• Non ci sono risultati.

For n ≥ 1, prove n−1 X k=0 C(Tn, k)C(Tn+1, k

N/A
N/A
Protected

Academic year: 2021

Condividi "For n ≥ 1, prove n−1 X k=0 C(Tn, k)C(Tn+1, k"

Copied!
1
0
0

Testo completo

(1)

Problem 11940

(American Mathematical Monthly, Vol.123, November 2016) Proposed by H. Ohtsuka (Japan).

LetTn = n(n + 1)/2 and C(n, k) = (n − 2k) nk. For n ≥ 1, prove

n−1

X

k=0

C(Tn, k)C(Tn+1, k) = n3−2n2+ 4n n + 2

Tn

n

Tn+1

n

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. It suffices to show that for n, m ≥ 1,

m−1

X

k=0

C(Tn, k)C(Tn+1, k) = F (n, m) := m2(n(n + 2) + 4 − 4m) n(n + 2)

Tn m

Tn+1

m

 .

We proceed by induction with respect to m.

Basic step. For m = 1,

0

X

k=0

C(Tn, k)C(Tn+1, k) = Tn·Tn+1= F (n, 1).

Inductive step. For m > 1, we have to prove that

C(Tn, m)C(Tn+1, m) = F (n, m + 1) − F (n, m) that is

n(n + 2)(Tn−2m)(Tn+1−2m) = (n(n + 2) − 4m)(Tn−m)(Tn+1−m) − m2(n(n + 2) + 4 − 4m).

which can be verified straightforwardly. 

Riferimenti