• Non ci sono risultati.

X m=1 X a>m X b>m 1 a2b2 − S

N/A
N/A
Protected

Academic year: 2021

Condividi "X m=1 X a>m X b>m 1 a2b2 − S"

Copied!
1
0
0

Testo completo

(1)

Problem 11885

(American Mathematical Monthly, Vol.123, January 2016) Proposed by C. I. V˘alean (Romania).

Prove that

X

p=1

X

n=1

X

m=1

1

(m + n)4+ ((m + n)(m + p))2 = 3

2ζ(3) −5 4ζ(4).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let S be the left-hand side, then by setting a = m + n and b = m + p, we have that by symmetry,

S=

X

m=1

X

a>m

X

b>m

1

a2(a2+ b2) =

X

m=1

X

a>m

X

b>m

 1 a2b2

1 b2(a2+ b2)



=

X

m=1

X

a>m

X

b>m

1 a2b2 − S.

Hence,

S= 1 2

X

m=1

X

a>m

X

b>m

1 a2b2 =

X

m=1

X

a>b>m

1 a2b2 +1

2

X

m=1

X

a>m

1 a4

= X

a>b≥1

1 a2b2

b−1

X

m=1

1 +1 2

X

a≥1

1 a4

a−1

X

m=1

1

= X

a>b≥1

1 a2b −

X

a>b≥1

1 a2b2 +1

2 X

a≥1

1 a3

1 2

X

a≥1

1 a4

= ζ(2, 1) − ζ(2, 2) +1

2ζ(3) −1

2ζ(4) = 3

2ζ(3) − 5 4ζ(4), because the following Multiple Zeta Values are known,

ζ(2, 1) = ζ(3) and ζ(2, 2) = 3 4ζ(4).



Riferimenti

Documenti correlati

[r]

[r]

Hence, since the coefficients of P (x) are nonnegative, it suffices to show that the coefficients of the monomials of degree

esista, nel secondo

Corso di laurea in Geologia Istituzioni di matematiche.

[r]

[r]

[r]