• Non ci sono risultati.

Find n→∞lim 1 n n X k=1 nn k o2 where{x

N/A
N/A
Protected

Academic year: 2021

Condividi "Find n→∞lim 1 n n X k=1 nn k o2 where{x"

Copied!
1
0
0

Testo completo

(1)

Problem 11206

(American Mathematical Monthly, Vol.113, February 2006) Proposed by M. Ivan and A. Lupa¸s (Romania).

Find

n→∞lim 1 n

n

X

k=1

nn k

o2

where{x} = x − ⌊x⌋ denotes the fractional part of x.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We first note that

1 n

n

X

k=1

nn k

o2

=

n

X

k=1

 1 k/n

2

·1 n is a Riemann sum corresponding to the integral

Z 1 0

 1 x

2

dx.

Since n ≤ 1/x < n + 1 implies that

 1 x



= 1 x− 1

x



= 1 x− n then

Z 1 0

 1 x

2

dx = lim

N →∞

N

X

n=1

Z n1 1 n+1

 1 x− n

2

dx

Now since Hn= log(n) + γ + o(1) and n! = nne−n

2πn(1 + o(1)) then

N

X

n=1

Z 1n 1 n+1

 1 x− n

2

dx =

N

X

n=1

Z n1 1 n+1

 1 x2 −2n

x + n2

 dx

=

N

X

n=1



−1

x− 2n log(x) + n2x

n1 1 n+1

=

N

X

n=1



1 + 2n log(n) − 2n log(n + 1) + 1 − 1 n + 1



=

N

X

n=1



2 + 2 (n log(n) − (n + 1) log(n + 1)) + 2 log(n + 1) − 1 n + 1



= 2N − 2(N + 1) log(N + 1) + 2 log((N + 1)!) + 1 − HN+1

= 2N + 2 log((N + 1)!/(N + 1)N+1) + 1 − log(N + 1) − γ + o(1)

= 2N + 2 log(e(N +1)p2π(N + 1)(1 + o(1))) + 1 − log(N + 1) − γ + o(1)

= 2N − 2(N + 1) + log(2π) + log(N + 1) + 1 − log(N + 1) − γ + o(1)

= log(2π) − γ − 1 + o(1).

Therefore

n→∞lim 1 n

n

X

k=1

nn k

o2

= Z 1

0

 1 x

2

dx = lim

N →∞

N

X

n=1

Z 1n 1 n+1

 1 x− n

2

dx = log(2π) − γ − 1 ≈ 0.2606614021.



Riferimenti