• Non ci sono risultati.

Rheology of Laponite-scleroglucan hydrogels

N/A
N/A
Protected

Academic year: 2021

Condividi "Rheology of Laponite-scleroglucan hydrogels"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Rheology

of

Laponite-scleroglucan

hydrogels

R.

Lapasin

a,∗

,

M.

Abrami

b

,

M.

Grassi

a

,

U. ˇSebenik

c

aUniversityofTrieste,EngineeringandArchitectureDepartment,PiazzaleEuropa,I-34127,Trieste,Italy bUniversityofTrieste,LifeSciencesDepartment,CattinaraHospital,StradadiFiume447,TriesteI-34149,Italy cUniversityofLjubljana,FacultyofChemistryandChemicalTechnology,Veˇcnapot113,1000Ljubljana,Slovenia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31October2016

Receivedinrevisedform15March2017 Accepted21March2017

Availableonline23March2017

Keywords: Laponite Scleroglucan Blendingeffects Hydrogels Nanoparticles

a

b

s

t

r

a

c

t

BothLaponiteandscleroglucancanfindseveralapplicationsinvariousfields(fromindustrialto biomed-icalone)invirtueoftheirpeculiarfeaturesandrheologicalpropertiesdisplayedinaqueousphases. StructuralstatesofLaponitedispersionsstronglydependonconcentrationandionicstrength.When attractiveandrepulsiveinterparticleinteractionsaresoeffectivethattheyleadtoarrestedstates (attrac-tivegelorrepulsiveglass),therheologicalbehaviorofthedispersionundergoesasharptransition,from quasi-Newtoniantomarkedlyshearthinningandviscoelastic.Conversely,scleroglucansolutions grad-uallychangetoweakgelswithincreasingpolymerconcentration.Thepresentworkisconcernedwith aqueousLaponite-scleroglucanmixedsystems,obtainedaccordingtodifferentpreparationmodes,and isaimedatexamininghowmuchthecontentandproportionofbothcomponentsaffecttheviscoelastic andflowpropertiesofthemixedsystem.

©2017ElsevierLtd.Allrightsreserved.

1. Introduction

Bothscleroglucan,aneutralbiopolymer,andLaponite,a

syn-theticclay,haveseparatelyfoundnumerousapplicationsinvarious

industrialfieldsaswellasinpharmaceuticalandbiomedicalareas,

byvirtueofthestructuralfeaturesandrheologicalpropertieswhich

aredisplayed,when theyaredissolvedordispersedin waterat

sufficientlyhighconcentration.

Scleroglucanisanonionicpolysaccharidesecretedexocellularly

byfilamentousfungiofthegenusSclerotium.Itsprimarystructure

consistsofalinearbackboneof(1,3)-␤-linkedd-glucopyranosyl

residues bearing a single (1,6)-␤-linked d-glucopyranosyl unit

everythreesugarresiduesofthemainchain(Rinaudo&Vincendon,

1982).Bothinaqueoussolutionandinthesolidstate,

scleroglu-canadoptsahighlyordered,rigid,triplehelicaltertiarystructure

(triplex),whichconsistsofthreeindividualstrandscomposedofsix

residuesinthebackboneperturn.Thethreestrandsofthetriplex

areheld together by interstrand hydrogenbondsat the center

ofthetriplex.The(1→6)-linked␤-d-glucopyranosylsidegroups

protrudefromtheoutsideofthetriplex,sopreventing

intermolec-ular aggregationand polymer precipitation (Bluhm, Deslandes,

∗ Correspondingauthor.

E-mailaddresses:rlapasin@alice.it,romano.lapasin@dia.units.it

(R.Lapasin),MICHELA.ABRAMI@phd.units.it(M.Abrami),mario.grassi@dia.units.it (M.Grassi),Urska.Sebenik@fkkt.uni-lj.si(U. ˇSebenik).

Marchessault, Pérez,&Rinaudo, 1982; Fari ˜na,Si ˜neriz,Molina & Perotti,2001;Palleschi,Bocchinfuso,Coviello,&Alhaique,2005;

Yanaki&Norisuye,1983).Thetriplexconformationisdestabilized

onlyindimethylsulfoxideorstrongalkalineconditionsandis

char-acterizedbya highrigiditywhich isresponsibleofthepeculiar

propertiesexhibitedbyaqueousscleroglucansolutionsinawide

pHrangeandevenatrelativelyhightemperatures.Asofttransition

fromsoltoweakgelpropertieswithincreasingpolymer

concen-trationcanbedetectedinbothcontinuousandoscillatoryshear

tests(Grassi,Lapasin,&Pricl,1996;Lapasin,Pricl,&Esposito,1990).

Astriplexclusteringincreasesleadingtotheformationofa

three-dimensionalhydrogelnetwork,shearthinningbehaviorbecomes

moremarkedandultimatelyanapparentyieldstresscanbe

indi-viduatedfromflowcurves,thixotropicresponsesbecomesmore

andmoreevident,andaprogressivetransitionisobservedinthe

mechanicalspectrawithprevailingelasticityoverthewhole

fre-quencywindow.

Duetothemarkedshearthinning behaviorof itshydrogels,

scleroglucanisusedasthickenerandsuspendingagenttoimpart

adequaterheologicalpropertiesandimprovestabilityofdisperse

systemsinseveralindustrialsectors(Lapasin&Pricl,1995).

Non-ionicpolymersusuallyshowonlyslightinteractionswithnonionic

andcationicsurfactantsandcanbeconvenientlyemployedforthe

preparationofstablecosmeticO/Wemulsionssincebothpolymer

andsurfactantmixturescancontributeindependentlyand

posi-tivelytothestabilizationofthedispersedphase(Bais,Trevisan,

Lapasin,Partal,&Gallegos,2005).Scleroglucanisnottoxicanddoes

(2)

notalterbloodorlivingtissues;whenappliedtoskinoreyesit

doesnotcausesensitization.Inaddition,itbelongstothegroup

ofbiologicalresponsemodifiers,whichhavebeenattributedwith

antitumoreffectsinmanycases(Bohn&BeMiller,1995).Allthese

characteristicsareveryimportant,especiallywhenpreparingboth

pharmaceuticalandcosmeticemulsions.

Amongbiopolymers,scleroglucananditsderivativesappearto

beparticularlywellsuitedfortheformulationofhydrogelmatrices

forsustaineddrugreleaseofbioactivemolecules,becauseoftheir

peculiarfeaturessuchashighbiocompatibility,biodegradability,

bioadhesivity,chemicalandthermalresistanceandgood

mechan-icalproperties(Coviello,Grassi,Lapasin,Marino,&Alhaique,2003;

Covielloetal.,2005;Grassi,Lapasin,Pricl,&Colombo,1996;Grassi etal.,2009;Matricardi,Onorati,Coviello,&Alhaique,2006;Vi ˜narta, Franc¸ois,Daraio,Figueroa,&Fari ˜na,2007).Inthefieldofenhanced

oilrecovery (EOR) scleroglucan is assessed as environmentally

friendlyviscosifyingagentinvirtueofitsnotoxicityand

biodegrad-ability. Indeed, it is quite suitable for formulating water based

drillingmuds tobeemployed in harsh environmentsowingto

itsgoodstabilitytowardshighsalinities,temperaturesand

alka-line conditions, moderate interactions with surfactants and its

robust sheartolerance (Baba Hamed &Belhadri,2009; Gallino,

Guarneri,Poli,&Xiao,1996;Kulawardanaetal.,2012;Sveistrup, vanMastrigt,Norrman,Picchioni,&Paso,2016).

Ontheotherhand,Laponiteiscurrentlyusedasarheology

mod-ifierinvarioustechnologicalapplications,suchassurfacecoatings,

ceramicglazes,paints,homecareandpersonalcareproducts,as

wellasfilmformingagentandinpharmaceuticaland

nanocom-positeformulations.

Laponite is a synthetic hectorite manufactured by

pro-cessing combined salts of sodium, magnesium and lithium

along with sodium silicate with an empirical chemical

for-mula Na+0.7[(Si

8Mg5.5Li0.3)O20(OH)4]−0.7.Laponite nanoparticles

arerigiddisc-shapedcrystalswithathicknessof1nm,anaverage

diameterof30nm,abulkdensityof2.65·103kg/m3.Eachplatelet

iscomposedofanoctahedralmagnesiasheetthatissandwiched

betweentwotetrahedralsheetsofsilica.Theisomorphic

substi-tution of divalent magnesium by monovalent lithium causes a

deficiencyofpositivecharge,whichisbalancedbysodiumatoms

residingintheinterlayerspace.Whendispersedinaqueousmedia

thesodium ionsare released,leading toa permanent negative

chargedistributiononbothoppositefacesofLaponitedisks.

Pos-itivechargesontherimareduetotheprotonationprocessofthe

localhydroxidegroups.

Becauseofallthesepeculiarplateletfeatures,aqueousLaponite

dispersions can display a variety of structural conditions and,

consequently,ofrheologicalpropertiesfordifferentparticle

con-centrationsand ionicstrengthvalues.Markedshearthinningor

plasticbehaviorandhighlyelasticresponsesareexhibitedwhen

interparticle(attractiveorrepulsive)interactionsaresoeffectiveto

generatearrestedstatesofvariousnature(attractivegel,Wigneror

repulsiveglasses).Numerousinvestigationshavebeenaddressed

todefine thestatediagram ofaqueous Laponitedispersions in

theionic strength vs clay concentration plane,i.e. to

individu-atethedifferentregionsofisotropicliquids,disordered(gelsand

glasses),ordered(nematicphases),flocculatedstates(Cummins,

2007;Gabriel,Sanchez,&Davidson,1996;Jabbari-Farouji,Tanaka, Wegdam, &Bonn, 2008; Levitz, Lécolier, Mourchid, Delville, & Lyonnard,2000;Mourchid,Lécolier,VanDamme,&Levitz,1998;

Mourchid,Delville,Lambard,Lécolier,&Levitz,1995;Mongondry, Tassin,&Nicolai,2005;Ruzicka&Zaccarelli,2011;Ruzicka,Zulian, &Ruocco,2004;Ruzicka,Zulian,&Ruocco,2006;Tanaka,Meunier, &Bonn,2004; Tanaka,Jabbari-Farouji,Meunier, &Bonn,2005).

Thevariouscontradictionsemergingfromthecomparisonofthe

proposedLaponitedispersionstatediagramsarepartlyapparent

andcanbemainlyascribedtodifferentagingtimesand,

secon-darily,todifferentprotocolsofsamplespreparation orLaponite

type(Ruzicka&Zaccarelli,2011).Indeed,timeelapsedafter

dis-persionpreparationplaysaparamountrolesinceevenverylow

Laponite concentration dispersions can undergo aging up to a

finalarrestedstate.Regardingthedifferenttimeevolutionofthe

sol/arrested statetransition in salt-freeaqueous systems (ionic

strength≈2×10−4M), two distinct non-ergodicstates (geland

repulsiveglass)havebeenindividuatedatlowerandhigher

con-centrations,respectively(Ruzickaetal.,2004).Inthesetworegions,

theattractive(rim–face)andrepulsive(face–face,rim–rim)

elec-trostaticinteractionsbetweenplateletsare,respectively,dominant

intheformationandstabilityofthearrestedstructure.Atverylow

concentration(below1.0wt%)theslowgelationprocess,

originat-ingfromtheattractiveinterparticleinteractionsandtherelevant

clustering, is followed by an extremely slow phase separation

between clay-poor and clay-rich phases on the year timescale

(Ruzickaetal.,2011).Atevenhigherconcentration(above3wt%)

theformation of nematic microdomainswaspostulated onthe

basis of birefringence measurements between crossed

polariz-ers(Mourchidetal.,1998).Uponincreasingionicstrengthabove

10−4M,therole ofelectrostaticrepulsionsdecreasesinfavorof

attractiveinteractionsbetweentheoppositelychargededgesand

facesoftheclayplatelets.Accordingly,theamplitudeofthegel

regionincreasesandthegelationtimestronglydecreases.Athigh

saltconcentrations,theenergybarriertoparticleaggregationis

stronglyreducedandphaseseparationintheformoflarge

aggre-gatesoccurs.

Severalstudies have beencarried out onaqueous

Laponite-polymer systems,obtainedbydispersing nanoparticlesin

poly-meric matrices oradding polymer toLaponite dispersions.The

scenarios drawn by the structural conditions of these mixed

systems may be even more complex than those exhibited by

the corresponding simple systems (water-Laponite and

water-polymer)owingtovarious possibleinteractionmodes between

plateletsand polymerchains.Thebalanceof different

competi-tivemechanismsrelatedtopolymeradsorption(sterichindrance,

changeinsuperficialcharge,depletion, bridging,increase inthe

solutionviscosity)canassistorhindertheagingdynamicsandthe

formationofafinalarrestedstate(glassorgel),stronglydepending

onthepolymerconcentrationand molecularweight.If

superfi-ciallyadsorbed,shortflexible polymerchainscanprovidesteric

stabilizationowingtoexcludedvolumeeffectsbetweenpolymer

segments,thusinhibitingorslowingdowntheaggregationprocess

when edge-to-face attractive interactions are potentially

domi-nant.Athighermolecularweights,adsorbedpolymerchainsmay

belongenoughtobridgebetweenparticles,sopromoting

parti-cleclusteringortheformationofanassociativenetwork.Beyond

particlesurfacesaturation,depletionforcescanpromoteparticle

aggregationinthepresenceoffreenonadsorbedchainsin

solu-tion. As polymer concentration increases,interactions between

adsorbed layers and free chains can result in re-stabilization

ofclustersand, abovetheoverlapconcentration,cluster–cluster

attractionsincreasesobecominglongranged.Allthesestructural

effectshavebeenpostulatedforLaponitedispersionscontaining

poly(ethyleneoxide)(PEO)whichcanbeconsideredaparadigmatic

exampleofplateletdispersionsinneutralpolymersolutions,from

dilutetoconcentratedregime(Baghdadi,Sardinha,&Bhatia,2005;

Baghdadi,Jensen,Easwar,&Bhatia,2008;Kishore,Chen,Ravindra, &Bhatia,2015;Mongondry,Nicolai,&Tassin,2004;Zulian,Ruzicka, &Ruocco,2008;Zulian,AugustoDeMeloMarques,Emilitri,Ruocco, &Ruzicka,2014).

As several other complex systems, Laponite–PEO systems

exhibit intriguing macroscopicbehavior by varyingthe applied

shearconditions,sincevariousstructuralchangescanbeproduced

ondifferentlengthscalesforarangeofclayandPEO

(3)

2008; DeLisi etal.,2008;Lapasin&Maiutto, 2006; Lin-Gibson, Kim, Schmidt, Han, &Hobbie, 2004; Maiutto, 2005; Morariu & Bercea,2015;Malwitz,Butler,Porcar,Angelette,&Schmidt,2004;

Pozzo&Walker,2004;Schmidt,Nakatani,Butler,Karim,&Han, 2000;Zebrowski,Prasad,Zhang,Walker,&Weitz,2003).Besides

breakdownofparticleaggregates,plateletsorientation,anisotropic

phase distribution or separation, which have been observed in

aqueousLaponitedispersions,alsoareversible‘shakegel’

forma-tioncanoccuroveranarrowcompositionrange,closetosurface

saturation.Such a shear-induced gelation can be ascribed to a

polymer–clayadsorption–desorptionmechanismwiththe

forma-tionofunstablepolymerbridges.

A wide variety of nanocomposite hydrogel systems can be

preparedbyaddingLaponitenanoparticlestochemicalor

phys-icalhydrogels.Thepresenceofnanoparticlescanservetoimpart

uniquemechanicalandotherphysicalpropertiestopolymer

hydro-gels,whichcanleadtomanydiversetechnologicalapplications,

mostlyinbiotechnologicalareas.Physicalgelsmadeof

biopoly-mers,especially if unmodified, maybe quiteinteresting in the

preparationofcontrolled/sustaineddrugreleasesystemsandother

biomedical devices also in virtue of their biocompatibity,

non-toxicity,biodegradabilitycharacteristics.Physicalhydrogelsderive

fromweakinterchainassociations due tochain entanglements,

hydrogenbonds,ionicbondsorstrongvanderWaalsinteractions

betweenchains,hydrophobicinteractionsorcrystallitesbringing

togethertwoormoremacromolecularchains.Theadded

nanopar-ticlescanbesimplyentrappedanddistributedwithinthehydrogel

network,asindividualunitsoraggregates,thusactinglikeother

solidfillersdispersedinpolymericmatrices.Particleadsorptionto

orinteractionswithpolymerchainscanalterthenetwork

archi-tecture,evenincreasingitsconnectivitywithadditionalinterchain

physicalcrosslinks,thusleadingtodiverseextentsofmutual

inter-penetrationbetweenthetwocomponentsand heterogeneityat

differentlengthscales,uptophaseseparation.

Aspreviously mentioned, aqueous Laponitedispersions

dis-playaveryrichphasebehaviorthat includessol,gel,glass,and

nematicstates, dependingonclayconcentration,ionic strength

andtimeofaging.Additionofioniccomponentsgenerally

intensi-fiestheiragingandresultsinadecreaseinthetimeoftransition

intoarrestedstates.Theadsorptionofcationicspeciesonplatelet

surfaceinduceadditionalattractionbetweenthemowingtothe

enhancementofhydrophobicinteractions,thusfavoringparticle

aggregationandreducingsedimentationstabilityofLaponite

dis-persions,asdetectedinthecaseofCTAB(cetyltrimethylammonium

bromide)addition (Savenkoet al., 2013).Homopolymer

hydro-gelsmadefromcationicbiopolymerarelessfrequentthanthose

obtainedfromanionic polyelectrolytessuchas xanthan,gellan,

welan,carrageenan,alginate,pectin,carboxymethylcellulose,etc.

Theexactnatureof theinteractionsbetweenLaponiteparticles

and anionicpolymersdepends subtly onthe detailed structure

ofthepolymer:type,numberandseparationoftheanionicsites,

flexibilityandhydrophobicityofthebackbone,branchingdegree

andaveragemolecularweight(Fitch, Jenness,&Rangus, 1991).

Electrostatic attractionsbetween anionic groups and positively

charged edges of Laponite particles could increase the

stabil-ityoftheclaydispersiononconditionthat therepulsiveforces

betweenplateletfacesremainalmostunchanged.Atsufficiently

highpolymerconcentration,whentheneutralizingcations

(usu-allysodium,potassium,calcium) effectivelyscreenthenegative

chargesonLaponiteparticles,thisenhancestheattractive

inter-actionsbetween thepolymer and can result in changes in the

dynamicsofagingandthestateofthesystem.Thehighnumerical

densityofLaponiteparticlesmakespossibletheformationofdense

fractalaggregatesduetotheinterparticleconnectionsestablished

bypolymerchains,andeventuallyofagelnetworkstructure,as

observedinthecaseofpolystyrenesulfonateadditiontoLaponite

glassdispersion(Savenko,Bulavin,Rawiso,&Lebovka,2014).

Rhe-ological studiesperformedonLaponite/carboxy-methylcellulose

blendshaverevealedstrongsynergisticeffects whichhavebeen

ascribedtomultipleparticle-chaininteractionswhilelesssynergy

havebeenobservedbetweenLaponiteandxanthangum,which

hasbulkytrisaccharidechain(Fitchetal.,1991).Therheological

responsesexhibitedbyLaponitedispersionsinaqueousxanthan

matriceswithaddedNaClstronglydependonconcentrationsand

proportionofthetwocomponents(Maiutto2005;Lapasin,2016).

AsxanthanconcentrationincreasesindiluteLaponitedispersions,

theattractiveparticle-chain interactions giveorigintosynergic

effects,alsocontributingtotheconnectivityofthepolymer

net-workwhenitisformed.AsLaponiteconcentrationincreases,the

contributionoftheparticlegelnetworkbecomespredominantover

thatoftheaddedpolymer.Recently,arheologicalstudyhasbeen

performedtoexaminetheeffectsofLaponiteadditiontoalginate

solutions,inparticulartoanalyzethephysicalgelationduetothe

electrostaticinteractionsbetweentheLaponiteplateletsand

algi-natechains(Davila&d’Ávila,2017).

Amongnon-ionicpolysaccharidesscleroglucanandits

chem-ically analogous schizophyllan occupy a quite special position

invirtueoftheirtriplehelicaltertiarystructure(triplex),which

makepossibletheformationofahydrogelnetworkatsufficiently

high polymer concentration. Aqueous concentrated

Laponite-scleroglucan blends appear to be worthy of consideration for

biomedical applications, in particular for the preparation of

hydrogel-basedreleasesystems.Laponiteadditiontoscleroglucan

weakgelcouldcontributetobettercontrolthedrugdiffusionand

releasekineticsaswellastoimprovethemechanicalpropertiesof

thematrix.Startingfromthesepracticalperspectives,thepresent

workhasbeenaddressedtostudytherheologicalpropertiesof

aqueous Laponite-scleroglucan mixed systems, even differently

prepared,sufficientlyconcentratedtoexhibitmarkedviscousand

elasticresponses,and,inparticular,toexaminehowmuchthe

con-tentandproportionofbothcomponentsaffecttheviscoelasticand

flowpropertiesofthemixedsystems.

2. Experimental

2.1. Materialsandsamplepreparation

ScleroglucanoActigumCS11ofaveragemolecularweight(MW)

1.2×106wasprovidedbyCargillInc.(USA)andusedasreceived

withoutfurtherpurification.Laponite® XLG (providedby

Rock-woodAdditivesLtd,UK)isasyntheticpurifiedhectoritewithalow

heavymetalscontentandhighsurfacearea(BET370m2/g).

The most concentrated (2wt%) Scleroglucan solution and

Laponitedispersionwerepreparedbygraduallyaddingthe

poly-merpowderorclaypowdertodistilledwaterundermechanical

stirring.The othersimple systemsof lowerconcentrationwere

obtainedbydilutionofthesemothersystemswithdistilledwater

undermagneticagitation.

Laponite-scleroglucanmixedsystemswerepreparedaccording

twodifferentmodalities:1)(freshoraged)simplesystemshaving

thesameweightpercent(2wt%)ofscleroglucanorLaponitewere

blendedindifferentproportions(3:1,1:1,1:3)undermagnetic

agi-tation;2)Laponitewasdispersedundermixinginascleroglucan

matrix(2wt%)toobtaindifferentsolidconcentrations(0.5,1and

2wt%).

Aftertheirpreparationallthesystemswerekeptinfridgeat

temperatureof8◦Cfortheprogrammedtimeintervalbeforebeing

(4)

Table1

RBCandCrossparametersofscleroglucansystems.

C (wt%) 0.25 0.50 1.00 1.50 2.00 RBC ␩0 (Pas) 0.25 18.4 610 7980 28500 ␴c (Pa) 0.072 0.999 3.91 18.8 28.6 m (−) 1.25 2.31 3.92 9.97 10.4 Cross ␩0 (Pas) 0.17 15.8 690 9770 26600 ˙c (s−1) 0.48 0.0112 0.0027 0.0017 0.0011 n (−) 0.59 0.70 0.81 0.91 0.92

2.2. Instrumentandexperimentalprocedures

Experimentaltestswereperformedat25◦Cusingthecontrolled

stressrheometerHaakeMarsIIIequippedwithPeltiertemperature

controlsystemandusingthecone–plategeometryC60/1◦

(diame-ter60mm,angle1◦)or,alternatively,thecrosshatchedplate–plate

geometryPP35Ti(diameter35mm).Aglasssolventtrapcoverwas

usedtopreventwaterevaporation.

Byapplyinganincreasingsequenceofconstantstresssegments

tothesamplesandmeasuringthecorrespondingshearrate(˙)the

steadyflowbehaviorwasdetermined.Thestresswaskeptconstant

untiltherelativevariationoftheshearratesatisfiedthefollowing

constraint,(˙/˙)/t≤0.05,orthesegmentduration(t)wasno

longerthanthecutoffvalueof100s.Oscillatorystresssweeptests

wereperformedat1Hzinordertodefinethelinear

viscoelastic-ityrange.Allthefrequencysweepmeasurementswereperformed

withinthelinearrange.

2.3. Modelsfordatacorrelation

Usingshearrateasindependentvariable,experimentalviscosity

datacanbecorrelated withgoodapproximationwiththeCross

equation(Cross,1965):

=∞+ 0−∞

1+ (˙)n (1)

where␩0and␩∞aretheasymptoticvaluesoftheviscosityat

zeroandinfinite shearrates,respectively,␭isthecharacteristic

timeandnmeasurestheshearratedependenceofviscosityinthe

powerlawregion.Alternatively,ifshearstressisassumedas

refer-encevariable,asatisfactorydatafittingcanbeprovidedonlybythe

Roberts–Barnes–Carew(RBC)model,alsointhecaseofstrongshear

thinningorapparentlyplasticbehavior,whentheinitialgradual

decreaseintheviscosityisfollowedbyitsdramaticdrop(Roberts,

Barnes,&Carew,2001):

=’+ 

’ 0−’∞

1+



/c



m (2)

wherethecriticalstress␴clocatesthetransitionregionbetween

theformershearthinningandthelatteronewhiletheexponent

mrulestherateofviscositydecreasetherein.Inthecaseofplastic

behavior(highmvalues),theapparentyieldstressisgivenby␴c.

TheRBCmodelrepresentsamodifiedversionoftheEllisequation

(Ellis,1927),moreflexiblethantheoriginalone,sincetheoriginal

parameters␩0and␩∞arenowsubstitutedbyfunctions(’

0 and

’

∞)oftheshearstressasfollows:

’0= 0 1+



/1



p (3) ’ ∞=∞



1+



/2



s



(4)

where␴1,␴2,pandsareadjustableparametersbesidesthe

asymp-toticviscosityvalues␩0and␩∞.

Theexperimentaldatafromoscillatorytests,namelyfrequency

sweep, can be described quite satisfactorily with the classical

generalized Maxwell(GM)model(orMaxwell-Wiechertmodel)

composedofanelasticspringandMaxwellelementsinparallel.

Actually,fourMaxwellelementsweresufficient todescribethe

mechanicalspectraqualitativelywell.

TheGMequationsfordescribingthefrequencydependenceof

theviscoelasticmoduliare:

G=Ge+



4 i=1 Gi2 iω 2 1+2 iω2 (5) G=



4 i=1 Giiω 1+2 iω2 (6)

whereGeistheequilibriummodulus(␻→0),whileGiand␭iare

therelaxationmodulusandthecorrespondingrelaxationtimeof

theithMaxwellelement,respectively.Inordertoreducethe

corre-lationdegreebetweentheadjustableparameters,theminimization

procedurewasperformedbyadoptingthefollowingrecurrent

con-straintfortherelaxationtimes:i+1=10i.

3. Resultsanddiscussion

3.1. Simplesystems

The first section regards the rheological characterization of

aqueoussimplesystems,containingonlyscleroglucanorLaponite

atdifferentconcentrationsandisaimedatdrawingthenecessary

backgroundfortheanalysisofmixedsystems.

3.1.1. Scleroglucansystems

Theshearthinningcharacterofaqueousscleroglucansolutions

increaseswithincreasingpolymerconcentrationCandabove1wt%

thebehaviorbecomesapparentlyplasticwithasignificantviscosity

dropconfinedinanarrowstressinterval,astypicalforweak

poly-mergels.Fig.1Areportstheexperimentaldatainalogviscosity-log

stressplotfor polymerconcentrationsbetween0.25 and2wt%,

togetherwiththeflowcurvescalculatedwiththeRBCmodel.The

increaseinpolymerconcentrationleadstotheprogressive

shift-ingoftheflowcurvestowardshigherviscosityandstressvaluesas

wellasamoremarkedviscositydropintheshearthinningregion.

TheseeffectscanbequantitativelyevaluatedfromtheRBC

param-etersreportedinTable1.Thezero-shearrateviscosity␩0andthe

criticalstress␴cincreasewithpolymerconcentrationaccordingto

scalinglaws.Theirexponentsare5.6and2.88,respectively.The

abruptincreaseofthemvalueabove1%underlinesthetransition

toapparentlyplasticbehavior.

Asatisfactory fittingqualityis alsoobtainedusingtheCross

equationforviscosity-shearratecorrelation.Theestimated␩0

val-uesdonotdiffersignificantlyfromthosegivenbytheRBCmodel

(seeTable1).Thevaluesofthecriticalshearrate ˙c(equaltothe

reciprocalofthecharacteristictime␭)andofthepowerlaw

expo-nentnclearlyindicatehowmuchthepolymerconcentrationaffects

(5)

Fig.1. A)Flowcurvesofscleroglucansystemsatdifferentpolymerconcentrations (from0.25to2wt%);B)Straindependenceoftheviscoelasticmoduliforthree scle-roglucansystems(1,1.5and2wt%);C)Mechanicalspectraofscleroglucansystems atdifferentpolymerconcentrations(0.5,1,1.5and2wt%).

Thesol-geltransitioninducedbyincreasingpolymer

concentra-tioncanbemoreproperlyindividuatedbyexaminingthechanges

intheviscoelasticresponsesobtainedfromboth stressand

fre-quencysweeps.Fig.1Billustrates thestraindependence ofthe

viscoelasticmodulifor threedifferentconcentrations.Above1%

deformation,theborderofthelinearviscoelasticregimeismarked

byaninitialincreaseofthelossmodulusGfollowedbya

subse-quentdecreaseinstronglynonlinearconditions.ThisLAOS(Large

AmplitudeOscillatoryShear) behavior characterizedby a weak

strainovershoothasbeenclassifiedastypeIII(Hyun,Kim,Ahn,&

Lee,2002)andistypicalofweakgels,suchasxanthan,andseveral

otherweaklystructuredfluidsaswell.

Evenmoreevidentarethechangesofthemechanicalspectraas

polymerconcentrationincreases(seeFig.1C).Below1wt%the

lin-earviscoelasticresponseistypicalofordinarypolymersolutions

witha crossover conditiondetectable within the experimental

window.Conversely,atscleroglucanconcentrationshigherthan

1wt%itresemblesthoseofotherweakpolymericgels(Lapasin,

2015; Lapasin & Pricl, 1995): G exceeds G over the whole ␻

rangeexplored,andtheprofilesofG(␻)andG(␻)arenearly

par-allelwithaslightfrequency dependence.Using thegeneralized

Maxwellmodelfordatafitting,theseconcentrationeffectsresult

inaprogressivetransitionoftherelaxationtimespectrumfroma

wedge-typetowardsabox-typedistributionowingtheincreasing

weightoflongerrelaxationtimes.

3.1.2. Laponitesystems

Anincreaseinnanoclayconcentrationgivesorigintoasharp

transitioninboththeflowpropertiesandthelinearviscoelastic

behaviorofaqueousLaponitesystems.Below0.75%dilute

disper-sionsarealmostNewtonianorslightlyshear thinningand their

viscoelasticpropertiesarepracticallyundetectablewith

conven-tional instruments and methods. At higher concentrations, the

shearbehaviorisdecisivelyplasticsinceadramaticviscositydrop

(ofseveraldecades)isconfinedwithinaverynarrowstressinterval

(seeFig.2A),andthemechanicalspectrumistypicalofgelsorother

arrestedstates,withanevidentprevalenceofGoverG(morethan

oneorderofmagnitude)alongthewholefrequencywindow(see

Fig.2B).Asexpected,stresssweeptestsshowedthatconcentrated

Laponitedispersions(above0.75%)exhibitaLAOSbehavioroftype

III.

Theconcentrationeffectsontherheologicalpropertiesof

scle-roglucansystemsaremoregradualandunaffectedbystoragetime,

whereasthesharpsol-geltransitionofLaponitesystemsdepends

ontimeelapsedsincesamplepreparationandprogressivelyshifts

tolowerclayconcentrationthresholdwithincreasingagingtime.

Previousconsiderationsarereferredtoexperimentaldata

deter-minedonagedsystems(9daysafterpreparation).

Fig.3Ashowshowtheflowcurveofthe2%Laponitedispersion

graduallychangesitsshapewithincreasingagingtime.Afterfew

daysthebehaviorbecomesplasticandthetransitionfromthelow

shearNewtonianplateautotheshearthinningregionshiftsalong

bothaxestowardshigherviscositiesandstresses.Thesechanges

canbeconvenientlymeasuredthroughtheprogressiveandparallel

increaseofthetwoRBCparameters,␩0 and␴c,asillustratedin

Fig.3B.Thechangefromshearthinningtoplasticbehavioriseven

betterrecognizablefromthetimeevolutionoftheparameterm,

whichreacheshighvalesafterfewdays.

Asdiscussedpreviously,timeelapsedafterpreparationplays

an important role in the structural reorganization of Laponite

nanoparticles,thusstrengtheningthegelbehaviorofconcentrated

dispersionsorfavoringtheevolutiontowardafinalarrestedstateat

lowerconcentrations.Accordingly,agingtimeaffectsalsothe

sol-geltransition,shiftingthethresholdconcentrationtowardslower

values.

3.2. Laponite-scleroglucansystems

Thissectionisdedicatedtomixedsystems,prepared

accord-ingtodifferentproceduresandcontainingbothscleroglucanand

(6)

Fig.2.A)FlowcurvesofagedLaponitesystemsatdifferentclayconcentrations(from0.5to2wt%)(testsperformed9daysaftersamplepreparation);B)Mechanicalspectra ofagedLaponitesystemsatdifferentclayconcentrations(from0.75to2wt%)(testsperformed9daysaftersamplepreparation).

Fig.3.A)FlowcurvesofLaponitesystem2wt%obtainedfromtestsperformedatdifferentstoragetimes(2–18daysaftersamplepreparation)(symbols:experimentaldata, solidlinescalculatedfromtheRBCmodel);B)RBCparametersrelatedtotheflowbehaviorofLaponitesystem2wt%obtainedfromtestsperformedatdifferentstoragetimes (2–18daysaftersamplepreparation):zero-shearviscosity␩0(filledcircles),criticalstress␴c(opencircles),parameterm.

rheologicalresponses,immediatelyaftertheirpreparationorafter

enoughelapsedtime.Theexperimentaltestshavebeenaimedat

examininghowmuchthecontentand proportionofboth

com-ponentsaffecttheviscoelasticand flowpropertiesofthemixed

system,alsoinviewofpracticalapplicationsinthebiomedicalfield,

whereaqueoushydrogelmatricescanbeprofitablyusedto

for-mulatedrugdeliverysystemsinvirtueofappropriatestructural

featuresandrheologicalbehavior.

3.2.1. Blendsoffreshsimplesystems

Scleroglucan-Laponite blends have beenobtained bymixing

fresh simple systems under mechanical agitation in different

scleroglucan-Laponiteproportions(3:1,1:1,1:3).Thescleroglucan

andLaponitesystemshave beenpreparedatthesamepolymer

andclayweightpercentconcentration(2wt%),respectively,and

blendedtwodaysaftertheirpreparation.Experimentaltestshave

beenrepeatedlyperformedonmixedandsimplesystemsduring

(7)

Fig.4.A)Flowcurvesofscleroglucan-LaponiteblendspreparedfromfreshsimplesystemsandwithdifferentLaponitefractionwL(0,0.25,0.5,0.75,1)andmeasuredafter

twodaysaging(symbols:experimentaldata,solidlinescalculatedfromtheRBCmodel);B)Mechanicalspectraofscleroglucan-Laponiteblendspreparedfromfreshsimple systemsandwithdifferentLaponitefractionwL(0,0.25,0.5,0.75,1)andmeasuredaftertwodaysaging(symbols:experimentaldata,solidlinescalculatedfromtheGM

model).

Flowcurvesandmechanicalspectradeterminedaftertwodays

ofagingarecomparedinFig.4.Allthesystemsexhibitaplastic

behaviorandtheneachofbothRBCparameters,␩0or␴c,canbe

equivalentlyusedtodescribetheblendingeffectsonshearbehavior

owingtotheirinterrelationship.Indeed,achangeinmixingratio

leadstosimilarshiftsoftheflowcurvealongthetwoaxes.After

twodaysofagingtheLaponitedispersionischaracterizedbythe

lowestvaluesofbothparametersamongtheexaminedsystems,

whilethescleroglucancurveisplaced atintermediateviscosity

andstresslevels.Themaximum0and␴c(yieldstress)valuesare

attainedformixedsystems(1:1and1:3)withequalproportions

ofthetwocomponentsorprevailingclaycontentinthemixture.

EquivalentresultsareobtainedusingtheCrossparameter␩0whose

valuesdonotdifferappreciablyfromthoseofthecorresponding

RBCparameter.

Thus,thecomparisonoftheflowcurvesoffersafirstevidence

ofthesynergisticeffectsofpolymer-clayblending.Anotherproof

canbeobtainedfromlinearviscoelasticbehaviors.Allthe

mechan-icalspectraarecharacterizedbythepredominanceofthestorage

modulusand itsslightornegligible frequencydependence (see

Fig.4B).Theblendingeffectslookquitesimilartothoseevinced

fromflowbehaviors.Indeed,bothmixedsystems1:1and1:3show

an extended plateau with highG values, one order of

magni-tudehigherthanG.TheGMmodelprovidesaquitesatisfactory

fit to dataand itsparameters are certainly suitable toanalyze

thechangesassociatedwithblendingratio.However,theycanbe

replacedbytheviscoelasticmoduli,measuredatagivenfrequency

(1Hz),whichcanservethesamepurpose,evenmoreconveniently,

sincetheshapeoftherelaxationtimespectrumdoesnotchange

significantlywiththeblendingratioandonlyquantitativeeffects

areobserved.

ThefollowingFiguresshowhowtheviscousand viscoelastic

parameterschangewithincreasingagingtime.Fig.5Aillustrates

thedependenceofthezero-shearrateviscosityonwL,which

rep-Fig.5.A)Zero-shearviscosity(␩0)obtainedfromtestsperformedatdifferentstoragetimes(from2to15days)forscleroglucan-Laponiteblendspreparedfromfreshsimple

systemsandwithdifferentLaponitefractionwL(0,0.25,0.5,0.75,1);B)Viscoelasticmoduli(at1Hz)obtainedfromtestsperformedattwodifferentstoragetimesfor

(8)

Fig.6.A)Excessfunctionsforzero-shearviscosityandviscoelasticmoduliofblendspreparedfromagedsimplesystemsandwithdifferentLaponitefractionwLafter15days

ofaging;B)Excessfunctionsforzero-shearviscosityandviscoelasticmoduliofblendspreparedfromfreshsimplesystemsandwithdifferentLaponitefractionwLafter

15daysofaging.

resentstheweightfractionofsimpleLaponitedispersionpresent

inthemixedsystem.Thereported␩0valueshavebeencalculated

withtheCrossequationfromdataobtainedafterdifferentaging

times(2,5,8,11,15days).Fig.5Bregardstheviscoelasticmoduli

(G1Hz,G1Hz)measured2and15daysafterpreparation.The

syn-ergisticeffectsofblendingcanbeclearlyevincedbytheprofilesof

␩0,G1Hzand,toalesserextent,G1Hz,particularlytwodaysafter

preparation.Increasingagingtimeleadstosignificantincrements,

inparticularof␩0,forthesimpleLaponitesystemandevenforthe

mixedsystemwithprevailingLaponitecontent.

3.2.2. Blendsofagedsimplesystems

Agingstabilityisdecisivelyhigherifblendsarepreparedfrom

agedsimplesystems.Themixtureparametersaresimilartothose

exhibitedbyblendsoffreshsimplesystemsafter15daysofaging

(Fig.6).Here, thelogarithmsof ␩0,G1Hz and G1Hz arechosen

asthereferencequantitiesforexaminingtheblendingeffects.In

analogywiththecorrelationequations,oftenusedfordynamicor

kinematicviscositiesofNewtonianliquidsmixtures(Grunberg&

Nissan,1949;McAllister,1960),linearadditivity isassumed for

suchquantitiesinabsenceofpolymer-clayinteractionsand,

con-sequently,positiveornegativesynergisticeffectsaremeasuredby

theexcessfunctions.i.e.deviationsfromthelinearmixingrule:

Y=Yexp−Yid (Y=log0,logG,logG) (7)

Yid=YS+wL(YL−YS) (8)

wherethesuffixesexpandidstandformeasuredvalueandvalue

predictedbythelinearmixingrule,respectively,andthevalues

ofthesimplescleroglucanandLaponitesystems(YsandYL)are

linearlycombinedthroughtheweightfractionwLtocalculatethe

idealreferencevalue.

ItcanbeobservedinFig.6thatblendingeffectsonviscosityand

moduliaresimilar,especiallyforblendspreparedfromfreshsimple

systems.log␩0,logGandlogGdeviationsfromthelinearmixing

ruleshowcomparableprofilesindependenceofblendcomposition.

Forbothsystemstheeffectofblendingismaximalwhenblends

arerich in Laponiteand diminisheswithdecreasing

nanoparti-clescontent,inparticularif␩0 eGareconsidered.Therefore,it

maybeconcludedthatthemodeofpreparationandstorage

condi-tionsdoaffectblendrheologicalpropertiessignificantly,depending

ontheLaponiteamount.Moreover,interestingconclusionsmay

bedrawnbyobservingviscosityratios(␩0,R),obtainedby

divid-ing␩0valuesofblendsbythoseofcorrespondingsimplesystems,

whichcontainjustonecomponent(scleroglucan orLaponite)in

thesameconcentrationoftheblend.InFig.7Athezero-shear

vis-cosityprofilesofblendspreparedfromagedsimple systemsare

compared withthoseof aqueousLaponitedispersionsand

scle-roglucansolutionshavingequalconcentrationofpolymerorclay.

InFig.7Btheviscosityratios␩0,R ofblendsandrelative

viscosi-ties␩0,r ofthecorrespondingsimplesystemsareplottedvsboth

Laponiteandscleroglucanconcentrations.Itcanbenoticedthatthe

contributionofLaponitetotheviscosityofscleroglucanmatrices,

measuredby␩0,R,progressivelyincreaseswithincreasingLaponite

amountand/orwithdecreasingpolymerconcentrationinblend.At

thesametimethecontributionofthepolymertotheviscosityof

thesystemgraduallydiminishes.

3.2.3. ScleroglucanhydrogelsaddedwithLaponitenanoparticles

TheadditionofLaponitetoscleroglucanhydrogel(2wt%)

pro-ducesonlyquantitativeeffectsonitsviscousandlinearviscoelastic

behaviors,whichdonotchangequalitativelyandremainsimilarto

thoseofatypicalphysicalpolymergel.AsLaponiteconcentration

increases,theshapeofthemechanicalspectradoesnotchange

sig-nificantly.FittingdatatothegeneralizedMaxwellmodelshows

thattheequilibriummodulusGeincreasesandalsothe

contribu-tionoftherelaxationtimespectraslightlyincreases,maintaining

thesameshape(box-typedistribution).Alltherheological

param-etersincreasewithincreasingLaponiteconcentration.Theeffect

tendstodiminishprogressively,when,despitetheirhigh

concen-tration,nanoparticles,distributedwithinthepolymernetwork,are

nolongerabletodevelopanextendedaggregationstructure,

com-parabletothatofthecorrespondingsimpleLaponitesystem.The

ratiosofrheologicalparameters,obtainedbydividingmeasured

rheologicalparametersofblendsbythoseofthesimple

scleroglu-cansystem,whichareshowninFig.8,supporttheseobservations.

Quitesimilarincrementsareobservedforthecriticalstress␴cand

(9)

Fig.7. A)␩0valuesofblendspreparedfromagedsimplesystemscomparedwiththoseofthecorrespondingscleroglucansolutionsandLaponitedispersions(withequal

concentrationofpolymerorclay);B)Viscosityratios(␩0,R)ofblends(referredtoscleroglucanorLaponitesimplesystems)(filledsymbols)andrelativeviscosities(␩0,r)of

scleroglucansolutionsandLaponitedispersions(opensymbols)vsLaponiteandscleroglucanconcentrations(CsandCL).

Fig.8. A)Viscosityratios(␩0,R)ofblendsobtainedbyLaponiteadditiontoscleroglucanhydrogel(2wt%)independenceofLaponiteconcentrationCL;B)Storageandloss

moduliratios(GRandGR)ofblendsobtainedbyLaponiteadditiontoscleroglucanhydrogel(2wt%)independenceofLaponiteconcentrationCL.

Asitcanbenoted,theincreaseofviscosityissignificantand

greaterthanthoseofthecorrespondingmoduliparameters.Indeed,

forthemaximalLaponiteaddition(2wt%)thezeroshearviscosityis

seventimeshigherthanthatofthepolymericmatrix,whileitis70%

higherthanthatoftheaqueousLaponitedispersionat2wt%.

How-ever,itshouldbealsounderlinedthatthe␩0,R,valueofthemixed

system,obtainedbyLaponiteadditiontothescleroglucanhydrogel

matrix,issignificantlylower(forabout8ordersofmagnitude)than

the␩0,rvalueoftheLaponitedispersion(seepreviousfigure).The

rheologicalresponsesofthehydrogelwith2wt%Laponiteadded

aremuchclosetothoseexhibitedbyblendsoffreshoragedsimple

systemswith1:3scleroglucan-Laponiteproportioninspiteoftheir

lowercontentsofbothcomponents.

It maybeassumed, that byadding Laponitetoa previously

formedscleroglucanhydrogel,theindividualclaynanoparticles,

althoughcapableofaggregation,aredistributedwithinthemeshes

oftriplexnetwork,thuscontributingtotherheologicalresponseof

thesystemnotdifferentlyfromotherparticulatefillers.

4. Conclusions

Thestudycarriedouthasshownthattheblendingofmature

Laponitedispersionswithweakgelsofscleroglucancangivehybrid

systemsofrheologicalpropertiessuperiortothosepredictableby

applyingthelinearmixingruleforcorrespondingsimplesystems.

Thesynergistic effects previously explainedin theintroduction

areparticularlyevidentforLaponiterichblends.Forexample,for

blendswithLaponite/scleroglucanweightratio3:1themeasured

rheologicalparameters(zeroshearviscosityandviscoelastic

mod-uli)werefromtwotothreetimeshigherthanthosepredictedby

themixingrule.

Differenttypesandgradesofhydrogelstructuresareobtained

byvaryingtheratioofthetwocomponents.Forinvestigatedblends

theprogressiveincreaseofthecontentofLaponiteparticles

cor-respondstoanequalreductionofthescleroglucanamount.The

increase of the Laponite amount in a blend, beyond a critical

(10)

ofnanoparticleaggregateswhoserheologicalcontributioncannot

onlycompensatebut alsoovercomethenegativeeffects dueto

decreasingpolymercontribution.

On theother hand, byadding Laponite nanoparticlesinto a

gelmatrixofscleroglucan(2wt%)significantincreasesinviscosity

andviscoelasticmoduliareobtained.However,theseincremental

effectsdiminishwithincreasingnanoclayaddition.

The rheological responses of such mixed system having a

Laponitecontentof2wt%areonlyslightly higherthanthoseof

thecorrespondingsimpledispersionofLaponite(2wt%)inwater.

Theyarealsoverysimilartothoseofblendsobtainedfromsimple

systemsofLaponiteandscleroglucanwithblendingratio3:1

(over-allamountofLaponiteandscleroglucanrepresents2wt%,freshor

maturedblends),whichcontainlessLaponiteandscleroglucan.

Therefore,itmaybeconcludedthathydrogelsofcomparable

rheologicalbehaviorcanbepreparedbyblendingsimpleLaponite

andscleroglucanaqueoussystems,indifferentratiosandby

dif-ferentmodesofpreparation,orbyaddingLaponitepowderintoa

gelmatrixofscleroglucan.Theseobservationsopenupinteresting

prospectsofusinghydrogelsbasedonLaponiteandscleroglucan

inthebiomedicalfield,inparticularforthepreparationof

con-trolledreleasesystems,andhintatpossibleimprovementswith

respecttoperformanceofscleroglucanhydrogels.Despitethe

com-parableviscousand viscoelasticpropertiesof suchgelsystems,

itisreasonabletoassumethattheirstructuralcharacteristics,if

examinedondifferentlengthscales,aresubstantiallydissimilar.

Consequently,alsothediffusivity ofan activesubstancewithin

thecomplexgelstructurewithdifferentdegreeofheterogeneity

and interpenetrationofstructures of Laponiteandscleroglucan

shouldbesignificantlyaffected.Forthcomingstructural

investiga-tions,using low-fieldNMRtestsand studiesontheactivedrug

release,willallowustobetterassesstheopportunitiesforuseof

suchhybridsystemsinthefieldofdrugdeliveryand,possibly,to

optimizetheformulationoftheLaponite/scleruglucanhydrogel.

Acknowledgements

Theauthorsacknowledgethefinancialsupportfromthe

Slove-nianResearchAgency(researchcorefundingNo.P2-0191).

References

BabaHamed,S.,&Belhadri,M.(2009).Rheologicalpropertiesofbiopolymers drillingfluids.JournalofPetroleumScienceandEngineering,67,84–90. Baghdadi,H.A.,Sardinha,H.,&Bhatia,S.R.(2005).Rheologyandgelationkinetics

inLaponitedispersionscontainingpoly(ethyleneoxide).JournalofPolymer SciencePartB:PolymerPhysics,43,233–240.

Baghdadi,H.A.,Jensen,E.C.,Easwar,N.,&Bhatia,S.R.(2008).Evidencefor re-entrantbehaviorinLaponite–PEOsystems.RheologicaActa,47,121–127. Bais,D.,Trevisan,A.,Lapasin,R.,Partal,P.,&Gallegos,C.(2005).Rheological

characterizationofpolysaccharide–surfactantmatricesforcosmeticO/W emulsions.JournalofColloidandInterfaceScience,290,546–556. Bluhm,T.L.,Deslandes,Y.,Marchessault,R.H.,Pérez,S.,&Rinaudo,M.(1982).

Solid-stateandsolutionconformationofscleroglucan.CarbohydrateResearch, 100,117–130.

Bohn,J.A.,&BeMiller,J.N.(1995).(1→3)-␤-d-Glucansasbiologicalresponse modifiers:Areviewofstructure-functionalactivityrelationships.Carbohydrate Polymers,28,3–14.

Coviello,T.,Grassi,M.,Lapasin,R.,Marino,A.,&Alhaique,F.(2003).

Scleroglucan/borax:Characterizationofanovelhydrogelsystemsuitablefor drugdelivery.Biomaterials,24,2789–2798.

Coviello,T.,Palleschi,A.,Grassi,M.,Matricardi,P.,Bocchinfuso,G.,&Alhaique,F. (2005).Scleroglucan:Aversatilepolysaccharideformodifieddrugdelivery. Molecules,10,6–33.

Cross,M.M.(1965).Rheologyofnon-Newtonianfluids:Anewflowequationfor pseudoplasticsystems.JournalofColloidScience,20,417–423.

Cummins,H.Z.(2007).Liquid,glass,gel:ThephasesofcolloidalLaponite.Journal ofNon-CrystallineSolids,353,3891–3905.

Daga,V.K.,&Wagner,N.J.(2006).Linearviscoelasticmastercurvesofneatand Laponite-filledpoly(ethyleneoxide)–watersolutions.RheologicaActa,45, 813–824.

Davila,J.L.,&d’Ávila,M.A.(2017).Laponiteasarheologymodifierofalginate solutions:Physicalgelationandagingevolution.CarbohydratePolymers,157, 1–8.

deBruyn,J.R.,Pignon,F.,Tsabet,E.,&Magnin,A.(2008).Micron-scaleoriginofthe shear-inducedstructureinLaponite–poly(ethyleneoxide)dispersions. RheologicaActa,47,63–73.

DeLisi,R.,Gradzielski,M.,Lazzara,G.,Milioto,S.,Muratore,N.,&Prévost,S.(2008). AqueousLaponiteclaydispersionsinthepresenceofpoly(ethyleneoxide)or poly(propyleneoxide)oligomersandtheirtriblockcopolymers.TheJournalof PhysicalChemistryB,112,9328–9336.

Ellis,S.B.(1927).Thesis.USA:LafayetteCollege,Pa.Citedin:Matsuhisa,S.,&Bird R.B.(1965).Analyticalandnumericalsolutionsforlaminarflowofthe Non-NewtonianEllisfluid.AmericanInstituteofChemicalEngineersJournal,11, 588–595.

Fari ˜na,J.I.,Si ˜neriz,F.,Molina,O.E.,&Perotti,N.I.(2001).Isolationand physicochemicalcharacterizationofsolublescleroglucanfromSclerotium rolfsii.Rheologicalproperties,molecularweightandconformational characteristics.CarbohydratePolymers,44,41–50.

Fitch,F.R.,Jenness,P.K.,&Rangus,S.E.(1991).Rheologicalstudyofblendsof Laponiteandpolymerthickeners.InR.A.F.Williams,&N.C.deJaeger(Eds.), Advancesinmeasurementandcontrolofcolloidalprocesses(pp.292–310). Oxford:Butterworth-Heinemann.

Gabriel,J.-C.P.,Sanchez,C.,&Davidson,P.(1996).Observationofnematic liquid-crystaltexturesinaqueousgelsofsmectiteclays.TheJournalofPhysical Chemistry,100,11139–11143.

Gallino,G.,Guarneri,A.,Poli,G.,&Xiao,L.(1996).Scleroglucanbiopolymer enhancesWBMperformances.InSPEannualtechnicalconferenceandexhibition (pp.105–119).http://dx.doi.org/10.2118/36426-ms

Grassi,M.,Lapasin,R.,Coviello,T.,Matricardi,P.,DiMeo,C.,&Alhaique,F.(2009). Scleroglucan/borax/drughydrogels:Structurecharacterisationbymeansof rheologicalanddiffusionexperiments.CarbohydratePolymers,78,377–383. Grassi,M.,Lapasin,R.,&Pricl,S.(1996).Astudyoftherheologicalbehaviorof

scleroglucanweakgelsystems.CarbohydratePolymers,29,169–181. Grassi,M.,Lapasin,R.,Pricl,S.,&Colombo,I.(1996).Apparentnon-fickianrelease

fromascleroglucangelmatrix.ChemicalEngineeringCommunications,155, 89–112.

Grunberg,L.,&Nissan,A.H.(1949).Mixturelawforviscosity.Nature,164,799–800. Hyun,K.,Kim,S.H.,Ahn,K.H.,&Lee,S.J.(2002).Largeamplitudeoscillatoryshear

asawaytoclassifythecomplexfluids.JournalofNon-NewtonianFluid Mechanics,107,51–65.

Jabbari-Farouji,S.,Tanaka,H.,Wegdam,G.H.,&Bonn,D.(2008).Multiple nonergodicdisorderedstatesinLaponitesuspensions:Aphasediagram. PhysicalReviewE,78,061405.

Kishore,S.,Chen,Y.,Ravindra,P.,&Bhatia,S.R.(2015).Theeffectofparticle-scale dynamicsonthemacroscopicpropertiesofdisk-shapedcolloid–polymer systems.ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects,482, 585–595.

Kulawardana,E.U.,Koh,H.,Kim,D.H.,Liyanage,P.J.,Upamali,K.,Huh,C.,etal. (2012).RheologyandtransportofimprovedEORpolymersunderharsh reservoirconditions.InSPEimprovedoilrecoverysymposiumhttp://dx.doi.org/ 10.2118/154294-ms

Lapasin,R.,&Maiutto,A.(2006).RheologyofaqueousLaponite-polymermixtures. InAERC2006:3rdannualEuropeanrheologyconference(p.2006).

Lapasin,R.,&Pricl,S.(1995).Rheologyofindustrialpolysaccharides:Theoryand applications.London:Chapman&Hall,London.

Lapasin,R.,Pricl,S.,&Esposito,P.(1990).Rheologicalbehaviourofscleroglucan aqueoussystemsinthesolutionandgeldomains.InR.E.Carter(Ed.),Rheology offood,pharmaceuticalandbiologicalmolecules(pp.122–132).LondonandNew York:ElsevierAppliedSciences.

Lapasin,R.(2015).Rheologicalcharacterizationofhydrogels.InP.Matricardi,F. Alhaique,&T.Coviello(Eds.),Polysaccharidehydrogels:Characterizationand biomedicalapplications(pp.83–137).Singapore:PanStanfordPublishing. Lapasin,R.(2016).ProprietàreologichedidispersionidiLaponiteinmatrici

acquosedixantano.PantaRei,14,7–19.

Levitz,P.,Lécolier,E.,Mourchid,A.,Delville,A.,&Lyonnard,S.(2000).Liquid-solid transitionofLaponitesuspensionsatverylowionicstrength:Long-range electrostaticstabilisationofanisotropiccolloids.EurophysicsLetters,49, 672–677.

Lin-Gibson,S.,Kim,H.,Schmidt,G.,Han,C.C.,&Hobbie,E.K.(2004).Shear-induced structureinpolymer–claynanocompositesolutions.JournalofColloidand InterfaceScience,274,515–525.

Maiutto,A.(2005).MasterThesis.UniversityofTrieste,FacultyofEngineering. Malwitz,M.M.,Butler,P.D.,Porcar,L.,Angelette,D.P.,&Schmidt,G.(2004).

Orientationandrelaxationofpolymer-claysolutionsstudiedbyrheologyand small-angleneutronscattering.JournalofPolymerScienceB:PolymerPhysics, 42,3102–3112.

Matricardi,P.,Onorati,I.,Coviello,T.,&Alhaique,F.(2006).Drugdeliverymatrices basedonscleroglucan-alginate-boraxgels.InternationalJournalof

Pharmaceutics,316,21–28.

McAllister,R.A.(1960).Theviscosityofliquidmixtures.AmericanInstituteof ChemicalEngineersJournal,6,427–431.

Mongondry,P.,Nicolai,T.,&Tassin,J.F.(2004).Influenceofpyrophosphateor polyethyleneoxideontheaggregationandgelationofaqueousLaponite dispersions.JournalofColloidandInterfaceScience,275,191–196.

(11)

Morariu,S.,&Bercea,M.(2015).ViscoelasticpropertiesofLaponiteRDdispersions containingPEOwithdifferentmolecularweights.RevueRoumainedeChimie, 60,777–785.

Mourchid,A.,Delville,A.,Lambard,J.,Lécolier,E.,&Levitz,P.(1995).Phasediagram ofcolloidaldispersionsofanisotropicchargedparticles:Equilibrium properties,structure,andrheologyofLaponitesuspensions.Langmuir,11, 1942–1950.

Mourchid,A.,Lécolier,E.,VanDamme,H.,&Levitz,P.(1998).Onviscoelastic, birefringent,andswellingpropertiesoflaponiteclaysuspensions:Revisited phasediagram.Langmuir,14,4718–4723.

Palleschi,A.,Bocchinfuso,G.,Coviello,T.,&Alhaique,F.(2005).Molecular dynamicsinvestigationsofthepolysaccharidescleroglucan:Firststudyonthe triplehelixstructure.CarbohydrateResearch,340,2154–2162.

Pozzo,D.,&Walker,L.(2004).Reversiblesheargelationofpolymer–clay dispersions.ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects, 240,187–198.

Rinaudo,M.,&Vincendon,M.(1982).13CNMRstructuralinvestigationof scleroglucan.CarbohydratePolymers,2,135–144.

Roberts,G.P.,Barnes,H.A.,&Carew,P.(2001).Modellingtheflowbehaviourof veryshear-thinningliquids.ChemicalEngineeringScience,56,5617–5623. Ruzicka,B.,&Zaccarelli,E.(2011).AfreshlookattheLaponitephasediagram.Soft

Matter,7,1268–1286.

Ruzicka,B.,Zulian,L.,&Ruocco,G.(2004).Routestogelationinaclaysuspension. PhysicalReviewLetters,93,258301.

Ruzicka,B.,Zulian,L.,&Ruocco,G.(2006).MoreonphasediagramofLaponite. Langmuir,22,1106–1111.

Ruzicka,B.,Zaccarelli,E.,Zulian,L.,Angelini,R.,Sztucki,M.,Moussaid,A.,etal. (2011).Observationofemptyliquidsandequilibriumgelsinacolloidalclay. NatureMaterials,10,56–60.

Savenko,V.,Bulavin,L.,Rawiso,M.,Loginov,M.,Vorobiev,E.,&Lebovka,N.I. (2013).SedimentationstabilityandagingofaqueousdispersionsofLaponitein

thepresenceofcetyltrimethylammoniumbromide.PhysicalReviewE,88, 052301.

Savenko,V.,Bulavin,L.,Rawiso,M.,&Lebovka,N.I.(2014).Agingofaqueous Laponitedispersionsinthepresenceofsodiumpolystyrenesulfonate. UkrainianJournalofPhysics,59,589–595.

Schmidt,G.,Nakatani,A.I.,Butler,P.D.,Karim,A.,&Han,C.C.(2000).Shear orientationofviscoelasticpolymer–claysolutionsprobedbyflow birefringenceandSANS.Macromolecules,33,7219–7222.

Sveistrup,M.,vanMastrigt,F.,Norrman,J.,Picchioni,F.,&Paso,K.(2016).Viability ofbiopolymersforenhancedoilrecovery.JournalofDispersionScienceand Technology,37,1160–1169.

Tanaka,H.,Meunier,J.,&Bonn,D.(2004).Nonergodicstatesofchargedcolloidal suspensions:Repulsiveandattractiveglassesandgels.PhysicalReviewE,69, 31404–31410.

Tanaka,H.,Jabbari-Farouji,S.,Meunier,J.,&Bonn,D.(2005).Kineticsof

ergodic-to-nonergodictransitionsinchargedcolloidalsuspensions:Agingand gelation.PhysicalReviewE,71,21402–21412.

Vi ˜narta,S.C.,Franc¸ois,N.J.,Daraio,M.E.,Figueroa,L.I.C.,&Fari ˜na,J.I.(2007). Sclerotiumrolfsiiscleroglucan:Thepromisingbehaviorofanatural

polysaccharideasadrugdeliveryvehicle,suspensionstabilizerandemulsifier. InternationalJournalofBiologicalMacromolecules,41,314–323.

Yanaki,T.,&Norisuye,T.(1983).Triplehelixandrandomcoilofscleroglucanin dilutesolutions.PolymerJournal,15,389–396.

Zebrowski,J.,Prasad,V.,Zhang,W.,Walker,L.M.,&Weitz,D.A.(2003).Shake-gels: Shear-inducedgelationofLaponite/PEOmixtures.ColloidsandSurfacesA: PhysicochemicalandEngineeringAspects,213,189–197.

Zulian,L.,Ruzicka,B.,&Ruocco,G.(2008).Influenceofanadsorbingpolymeron theagingdynamicsofLaponiteclaysuspensions.PhilosophicalMagazine,88, 4213–4221.

Riferimenti

Documenti correlati

L’espressione logica SOMMA DI PRODOTTI (prima forma canonica) 2.. Dire se la copertura minima trovata

[r]

Dati i numeri decimali A=64, B=-63 e C=51, si determini il minimo numero di bit necessario per rappresentare contemporaneamente i suddetti numeri in complemento a due e se ne dia

In fact we can find an orthonormal basis of eigenvectors, corresponding respectively to the eigenvalues 2, −2, 3, −3... All answers must be given using the usual

An easy computation (for example with determinants) shows that this happens if and only if t 6= 4 and s 6=

Spazio percorso in funzione del tempo e grafico della velocità; come dal grafico della velocità si possono ricavare lo spazio percorso e la legge oraria. Risoluzione

Dopo averne dato la definizione, dare un esempio di autovettore di una funzione definita sullo spazio R

Poich´ e l’intervallo massimale di esistenza ` e tutto R, non ci sono asintoti verticali.. Non ci sono