Test case 3
Embraer ERJ-140
In questo capitolo viene applicato il codice al progetto della fusoliera dell’Embraer
ERJ-140.
T.1 Descrizione sommaria del velivolo
L’architettura della fusoliera, a sezione circolare, è tipica dei velivoli narrow body a
singolo ponte di carico, con motori in coda.
Per quanto riguarda gli allestimenti di cabina, si analizza la configurazione a 45
posti, in classe unica.
Le stiva, posta in coda alla cabina, trasporta merci e bagagli sfusi.
TC-29
T.2 Progetto della sezione maestra
T.2.1 File Input
GRUPPI PARAMETRI
VALORI
aircraft_type
3 Arch itett uracargo_type
2Cross_section_type
1lobe_type
1 Geome triae
0readme
mode
sea tn
= SEAT (0,2,1)nseats_sx
nseats_ct
nseats_dx
b loc ks _c ompsm
[2 0 1 1]aisle_sx
aisl esaisle_dx
[17 0] se at _g apseat_gap
3Hs
Hb
hbi
hbm
C a bi na ov h_ bi nsα_bin
[71 56 2.5 0.2 5]GRUPPI PARAMETRI VALORI
cargo_type
2cnt_H_sx
cnt_H_ct
Ca rg o_1CN
T_H
cnt_H_dx
[0 0 0]cnt_type_sx
cnt_type_ct
CNT_TYPE
cnt_type_dx
{‘-‘ ‘-‘ ‘-‘}cnt_class_sx
cnt_class_ct
Ca rg o_2CN
T_C
L
ASS
cnt_class_dx
{‘-‘ ‘-‘ ‘-‘}W_hold
0H_hold
0 Cargo Ho ldWLD
0default_G
0default_I
0default_E
0 def a ult sdefault_C
0 pri oT.2.2 Principali Risultati
PRINCIPALI RISULTATI
Gruppi Quote
Valori
(*)
DESCRIZIONE
Ws
78
Wseat_row
Wc
84
Bin_area_sx
120.15
Bin_area_ct
0
Bin_area
Bin_area_dx
39.54
Wi
84.39
Hi
69.22
Hs
71
Hb
56
zoc
27.03
zov
27.03
Rc_i
42.19
Rv_i
42.19
tw
2.93
tMD
0
theta_c
90
Cross_cab_in
theta_v
90
W
90.25
H
90.25
Rc_o
45.13
Cross_cab_out
Rv_o
45.13
ZLD
0
WLD
85.25
W_hold
101.39
H_hold
78.13
Hold_cross
A_hold
6676.25
(*) nota: Le unità di misura sono :
in
Æ
associata alla quota lineare
in
2Æ
associata alle aree
TC-31
T.2.3 Layout grafico
T.3 Progetto longitudinale della fusoliera
T.3.1 File Input longitudinale
GRUPPI PARAMETRI
VALORI
engine_type
2fuselage_type
4nose_type
2 Arch itett uratail_type
2seats_first
0seats_business
0seats_economy
45seats_hdensity
0 SE ATSseats_mpay
45seat_pitch_first
36seat_pitch_business
34seat_pitch_economy
31seat_pitch_hdensity
30 SE AT_p it chseat_pitch_mpay
31seat_first
= SEAT(0,2,7)seat_business
= SEAT(0,2,4)seat_economy
= SEAT(0,2,1)seat_hdensity
= SEAT(0,2,1) SE ATseat_mpay
= SEAT(0,2,1)blocks_comp_first
[2 0 2 1]blocks_comp_business
[3 0 3 1]blocks_comp_economy
[2 0 1 1]blocks_comp_hdensity
[3 0 3 1] BLOCKSblocks_comp_mpay
[2 0 1 1]block_scift_f
[0 0]block_scift_b
[0 0]block_scift_e
[0 0]block_scift_hd
[0 0] B L O C K _ sc iftblock_scift_mpay
[0 0]rr_first
[1 1]rr_business
[1 1]rr_economy
[1 2]rr_hdensity
[1 1] RRrr_mpay
[1 2] C a bi na se at _g apseat_gap
[3.5 3.5 3 3]GRUPPI
PARAMETRI VALORI
exit_type_P_fw ‘I’ exit_type_P_mid1 ‘IV’ exit_type_P_mid2 ‘-‘ exit _ ty pe _ P exit_type_P_aft ‘-‘ readme_P_fw 0 readme_P_mid1 0 readme_P_mid2 0 rea d m e_ P readme_P_aft 0 mode_P_fw 2 mode_Pmid1 2 mode_P_mid2 0 m o d e_P mode_P_aft 0 e_P_fw 34 e_P_mid1 3 e_P_mid2 0 e_ P e_P_aft 0 xE_P_fw 0 xE_P_mid1 63 xE_P_mid2 0 Po rt s id e xE_P xE_P_aft 100 exit_type_S_fw ‘I’ exit_type_S_mid1 ‘IV’ exit_type_S_mid2 ‘-‘ exit _ ty pe _ P exit_type_S_aft ‘-‘ readme_S_fw 0 readme_S_mid1 0 readme_S_mid2 0 rea d m e_ S readme_S_aft 0 mode_S_fw 2 mode_Smid1 2 mode_S_mid2 0 m o d e_S mode_S_aft 0 e_S_fw 34 e_S_mid1 3 e_S_mid2 0 e_ S e_S_aft 0 xE_S_fw 0 xE_S_mid1 63 xE_S_mid2 0 U s cit e di ca bi na Sta rb o ar d xE_S xE_S_aft 100
TC-33
GRUPPI
PARAMETRI VALORI
galley_type_P_fw ‘-‘ galley_type_P_mid1 ‘-‘ galley_type_P_mid2 ‘-‘ g a lle y_ ty pe _P galley_type_P_aft ‘-‘ g_readme_P_fw 0 g_readme_P_mid1 0 g_readme_P_mid2 0 g_ re ad m e_ P g_readme_P_aft 0 g_mode_P_fw 0 g_mode_Pmid1 0 g_mode_P_mid2 0 g_ m o de _ P g_mode_P_aft 0 g_g_P_fw 0 g_g_P_mid1 0 g_g_P_mid2 0 g_ g _P g_g_P_aft 0 G_pos_P_fw ‘-‘ G_pos_P_mid1 ‘-‘ G_pos_P_mid2 ‘-‘ Po rts id e G_ po s_P G_pos_P_aft ‘-‘ galley_type_C_fw ‘-‘ galley_type_C_mid1 ‘-‘ galley_type_C_mid2 ‘-‘ g a lle y_ ty pe _C galley_type_C_aft ‘-‘ g_readme_C_fw 0 g_readme_C_mid1 0 g_readme_C_mid2 0 g_ re ad m e_ C g_readme_C_aft 0 mode_C_fw 0 mode_Cmid1 0 mode_C_mid2 0 g_ m o de _ C mode_C_aft 0 g_g_C_fw 0 g_g_C_mid1 0 g_g_C_mid2 0 g _g_C g_g_C_aft 0 G_pos_C_fw ‘-‘ G_pos_C_mid1 ‘-‘ G_pos_C_mid2 ‘-‘ Ser v iz i g a lle y Me zze ria G_ po s_C G_pos_C_aft ‘-‘
GRUPPI PARAMETRI
VALORI
exit_type_T_tail ‘-‘ readme_T_tail 0 mode_T_tail 0 e_T_tail 0 Us cite T a il xE_T_tail 0
GRUPPI PARAMETRI
VALORI
galley_type_S_fw ‘II_V’ galley_type_S_mid1 ‘-‘ galley_type_S_mid2 ‘-‘ g a lle y_ ty pe _S galley_type_S_aft ‘-‘ g_readme_S_fw [0; 0] g_readme_S_mid1 0 g_readme_S_mid2 0 g_ re ad m e_S g_readme_S_aft 0 g_mode_S_fw [3; 3] g_mode_Smid1 0 g_mode_S_mid2 0 g_ m o de _S g_mode_S_aft 0 g_g_S_fw [40 17; 20 9] g_g_S_mid1 0 g_g_S_mid2 0 g_ g _S g_g_S_aft 0 G_pos_S_fw ‘CROSS’ G_pos_S_mid1 ‘-‘ G_pos_S_mid2 ‘-‘ Sta rb o ar d G_ po s_S G_pos_S_aft ‘-‘ galley_T_tail ‘-‘ g_readme_T_tail 0 g_mode_T_tail 0 g_g_T_tail 0 Ser v iz i g a lle y T a il G_pos_T_tail ‘-‘GRUPPI
PARAMETRI VALORI
lavatory_type_P_fw ‘I’ lavatory_type_P_mid1 ‘-‘ lavatory_type_P_mid2 ‘-‘ lav a tory _ty p e_ P lavatory_type_P_aft ‘-‘ l_readme_P_fw 0 l_readme_P_mid1 0 l_readme_P_mid2 0 l_ re adm e_P l_readme_P_aft 0 l_mode_P_fw 3 l_mode_Pmid1 0 l_mode_P_mid2 0 l_ mo de _P l_mode_P_aft 0 l_l_P_fw [20 55] l_l_P_mid1 0 l_l_P_mid2 0 l_l_ P l_l_P_aft 0 L_pos_P_fw ‘AFT’ L_pos_P_mid1 ‘-‘ L_pos_P_mid2 ‘-‘ Po rts id e L_ po s_P L_pos_P_aft ‘-‘ lavatory_type_C_fw ‘-‘ lavatory_type_C_mid1 ‘-‘ lavatory_type_C_mid2 ‘-‘ lav a tory _ty p e_ C lavatory_type_C_aft ‘-‘ l_readme_C_fw 0 l_readme_C_mid1 0 l_readme_C_mid2 0 l_ re adm e_C l_readme_C_aft 0 mode_C_fw 0 mode_Cmid1 0 mode_C_mid2 0 l_ mo de _C mode_C_aft 0 l_l_C_fw 0 l_l_C_mid1 0 l_l_C_mid2 0 l_l_ C l_l_C_aft 0 L_pos_C_fw ‘-‘ L_pos_C_mid1 ‘-‘ L_pos_C_mid2 ‘-‘ Ser v iz i la vat o ry Me zze ria L_ po s_C L_pos_C_aft ‘-‘
TC-35
GRUPPI PARAMETRI
VALORI
lavatory_type_S_fw ‘I’ lavatory_type_S_mid1 ‘-‘ lavatory_type_S_mid2 ‘-‘ lav a tory _ty p e_ S lavatory_type_S_aft ‘-‘ l_readme_S_fw 0 l_readme_S_mid1 0 l_readme_S_mid2 0 l_ re adm e_S l_readme_S_aft 0 l_mode_S_fw 3 l_mode_Smid1 0 l_mode_S_mid2 0 l_ mo de _S l_mode_S_aft 0 l_l_S_fw [40 28] l_l_S_mid1 0 l_l_S_mid2 0 l_l_ S l_l_S_aft 0 L_pos_S_fw ‘FW’ L_pos_S_mid1 ‘-‘ L_pos_S_mid2 ‘-‘ Sta rb o ar d L_ po s_ S L_pos_S_aft ‘-‘ lavatory_T_tail ‘I‘ l_readme_T_tail 0 l_mode_T_tail 3 l_l_T_tail [70 35] Ser v iz i la vat o ry T a il L_pos_T_tail ‘CROSS’
GRUPPI
PARAMETRI VALORI
Ncont_rows_fw Ncont_rows_aft Nc on t_ row s Ncont_rows_tail [0 0 0] L_hold_fw L_hold_aft H o ld_l o ng L_hold_tail [0 0 50] xWG xWG 0 Sti v e W_wg _bo x W_wg_box 0 n_ n ose n_nose 2 No se L_ fk L_fk 100 Tai l n_t ail n_tail 2 defaults_A 0 defaults_IC 0 def a ult s defaults_C 0
T.3.2 File Input trasversale
GRUPPI PARAMETRI
VALORI
DESCRIZIONE
Cross_section_type 1 lobe_type 1 Arch itett ura cargo_type 2 Wseat_row Ws ea t_ row Wc [78 84] Bin_area_sx Bin_area_ct Allesti m e n ti Bi n_ ar ea Bin_area_dx [120.15 0 39.54] Wi Hi Hs Hb zoc zov Rc_i Rv_i tw tMD theta_c Cr os s_ ca b _ in theta_v [84.39; 69.22; 71; 56; 27.03; 42.19; 2.93; 0; 90; 90] W H Rc_o P rin c ip a li i ngomb ri tr a s v e rs al i d i ca b in a Cr os s_ ca b _ o u t Rv_o [90.25; 90.25; 45.13; 45.13]
TC-37
GRUPPI PARAMETRI
VALORI
DESCRIZIONE
cnt_type_sx cnt_type_ct CNT_TY PE cnt_type_dx {‘-‘ ‘-‘ ‘-‘} cnt_class_sx cnt_class_ct CNT_CLA SS cnt_class_dx {‘-‘ ‘-‘ ‘-‘} cnt_H_sx cnt_H_ct CNT_H cnt_H_dx [0 0 0] ZLD WLD W_hold H_hold P rin c ip a li i ngomb ri tr a s v e rs al i d e ll e s tiv e H o ld _ cr oss A_hold [0; 64.80; 84.39; 69.22; 2796.39]
T.3.3 Principali risultati
GRUPPI PARAMETRI VALORI
DESCRIZIONE
First class 0
Business class 0
Coach/Economy class 45
High density class 0
A c o o m o dam e nt o pas s e g geri Total 45 fus o lie ra L 1097 Ing o m b ri l o ngit udi na li ca bin a Lcab 765.06 Ve ntr a le a n te rio re Hold_vol_fw 0 Ve ntr a le p ost eri ore Hold_vol_aft 0 Vo lu mi d e ll e s tiv e D i c oda Hold_vol_tail 221.36 ft3