.

2003; 53:588-595

[83]

Langdhal BL, Lokke E, Carstens M, Stenkjaer LL, Eriksen EF. Osteoporotics

fractures are associated with an 86-base pair repeat polymorphism in the interleukin-1-beta gene. J.Bone Miner. 2000; 15:402-414

[84] Del Rey A, Roggero E, Randolf A, Mahuad C, McCann S, Rettori V,

Basedovsky HO, IL-1 reset glucose homeostasis at central levels. Proc.Nat.Acad.Sci. 2006; 103:16039-16044

[85]

Dower SK, Kronheim SR, Hopp TP, Cantrell M, Deeley M, Gillis S, Henney CS, Urdal DL. The cell surface receptors for 1(alpha) and

interleukin-1(beta) are identical. Nature 1986; 324:266-268

[86]

Copeland NG, Silan CM, Kingsley DM, Jenkins NA, Cannizzaro LA, Croce CM, Huebner K, Sims JE. Chromosomal location of murine and human IL-1

(11)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[87] Dale M, Nicklin MJ. Interleukin-1 receptor cluster: gene organization of

IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1(T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics 1999; 57:177-179

[88] Bajayo A, Goshen I, Feldman S, Csernus V, Iverfeldt K, Shohami E, Yirmiya

R, Bab I. Central IL-1 receptor signalling regulates bone growth and mass. Proc.Nat.Acad.Sci. 2005; 102:12956-12961

[89]

Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV. Human tumor necrosis factor: precursor

structure, expression and homology to lymphotoxin. Nature 1984; 312:724-729

[90]

Aggarwal BB, Eessalu TE, Hass PE. Characterization of receptor for human

tumor necrosis factor and their regulation by gamma-interferon. Nature 1985; 318:665-667

[91] Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarrett-Nedwin J, Pennica

D, Goeddel DV, Gray PW. Human lymphotoxin and tumor necrosis factor

genes: structure, homology and chromosomal localization. Nucleic Acids Res.

1985; 13:6361-6373

[92] Stellwagen D, Malenka RC. Synaptic scaling mediated by glia TNF-alpha.

Nature 2006; 440:1054-1059

[93] McGuire W, Hill A.V.S, Allsopp C.E.M, Greenwood BM, Kwiatkowski D.

Nature 1994. 371: 508–511

[94]

Cabrera M, Shaw MA, Sharpes C, Williams H, Castes M, Convit J, Blackwell JM. J. Exp. Med.1995; 182: 1259–1264.

[95]

(12)

Ruolo dei polimorfismi delle interleuchine nella farmacogenetica del Mieloma Multiplo

[96] Davies FE, Rollinson SJ, Rawstron AC, Roman E, Richards S, Drayson M,

Child JA, Morgan GJ. High-Producer Haplotypes of Tumor Necrosis Factor

Alpha and Lymphotoxin Alpha Are Associated With an Increased Risk of Myeloma and Have an Improved Progression-Free Survival After Treatment.

J.Clin.Oncol. 2000; 18:2843-2851

[97] Kadar K, Kovacs M, Karadi I, Melegh B, Pocsai Z, Mikala G, Tordai A, Szilagyi A, Adany R, Fust G,Varkonyi J. Polymorphisms of TNF-alpha and LT-alpha genes in multiple myeloma. Leukemia Research 2008; 32:1499-1504

[98] Brown EE, Lan Q, Zheng T, Zhang Y, Wang SS, Hoar-Zahm S. Common

variants in genes that mediate immunity and risk of multiple myeloma. Int J

Cancer 2007;120:2715–22.

[99]

Zheng C, Huang DR, Bergenbrant S, Sundblad A, Osterborg A, Bjorkholm M, et al. Interleukin 6, tumour necrosis factor alpha,interleukin 1beta and

interleukin 1 receptor antagonist promoter orcoding gene polymorphisms in multiple myeloma. Br J Haematol

2000;109:39–45.

[100] Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S,

Woo P. The effect of novel polymorphisms in the interleukin-6 (6) gene on

IL-6 transcription and plasma IL-IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. Journal of Clinical Investigation 1998; 102:1369-1376

[101] Cann, H et al. A human genome diversity cell line panel. Science 2002.

296:261-262

[102]

Mullin BH, Prince RL, Dick IM, Islam FMA, Hart DJ, Spector TD, Devine A, Dudbridge F , Wilson SG. Bone structural effects of variation in the TNFRSF1B geneencoding the tumor necrosis factor receptor 2.Osteopor Int 2008; 19:961-968

[103]

Riferimenti

Documenti correlati

La principale differenza tra questo processo di lavorazione e quelli a taglio singolo e multiplo, risiede sia nella differenza delle dimensioni dei trucioli prodotti che nella coppia

La principale differenza tra questo processo di lavorazione e quelli a taglio singolo e multiplo, risiede sia nella differenz a delle dimensioni dei trucioli prodotti che nella

B ATTAGLIA S., Grande Dizionario della Lingua Italiana, voll. B IEDERMANN H., Enciclopedia dei simboli, Milano,

Questi dati suggeriscono che il difetto mostrato dalle MPCs rappresenta un’alterazione di primaria importanza nella patogenesi delle lesioni osteolitiche del

- Auteri E., Management delle Risorse Umane, Milano, ed.Angelo Guerrini e Associati, quinta ed. 4 del 18 dicembre 2012  Mappa dei processi dell’Agenzia

Ecco, allora, che anche un “fumetto” fantastico (o “del fantastico”) assume un ruolo nella denuncia delle morti bianche, nell’indicare le brutture dei camici bianchi, nella

Il ruolo dei needlefree connectors nella prevenzione delle occlusioni.. Andrea De

Dopo aver discusso della cittadinanza e del ruolo delle religioni nella società multiculturale, questa terza edizione dei Cantieri del dialogo torna a trattare un tema