• Non ci sono risultati.

X n=0 xn n X k=0 2n + 1 n − k  y2k+1

N/A
N/A
Protected

Academic year: 2021

Condividi "X n=0 xn n X k=0 2n + 1 n − k  y2k+1"

Copied!
1
0
0

Testo completo

(1)

Problem 12160

(American Mathematical Monthly, Vol.127, February 2020) Proposed by H. Ohtsuka (Japan) and R. Tauraso (Italy).

LetFn be thenth Fibonacci number, and let Ln be thenth Lucas number. Prove

n

X

k=0

2n + 1 n − k



F2k+1= 5n and

n

X

k=0

2n + 1 n − k



L2k+1=

n

X

k=0

2k k

 5n−k

for alln ∈ N.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

f (x, y) :=

X

n=0

xn

n

X

k=0

2n + 1 n − k



y2k+1=

X

k=0

y2k+1

X

n=k

2n + 1 n − k

 xn

= y

X

k=0

(xy2)k

X

n=0

2n + (2k + 1) n

 xn

= 2y

√1 − 4x(1 +√ 1 − 4x)

X

k=0

 4xy2 (1 +√

1 − 4x)2

k

= 2y

√1 − 4x(1 +√

1 − 4x)

1 − (1+4xy1−4x)2 2



= y(1 +√

1 − 4x)

√1 − 4x 1 +√

1 − 4x − 2x(1 + y2) where we used the known identity

X n=0

2n + m n



xn= 1

√1 − 4x

 2

1 +√ 1 − 4x

m

(see (5.72) in Concrete Mathematics by D. E. Knuth, O. Patashnik, and R. Graham).

Since

F2k+1=a2k+1− b2k+1

√5 and L2k+1= a2k+1+ b2k+1 with a := (1 +√

5)/2 and b := (1 −√

5)/2, it follows that X

n=0

xn

n

X

k=0

2n + 1 n − k



F2k+1= f (x, a) − f(x, b)

√5 ,

and

X

n=0

xn

n

X

k=0

2n + 1 n − k



L2k+1= f (x, a) + f (x, b).

On the other hand

g(x) :=

X n=0

5nxn = 1 1 − 5x. and

h(x) :=

X n=0

xn

n

X

k=0

2k k



5n−k= 1

√1 − 4x (1 − 5x). Hence, in order to show our identities, it remains to check that

f (x, a) − f(x, b) =√

5 g(x) and f (x, a) + f (x, b) = h(x)

which can be easily verified. 

Riferimenti