• Non ci sono risultati.

For any positive integer n, prove n X k=1 n k  X 1≤i≤j≤k 1 ij = X 1≤i≤j≤n 2n− 2n−i ij

N/A
N/A
Protected

Academic year: 2021

Condividi "For any positive integer n, prove n X k=1 n k  X 1≤i≤j≤k 1 ij = X 1≤i≤j≤n 2n− 2n−i ij "

Copied!
1
0
0

Testo completo

(1)

Problem 12106

(American Mathematical Monthly, Vol.126, April 2019) Proposed by H. Ohtsuka (Japan).

For any positive integer n, prove

n

X

k=1

n k

 X

1≤i≤j≤k

1

ij = X

1≤i≤j≤n

2n− 2n−i ij .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

An:=

n

X

k=1

n k

 X

1≤i≤j≤k

1 ij =

n

X

k=1

n k

 k X

j=1

Hj

j and Bn:= X

1≤i≤j≤n

2n− 2n−i ij . where Hj =Pj

i=1 1

i. Then A1= B1= 1. Moreover, for n > 1, An=

n

X

k=1

n− 1 k



+n− 1 k − 1

 k X

j=1

Hj

j = An−1+

n

X

k=1

n− 1 k − 1

k−1

X

j=1

Hj

j +

n

X

k=1

n− 1 k − 1

 Hk

k

= 2An−1+1 n

n

X

k=1

n k

 Hk

and

Bn= 2 X

1≤i≤j≤n−1

2n−1− 2n−1−i

ij +

n

X

i=1

2n− 2n−i

in = 2Bn−1+ 1 n

n

X

i=1

2n− 2n−i

i .

Hence, by induction, for any positive integer n, An= Bn if and only if an = bn where

an:=

n

X

k=1

n k



Hk and bn:=

n

X

i=1

2n− 2n−i

i .

We have that a1= b1= 1. Moreover, for n > 1,

an =

n

X

k=1

n− 1 k



+n− 1 k − 1



Hk = an−1+

n

X

k=1

n− 1 k − 1

 Hk−1+

n

X

k=1

n− 1 k − 1

 1 k

= 2an−1+1 n

n

X

k=1

n k



= 2an−1+2n− 1 n and

bn= 2

n−1

X

i=1

2n−1− 2n−1−i

i +2n− 2n−n

n = 2bn−1+2n− 1 n .

Therefore, again by induction, for any positive integer n, an= bn and we are done. 

Riferimenti