• Non ci sono risultati.

Progress in the initial design activities for the European DEMO divertor: Subproject "Cassette"

N/A
N/A
Protected

Academic year: 2021

Condividi "Progress in the initial design activities for the European DEMO divertor: Subproject "Cassette""

Copied!
7
0
0

Testo completo

(1)

J.H.

You

,

G.

Mazzone

,

Ch.

Bachmann

,

D.

Coccorese

,

V.

Cocilovo

,

D.

De

Meis

,

P.A.

Di

Maio

e

,

D.

Dongiovanni

b

,

P.

Frosi

b

,

G.

Di

Gironimo

d

,

S.

Garitta

e

,

G.

Mariano

f

,

D.

Marzullo

d

,

M.T.

Porfiri

b

,

G.

Ramogida

b

,

E.

Vallone

e

,

R.

Villari

b

,

M.

Zucchetti

g

aMaxPlanckInstituteforPlasmaPhysics,BoltzmannStr.2,85748Garching,Germany

bENEAFrascati,DepartmentofFusionandTechnologyforNuclearSafetyandSecurity,viaE.Fermi45,00044Frascati,Italy cEUROfusion,PMUPPPTDepartment,BoltzmannStr.2,85748Garching,Germany

dCREATE/UniversityofNaplesFedericoII,DepartmentofIndustrialEngineering,PiazzaleTecchio80,80125Napoli,Italy eUniversityofPalermo,DepartmentofEnergy,VialedelleScienze,90128Edificio6,Palermo,Italy

fSapienzaUniversityofRomePalazzoBaleani,DepartmentofEnergetics,CorsoVittorioEmanueleII,24400186Rome,Italy gPolitecnicodiTorino,DepartmentofEnergy,CorsoDucadegliAbruzzi2410129Torino,Italy

h

i

g

h

l

i

g

h

t

s

•AbriefoverviewontheEuropeanDEMOdivertorcassettedesignstudiesispresented.

•Comprehensivecomputationalassessmentofmulti-physicalloadsisreported.

•Constraints,impactandimplicationsofpredictedloadingareexplained.

•Systemperformanceandrationalesoffurtherdesignoptimizationarediscussed.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13September2016

Receivedinrevisedform26January2017 Accepted3March2017

Availableonline18March2017 Keywords: DEMO Divertorcassette Neutronics Cooling Thermohydraulics Electromagneticloads

a

b

s

t

r

a

c

t

Since2014preconceptualdesignactivitiesforEuropeanDEMOdivertorhavebeenconductedasan integrated,interdisciplinaryR&DeffortintheframeworkofEUROfusionConsortium.Consistingoftwo subprojectareas,‘Cassette’and‘Target’,thisdivertorprojecthastheobjectivetodeliveraholistic pre-conceptualdesignconcepttogetherwiththekeytechnologicalsolutionstomaterializethedesign.Inthis paper,abriefoverviewontherecentresultsfromthesubproject‘Cassette’ispresented.Inthissubproject, theoverallcassettesystemisengineeredbasedontheloadanalysisandspecification.Thepreliminary studiescoveredmulti-physicalanalysesofneutronic,thermal,hydraulic,electromagneticandstructural loads.Inthispaper,focusisputontheneutronics,thermohydraulicsandelectromagneticanalysis.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since2014preconceptualdesignactivitiesfordevelopingthe

divertorofEuropeanDEMOreactorhavebeenconductedinthe

framework of EUROfusionConsortium. The aimof the divertor

project(WPDIV) istodeliveraholisticdesign concepttogether

withthekeytechnologiesrequiredformaterializingtheconcept

preparingtheconceptualdesignphase. WPDIVisanintegrated,

∗ Correspondingauthor.Jeong-HaYou. E-mailaddress:[email protected](J.H.You).

interdisciplinaryR&Deffortwhere6researchinstitutesand3

uni-versitygroupsareinvolved.

WPDIVconsistsoftwosubprojectareas:‘Cassettedesignand

integration’(hereafter‘Cassette’)and‘Targetdevelopment’

(‘Tar-get’).Inthesubproject‘Cassette’,theoverallsystemofcassettebody

isengineeredwhereasinthesubproject‘Target’advanceddesign

conceptsandkeytechnologiesfortheplasma-facingcomponents

(PFCs)ofthetargetsaredeveloped[1,2].

ThisdesignstudyisbasedonthebaselineCADconfiguration

modeloftheEuropeanDEMOplantissuedin2015[3].The

envis-agedfusionpoweris2037MW(netelectricpower:500MW).In

http://dx.doi.org/10.1016/j.fusengdes.2017.03.018

(2)

Fig.1. (a)CADmodeloftheDEMOdivertorcassetteand(b)atargetPFCmock-upwithaschematicofthecrosssection[1].

thispaper,recentresultsfromtheWPDIVactivitiesarepresented

focusingonthesubproject‘Cassette’(Fig.1[1]).

2. Generaltechnicalinformation

IntheEuropeanDEMOplantdesign,thedivertorconsistsof54

separablecassettes.For eachsetofthreecassettes,alowerport

isassignedforremotemaintenanceoperation.TheDEMOdivertor

hasareducedsizecomparedtotheITERdivertor[4].

InFig.2thesectionalgeometryofthecurrentcassettemodel

(revisedin2016)isillustratedtogetherwiththedimensions.The

cassettebodyhasapoloidalextensionof3.02m,heightof1.97m

andtoroidalouterwidthof1.04m.Thenominalgapsizebetween

twoadjacentcassetteswillbebetween20and30mm.Themain

bodyofcassetteismadeofEurofer97,reducedactivationferritic

martensiticsteel.Itisdividedintochambersseparatedbystiffening

ribs.

Thein-andoutboardverticaltargetsareprotectedbyactively

cooledPFCscoveringthesurface.ThePFCsandmaincassettebody

arecooledbyseparatecoolingcircuitstoholddifferentcoolant

temperatureforeach.Theprimaryoptionforcoolantiswaterfor

thewholedivertorwhereasthefeasibilityofheliumcoolingisalso

exploredasalow-priorityoption.Thebaselinedesignoptionfor

water-cooledPFCsistheITER-typetungstenmonoblock(witha

reducedsize)withCuCrZrcoolingtube[4,5].Inaddition,novelPFC

designconceptsaredeveloped[2].

Itisnotedthatthedomeisstillregardedasoptionalandits

necessityiscurrentlyunderextensiveassessment.

3. Neutronicanalysis

BasedontheDEMO plantCADmodelof2015(with

helium-cooledpebblebedblanket),3Dneutronicsanalysiswascarriedout

usingtheMCNP5codeandJEFF3.2nucleardata[6].The

calcula-tionswerenormalizedtothegrossfusionpowerof2037MWwhich

wouldcorrespondtoaneutronproductionrateof7.232×1020n/s.

Asthefinaldecisionisstillopenastowhetherthedomeshallbe

deployedornot,itwasassumedthattheentiresurfaceofthe

cas-settebodytotheplasmawascoveredwithPFCsofthesamekind

toshieldthewholecassettefromparticlesandradiation.Itisnoted

thatthisisatemporaryoptiontoavoidanyunrealisticneutronic

assessmentintheabsenceofadome.Aconsolidatedshielding

con-ceptiscurrentlydevisedwhichshallbeemployedincasedomeis

notadopted.

FortheneutronicsmodellingofPFCs,itwasassumedthatthe

sectionofthePFCconsistedof3homogenizedlayerswherethe

outermostlayersweretungstenandthemiddlelayerwasamixture

oftungsten(W:34vol.%),water(33vol.%),CuCrZr(18vol.%)and

copper(Cu:15vol.%)representingtheactualvolumefractionof

constituentmaterialsinthePFC.

Forthecassettebody,wateraswellasheliumwasassumed

ascoolant,forwhich3differentcasesofmaterialsmixturewere

consideredasfollows(volumepercent):

1)H2O-cooled:Eurofer(54%),H2O(46%)

2)He-cooled:Eurofer(50%),He(50%)

3)He-cooled:Eurofer(30%),He(50%),B4C(20%)

Inthecase3,B4Ccladdingwasassumedforneutronshielding.

ThechemicalcompositionofEurofer97steelisgiveninTable1.

Onlythemajoralloyingelementsandtheimpuritiesofhigh

radio-logicalimpactarelisted[7].

3.1. Neutronwallloading

Theneutronwallloadinthedivertorexhibitshighspatial

vari-abilityduetothecomplexgeometry.Themaximumvalueamounts

to0.53MW/m2attheuppersurfaceofthecassettewhichisroughly

onehalfofthemaximumneutronwallloadattheoutboard

equa-torialfirstwall(1.33MW/m2).

3.2. Nuclearheating

Fig.3showsthespatialdistributionsofnuclearheatingpower

densityinEuroferforthewater-cooled(left)andthehelium-cooled

(right)cases,respectively.ItshowsthatnuclearheatinginEurofer

wasconcentratednearthesurfaceofthecassetteanddecreased

rapidlyintheoutwardradialdirection(notabene:thecolorcode

scaleislogarithmic).Thevolumetricheatingpowerdensityranged

between0.1 and 6 MW/m3 for thewater-cooled cassettebody

whereasitvariedfrom0.2to4MW/m3forthehelium-cooledcase

(0.1-3.5MW/m3withB

4Cshield).

Table1

ChemicalcompositionofEurofer97steel(wt.%)[7].

Fe Cr W Mn V Ta C Ni Mo Ti Nb Al B Co

(3)

Fig.2.SectionalgeometryanddimensionsoftheDEMOdivertorcassettemodelasof2016.(a)toroidalmid-section,(b)radialprojectionview,(c)toroidalandpoloidalcross sections(d)outboardpartofatoroidalcutsectionshowingribs.

Fig.3. SpatialdistributionsofnuclearheatingpowerdensityinEuroferinthecassette(left:water-cooled,right:helium-cooledwithoutB4Cshield).

Table2

Totalnuclearheatingpowersinthemajorcomponents.

Nuclearheatingin54cassettes(MW) H2O-cooled(H2O:46vol.%) He-cooled(He:50vol.%) He+B4C(20%)(He:50vol.%)

Innerverticaltarget 5.4 4.9 3.8

Outerverticaltarget 8.1 7.0 5.4

PFCskinoncassettebody 16.7 14.0 11.3

Cassettebody(bulk) 96.1 47.0 55.6

Total 126.3 72.9 76.1

Thenuclearheatingpowerinthemajorcomponentsofdivertor (in54cassettes)issummarizedinTable2.Thetotalnuclearheating

powerintheentiredivertoramountsto126,73and76MWforthe

water-cooled,helium-cooledandhelium-cooledwithB4Cshield,

respectively.Thehigherheatingpowerinthewater-cooled

cas-settewasduetothepresenceofwaterwheresubstantialamount

ofpowerisdepositedcontrarytohelium.Fortheunderlying

vac-uumvesselmadeofSS316L,water-coolingprovidedmoreeffective

shielding(max.0.7MW/m3)comparedtothehelium-cooledcases

(max.1–1.8MW/m3).

Inthehelium-cooledcases,thepresenceoftheB4Cshielddid

bringnotableshieldingeffectinthePFCs,butthiseffectwas

can-celedout by theincreased heatingpower in thecassettebody

resultinginonlyminutedifferenceinthetotalpower.

3.3. Latticedamagebyirradiation

Themaximumvaluesofdpa(displacementperatom)predicted

forthemajorcomponentsofthedivertorafter2fpy(fullpower

year)andforthevacuumvesselpartlocatingdirectlybehindthe

cassetteafter6fpyaresummarized inTable3.The2fpyisthe

envisaged period of continuous service before replacement for

maintenance(forvacuumvessel:6fpy).

Fig.4showsthespatialdistributionsofirradiationdamagerate

inthedivertorexpressedintermsofdpaperfpy(left:water-cooled,

right:helium-cooled).Thedpainthecopperheatsinkwasalways

higherthaninthetungstenarmorduetothelowerenergy

thresh-oldandhigherdisplacementcross-sectionofCucomparedtoW.

Thespatialvariationofdpadamageamountedtoafactoroftwofor

(4)

Fig.4. Spatialdistributionsofirradiationdamagerate(dpaperfpy)inthedivertor(left:water-cooled,right:helium-cooledwithoutB4Cshield).

upperregionneartheblanketwhilethelowerdpaappearedinthe lowerpartofthetargetaroundthestrikepoint.Helium-coolingled toslightlyhigherdpadosethanwater-coolingduetomoderation ofneutronthroughthesteelbodyandwatercoolant.The maxi-mumcumulateddoseintheWarmorafter2fpy(specifiedPFC lifetime)reached3dpaforwater-and3.2dpaforhelium-cooling. IntheCuCrZrtube,themaximumdosewas12.8dpaforwater-and 14.2dpaforhelium-cooling.Accordingtothepreviousirradiation testdata,CuCrZrexhibitssaturationoftensilebehaviorinthedose rangeof0.5-2.5dpa[8]or1–10dpa[9]at150–300◦C.Thus,the

peakdpavalues(13–14dpa)mayprobablybeacceptable.

Themaximumaccumulateddamageinthesteelcassettebody

was6dpa(after2fpy)forwater-coolingwhereasitreached10

dpaforhelium-cooling(9dpawithB4Cshield).Ifthewatercoolant

temperatureiskeptabove180◦Cinthecassettebody,then6dpa

wouldbeacceptableforEurofersteelastheshiftofthefracture

toughnesstransitiontemperaturebyirradiationupto6dpastill

doesnot bringthesteelintofullyembrittledstate[10].Forthe

helium-cooledcase,theinletcoolanttemperaturewillhavetobe

higherthan210◦Ctoavoidfullembrittlementofthesteelbody

at9–10dpa.Thedpaprofilesexhibitedrapiddeclineintheradial

direction.Intheouterbottomregionthedosedecreaseddownto

0.02dpainthewater-cooledcassette.Inthehelium-cooledcase,

thedoseinthesameregionwasoneorderofmagnitudehigherdue

toreducedshieldingcapability.

Thecumulativedamageinthevacuumvessel(SS316L)after

6fpywas1.8,4.8and3.9dpaforthewater-andhelium-cooled

caseswithandwithoutB4Cshield,respectively.It isnotedthat

thealloweddpalimitspecifiedfortheausteniticstainlesssteelis

2.75dpaatwhichthefracturetoughnessisreducedbynomore

than30%[11].Water-coolingensuressufficientneutronshielding

forthevacuumvesselwhileitdoesnotseemtobethecaseforthe

helium-coolingcases.

3.4. Heliumtransmutation

Formationofheliumbubblesbytransmutationcausessevere

embrittlementand swellingaffecting reweldabilityrequired for

remotemaintenance.Themaximumheliumproductioninthesteel

cassettebodyreached100appmafter2fpy.Theassumedboron

contentinEurofer97was0.002wt.%(Table1)whichisthe

max-imumallowableimpurity concentrationlimitfor borondefined

intheF4Especification[7].Theheliumconcentrationlimitbelow

whichreweldingusingelectronbeamissupposedtobepossible

is1–3appm[11]beingtwoordersofmagnitudelowerthanthe

predictedmaximumvalueontheplasma-facingsurface.For

ensur-ingreliablereweldingofcoolingpipes,thecuttingzonehastobe

locatedintheoutermostoutboardregionsufficientlyshieldedby

theblanketsandcassetteitself.

3.5. Forthcominganalyses

Thenextneutronicsanalysiscampaignwillincludetheeffectof

thedome,realisticdistributionofmaterialsinarefinedCADmodel

andreviseddivertorcassettelayout(e.g.portplugin thelower

domainforshieldingthevacuumvessel).

4. Coolingschemeandthermohydraulicanalysis

4.1. Operationtemperaturerangeforthewater-cooledcassette

Thebaselinecoolingconceptisbasedonwater-coolingwhile

helium-cooling isconsideredasadvanceddesign option.In this

paper,discussionisfocusedonthewater-coolingcase.

Itis oneofthebasicdesignrequirementsthatthestructural

materialofthecassettebody(i.e.Eurofersteel)beoperatedinsuch

awaythatuncontrolledfastfractureisavoided.Inthisdesignstudy,

fracturetoughnesstransitiontemperature(FTTT)wasemployedas

measureofcriticaltemperaturebandacrosswhich thematerial

stateinthecrack-tipregionrapidlychangesfromductileto

brit-tle.AsFTTTismeasuredusingprecrackedspecimens,itisregarded

moreconservativecomparedtoDBTT(ductile-to-brittletransition

temperature)byimpacttests.Theloweroperationtemperature

limitofirradiatedEurofercanbedefinedaccordingtotheFTTTdata

at6dpaasfollows[12]:>180◦C(withHeproduction)or>120◦C(no

Heproduction).TheupperservicetemperaturelimitofEurofer97

isknowntobearound550◦C,abovewhichthesteelrapidlyloses

strength.Thethermohydraulicdesignforcoolingthesteelcassette

bodyshouldrespectthesetemperatureconstraints.

4.2. Water-coolingofcassettebody

Theinteriorofthecassettebodyisdividedintomany

cham-bersseparatedbyribs(20mmthick)eachwithahole(diameter:

40–70mm)throughwhich thepressurizedcoolant isguided to

flow. A schematicview of thecassette interior is illustratedin

Fig.5(a).Theoutletandinletcoolantfeedingpipesconnectedto

theoutboardedgefaceareshown.Thelayoutsofthefeedingpipes,

ribsandholeswereoptimizedonthebasisofiterativeCFD

simula-tions.Therectangularcrosssectionofthecassettebodyconsisted

(5)

(right)wherethedirectionofcoolantflowisschematicallyillustrated.

Table4

InputparametersconsideredforCFDanalysisofthewater-cooledcassettebodyand thepredictedresultsofthermo-hydraulicperformance.

H2O-cooledcassette Pipedesign1 Pipedesign2

Coolantinlettemp.(◦C) 150 180

Coolantinletpressure(MPa) 3.5 3.5

Massflowrate(kg/s) 308 861

Coolantoutlettemp.(◦C) 220 210

Pressuredrop(MPa) 0.01 0.1

Pumpingpower(kW) 4 93

Coolantmax.temp.(◦C) 242(atthewall) 214(atthewall)

Cassettebodytemp.(◦C) <330 <330

Fig.6. Streamlinesandspeedofthewatercoolantflowinginthedivertorcassette (left).Twodifferentdesignconceptsofthecoolingpipeconnectionstothecassette body(right).

andoutletcoolantstreams(seeFig.5(b)).Theoutershellplateis

30mmthick.

Toassess thecooling performance of the water-cooled

cas-settebody,full3Dthermohydraulicanalysiswascarriedoutbased

onfinite volumemethodusingcommercialcomputationalfluid

dynamics(CFD)code,ANSYS-CFX(v16).Theinputcoolant

param-etersandtheresultsof3DCFDanalysisaresummarizedinTable4.

DetailsoftheCFDsimulationarefoundelsewhere[13,14].

InFig.6,thestreamlinesofwatercoolantareplottedtogether

withthespeed distributionincolorcode.In general,thewater

flowexhibitsareasonablestreamlinepattern,buttwolarge

vor-ticesformedintheoutboardregionneedtobereducedbyfurther

optimizationoftheribstructure.

Itis foundthatthewater-coolingcase exhibitsa reasonable

thermalandhydraulicperformance.Particularly,water-coolingis

beneficialintermsofthelowpumpingpower(4kWintotal)and

highheatcapacity.Themaximumtemperaturedevelopinginthe

steelbodywasfarbelowthemaximumallowableservice

tempera-turelimit(550◦C).Thewatercoolantbulkwasheatedupto220◦C

inthe outletregion.The maximumtemperature inthe coolant

reachedlocallyupto242◦Cinthethinboundarylayernearthe

innersurfacewhichwasclosetothevaporizationtemperatureat

Table5

Thermohydraulicperformanceofthewater-cooledtargetPFCpredictedforthree differentcoolingoptions.

percassette Option1 Option2 Option3

Massflowrate(kg/s) 60 110 60

Temperaturerise(◦C) 9 5 9

Pressuredrop(MPa) 1.4 1.5 1.8

Min.velocity(m/s) 17 15 15

Min.CHFmargin 1.6 1.6 1.4

thegivenpressure.Forincreasingthemargintofilmboilingwater, massflowrateneedstobeincreased.

4.3. Water-coolingoftargetPFCs

Thethermohydraulicperformanceofthewater-cooled diver-tortargetPFCwasassessedbymeansof3DCFDsimulations.The targetPFCsareexposedtohighheatfluxloadsgeneratedby radia-tion(53MW),plasmabombardment(39MW)andnuclearheating (14MW).Thismeansthat54in-andoutboardtargetplateshave toexhaustthedeposited thermalpowerof106MWintotal.At theplasmastrikepointthemaximumpowerdensitywasassumed toreachabout20MW/m2 duringslowtransients(lossofplasma detachment)in2–3s.Duringaquasi-stationaryoperation(pulse duration:2h)theheatfluxdensityprofilewasassumedtorange

from1to10MW/m2[15].Thepowerexhaustcapabilityhastobe

assuredintermsofglobalenergybalanceaswellaslocalmarginto

criticalheatflux(CHF)atthetubewall.Tothisend,ahighlyefficient

coolingschemeandtechnologiesaredemanded.

InWPDIV,threedifferentoptionsofcoolingcircuithavebeen

devisedandestimated(Fig.7).Followingcoolantparameterswere

assumedforthePFCsasCFDboundaryconditions[2]:

–Peakheatfluxdensityatstrikepoint:20MW/m2

–Heatfluxpeakingfactoratthetubewall:2

–Coolanttemperature:150◦C(PFCinlet)

–Coolantpressure:5MPa(PFCinlet)

–MassflowrateperpipeinPFC:1.67kg/s

TheresultsofthecomparativeCFDanalysisaresummarizedin

Table5.AllthreeoptionsallowsufficientmargintotheCHFatthe

strikepointfortheappliedsurfaceheatflux.Itisnotedthatthe

recommendedmargintoCHFis1.4 atleast.Theriseofcoolant

temperaturelooksalsomoderateforallthreecases.

Ontheotherhand,pressuredropisquitesignificant,especially

foroption3.Anotherconcernisthehighcoolantspeedlocally

peak-ingupto20m/ssothatcorrosion-erosionofpipewallisfostered.

Theoutcomeof thisCFDanalysisimpliesthat thepeak coolant

(6)

tempera-Fig.7. Threedifferentcoolingschemeoptionsconsideredforthethermohydraulicdesignofthedivertortargetplate.

tureand/orincreasingthetuberadius.Afollow-upinvestigationis

ongoingtargetingthecoolantspeedofabout10m/s,pressuredrop

below1.4MPaandCHFmarginhigherthan1.4.Here,the

oper-ationtemperaturerangerecommendedfortheirradiatedCuCrZr

heatsinktube(structuralmaterial)bythestructuraldesigncode

ITERSDC-ICimposesconstraintontheapplicablecoolant

temper-ature[16,17].Forrelaxingsuchconstraint,advanceddesignrules

basedonnon-ductilefracturemechanicscanbeemployedsothat

theuseoflow-temperatureoperationofdivertorPFCsisjustified.

5. Electromagneticforceanalysis

Globalplasmainstabilitiessuchasplasmadisruptionsand

ver-ticaldisplacementevents(VDEs)induceorgeneratehugetransient

electriccurrentsintheconductivesteelcassettebody.Disruptions

induceeddycurrentswhereasVDEsgeneratehalocurrents.The

interactionofthecurrentswiththemagneticfieldinducesLorentz

force(F=J× B)asimpactload.Particularly,theforceinducedbya

VDEcanimposeacriticalimpactonthedivertorduetohighcurrent

density.InWPDIV,finiteelementmethod(FEM)-based3D

elec-tromagneticanalysiswascarriedouttoassesssuchimpactloads

assumingvariousparametriccombinations.Inthispaper,onlythe

resultforthemostcriticalcaseispresented(productofhalo

frac-tionand toroidal peaking factor:1, halocurrent partition ratio

betweenthemainbodyandotherparts:1).Thedurationtimeof

linearcurrentquenchwasassumedtobe50ms[18](ForDEMO,it

wasrevisedto70ms[19]).Itwasassumedthatplasmadisruption

began10saftertheinitiationoffastdischarge(characteristictime:

27s).Contactresistancewasneglected.Theradialdecayoftoroidal

magneticfieldrangedfrom8.3Tto5.6T(nominalBT:5.6T).

5.1. Halocurrent

Fig.8illustratestheelectricpotentialfieldgeneratedbyaVDE

incolor code(left) togetherwitharrowsindicating thecurrent

pathanddirection(right).Theelectricpotentialbuiltupalongthe

poloidaldirectionfromtheinboardtoptowardtheoutboardend

formingthehalocurrent path.Themaximumhalocurrent

den-sityreached2.2MA/m2.Concentrationofcurrentdensityoccurred

locallyattheshelledgesandcorners.

Fig.8.ElectricpotentialfieldgeneratedbyaVDE(left)andhalocurrentpath indi-catedwitharrows(right).

Fig.9.InducedLorentzforcesinthedivertorcassetteshellplate(left:vertical,right: radialcomponent).

5.2. Lorentzforcesandstresses

The induced Lorentz forces in the shellplate are plotted in

Fig.9(left:vertical,right:radialcomponent).Strongupward

verti-calforceappearedinthemiddlepartofthecassettebody(30MN)

anddownwardverticalforceintheinboardandoutboardwings

(10MN). Theupwardvertical forcecauses(elastic)deformation

ofthemiddlepartwherethedisplacementreachesupto1.4mm

upwards.

Fig.10showstheinducedstressfields(vonMisesstress)inthe

outershellplate(left)andintheinternalribs(right).Thestressstate

intheentirecassettestructureremainedintheelasticregimeeven

inthemostsevereloadingcaseconsideredinthisanalysis.This

resultindicatesthatthecassettebodyisrobustenoughto

with-standthetransientelectromagneticimpactloadscausedbyplasma

(7)

well.Examplesare:FEM-basedstructuralanalysisandcode-based

designstudy,optimizationofCADmodels,developmentofcassette

fixationscheme,experimentalverificationofCFD,andfunctional

analysis,etc.(willbereportedelsewhere.)

7. Conclusions

Theinitialdesignexplorationstudyinthepreconceptualdesign

phase to develop European DEMO divertor has been recently

concluded.Inthesubproject‘Cassettedesignandintegration’,

fol-lowingresultsarethemajorachievements:

1CAD:complete3Dconfigurationmodelwascreated.

2Neutronics:theradiologicalimpactwasanalyzedforthecase

domeisnotdeployed.ArmoringofcassettesurfacewiththePFCs

similartothetargetnecessitatedimprovedshielding.

3Thermohydraulics:forbothtargetPFCsandcassettebody,the

currentdesignofwater-coolingcircuitsseemedadequate.

4Electromagneticanalysis:thecurrentcassettemodelseemedto

berobustenoughtoaccommodateVDEimpactloads.

[7]TechnicalspecificationsEUROFERmaterialdatabase,F4E-2008-GRT-010 (PNS-MD).

[8]W.Timmis,MaterialAssessmentReportontheUseofCopperAlloysinDEMO EFDAReportWP12-MAT02-M03,2013.

[9]P.Fenici,etal.,J.Nucl.Mater.212–215(1994)399–403. [10]E.Gaganidze,J.Aktaa,Fus.Eng.Des.88(2013)118–128. [11]V.Barabash,etal.,J.Nucl.Mater.367–370(2007)21–32.

[12]G.Mazzone,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.013.

[13]P.A.DiMaio,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.012.

[14]P.A.DiMaio,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.025.

[15]R.P.Wenninger,Nucl.Fusion54(2014)114003. [16]J.H.You,Nucl.Mater.Energy5(2015)7–18. [17]J.H.You,Nucl.Fusion55(2015)113026.

[18]T.C.Hender,etal.,Ch.3.MHDstability,operationallimitsanddisruptions, Nucl.Fusion47(2007)S128–202.

Riferimenti

Documenti correlati

1XWULHQW LH SKRVSKRUXV HQULFKPHQW RI DOSLQH ODNHV LV DFFRPSDQLHG QRW RQO\ E\ LQFUHDVLQJ SK\WRSODQNWRQ ELRPDVV EXW DOVR E\ VXEVWDQWLDO FKDQJHV LQ DOJDO VSHFLHV FRPSRVLWLRQ LQ

In this light, going back to Meyer’s forces, if agents are abstractions for processes and environments for objects, then norms are abstractions of the action force (see Figure

Se, quindi, l’esercizio delle prerogative dello Stato del porto risulta legittimo alla luce delle norme consuetudinarie e pattizie sul diritto del mare, e nonostante le misure

7 shows the neutron irradiation induced shift in FTTT (Fracture Toughness Transition Temperature) and KLST (specimen according to DIN 50 115) and ISO-V DBTT for EUROFER97 vs

IPADeP has been adopted as methodology to address the early conceptual design stage of a subsystem of the DEMOnstration fusion power plant (DEMO) [11]: the divertor cassette

This flexibility will also give the possibil- ity to test different First Wall (FW) materials, and technologies in reactor relevant regimes from both the points of view of plasma

It will be essential to estimate the resources necessary to devote to the control activity here as well; (c) invoices received monitoring, which consists of reconciling

(Bottom right) Same as top left panel, but for the distribution from different mock surveys of the Horizon Run 4, based on local density weighted halo sampling (see Section 5.2