J.H.
You
,
G.
Mazzone
,
Ch.
Bachmann
,
D.
Coccorese
,
V.
Cocilovo
,
D.
De
Meis
,
P.A.
Di
Maio
e,
D.
Dongiovanni
b,
P.
Frosi
b,
G.
Di
Gironimo
d,
S.
Garitta
e,
G.
Mariano
f,
D.
Marzullo
d,
M.T.
Porfiri
b,
G.
Ramogida
b,
E.
Vallone
e,
R.
Villari
b,
M.
Zucchetti
gaMaxPlanckInstituteforPlasmaPhysics,BoltzmannStr.2,85748Garching,Germany
bENEAFrascati,DepartmentofFusionandTechnologyforNuclearSafetyandSecurity,viaE.Fermi45,00044Frascati,Italy cEUROfusion,PMUPPPTDepartment,BoltzmannStr.2,85748Garching,Germany
dCREATE/UniversityofNaplesFedericoII,DepartmentofIndustrialEngineering,PiazzaleTecchio80,80125Napoli,Italy eUniversityofPalermo,DepartmentofEnergy,VialedelleScienze,90128Edificio6,Palermo,Italy
fSapienzaUniversityofRomePalazzoBaleani,DepartmentofEnergetics,CorsoVittorioEmanueleII,244−00186Rome,Italy gPolitecnicodiTorino,DepartmentofEnergy,CorsoDucadegliAbruzzi24−10129Torino,Italy
h
i
g
h
l
i
g
h
t
s
•AbriefoverviewontheEuropeanDEMOdivertorcassettedesignstudiesispresented.
•Comprehensivecomputationalassessmentofmulti-physicalloadsisreported.
•Constraints,impactandimplicationsofpredictedloadingareexplained.
•Systemperformanceandrationalesoffurtherdesignoptimizationarediscussed.
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received13September2016
Receivedinrevisedform26January2017 Accepted3March2017
Availableonline18March2017 Keywords: DEMO Divertorcassette Neutronics Cooling Thermohydraulics Electromagneticloads
a
b
s
t
r
a
c
t
Since2014preconceptualdesignactivitiesforEuropeanDEMOdivertorhavebeenconductedasan integrated,interdisciplinaryR&DeffortintheframeworkofEUROfusionConsortium.Consistingoftwo subprojectareas,‘Cassette’and‘Target’,thisdivertorprojecthastheobjectivetodeliveraholistic pre-conceptualdesignconcepttogetherwiththekeytechnologicalsolutionstomaterializethedesign.Inthis paper,abriefoverviewontherecentresultsfromthesubproject‘Cassette’ispresented.Inthissubproject, theoverallcassettesystemisengineeredbasedontheloadanalysisandspecification.Thepreliminary studiescoveredmulti-physicalanalysesofneutronic,thermal,hydraulic,electromagneticandstructural loads.Inthispaper,focusisputontheneutronics,thermohydraulicsandelectromagneticanalysis.
©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Since2014preconceptualdesignactivitiesfordevelopingthe
divertorofEuropeanDEMOreactorhavebeenconductedinthe
framework of EUROfusionConsortium. The aimof the divertor
project(WPDIV) istodeliveraholisticdesign concepttogether
withthekeytechnologiesrequiredformaterializingtheconcept
preparingtheconceptualdesignphase. WPDIVisanintegrated,
∗ Correspondingauthor.Jeong-HaYou. E-mailaddress:[email protected](J.H.You).
interdisciplinaryR&Deffortwhere6researchinstitutesand3
uni-versitygroupsareinvolved.
WPDIVconsistsoftwosubprojectareas:‘Cassettedesignand
integration’(hereafter‘Cassette’)and‘Targetdevelopment’
(‘Tar-get’).Inthesubproject‘Cassette’,theoverallsystemofcassettebody
isengineeredwhereasinthesubproject‘Target’advanceddesign
conceptsandkeytechnologiesfortheplasma-facingcomponents
(PFCs)ofthetargetsaredeveloped[1,2].
ThisdesignstudyisbasedonthebaselineCADconfiguration
modeloftheEuropeanDEMOplantissuedin2015[3].The
envis-agedfusionpoweris2037MW(netelectricpower:500MW).In
http://dx.doi.org/10.1016/j.fusengdes.2017.03.018
Fig.1. (a)CADmodeloftheDEMOdivertorcassetteand(b)atargetPFCmock-upwithaschematicofthecrosssection[1].
thispaper,recentresultsfromtheWPDIVactivitiesarepresented
focusingonthesubproject‘Cassette’(Fig.1[1]).
2. Generaltechnicalinformation
IntheEuropeanDEMOplantdesign,thedivertorconsistsof54
separablecassettes.For eachsetofthreecassettes,alowerport
isassignedforremotemaintenanceoperation.TheDEMOdivertor
hasareducedsizecomparedtotheITERdivertor[4].
InFig.2thesectionalgeometryofthecurrentcassettemodel
(revisedin2016)isillustratedtogetherwiththedimensions.The
cassettebodyhasapoloidalextensionof3.02m,heightof1.97m
andtoroidalouterwidthof1.04m.Thenominalgapsizebetween
twoadjacentcassetteswillbebetween20and30mm.Themain
bodyofcassetteismadeofEurofer97,reducedactivationferritic
martensiticsteel.Itisdividedintochambersseparatedbystiffening
ribs.
Thein-andoutboardverticaltargetsareprotectedbyactively
cooledPFCscoveringthesurface.ThePFCsandmaincassettebody
arecooledbyseparatecoolingcircuitstoholddifferentcoolant
temperatureforeach.Theprimaryoptionforcoolantiswaterfor
thewholedivertorwhereasthefeasibilityofheliumcoolingisalso
exploredasalow-priorityoption.Thebaselinedesignoptionfor
water-cooledPFCsistheITER-typetungstenmonoblock(witha
reducedsize)withCuCrZrcoolingtube[4,5].Inaddition,novelPFC
designconceptsaredeveloped[2].
Itisnotedthatthedomeisstillregardedasoptionalandits
necessityiscurrentlyunderextensiveassessment.
3. Neutronicanalysis
BasedontheDEMO plantCADmodelof2015(with
helium-cooledpebblebedblanket),3Dneutronicsanalysiswascarriedout
usingtheMCNP5codeandJEFF3.2nucleardata[6].The
calcula-tionswerenormalizedtothegrossfusionpowerof2037MWwhich
wouldcorrespondtoaneutronproductionrateof7.232×1020n/s.
Asthefinaldecisionisstillopenastowhetherthedomeshallbe
deployedornot,itwasassumedthattheentiresurfaceofthe
cas-settebodytotheplasmawascoveredwithPFCsofthesamekind
toshieldthewholecassettefromparticlesandradiation.Itisnoted
thatthisisatemporaryoptiontoavoidanyunrealisticneutronic
assessmentintheabsenceofadome.Aconsolidatedshielding
con-ceptiscurrentlydevisedwhichshallbeemployedincasedomeis
notadopted.
FortheneutronicsmodellingofPFCs,itwasassumedthatthe
sectionofthePFCconsistedof3homogenizedlayerswherethe
outermostlayersweretungstenandthemiddlelayerwasamixture
oftungsten(W:34vol.%),water(33vol.%),CuCrZr(18vol.%)and
copper(Cu:15vol.%)representingtheactualvolumefractionof
constituentmaterialsinthePFC.
Forthecassettebody,wateraswellasheliumwasassumed
ascoolant,forwhich3differentcasesofmaterialsmixturewere
consideredasfollows(volumepercent):
1)H2O-cooled:Eurofer(54%),H2O(46%)
2)He-cooled:Eurofer(50%),He(50%)
3)He-cooled:Eurofer(30%),He(50%),B4C(20%)
Inthecase3,B4Ccladdingwasassumedforneutronshielding.
ThechemicalcompositionofEurofer97steelisgiveninTable1.
Onlythemajoralloyingelementsandtheimpuritiesofhigh
radio-logicalimpactarelisted[7].
3.1. Neutronwallloading
Theneutronwallloadinthedivertorexhibitshighspatial
vari-abilityduetothecomplexgeometry.Themaximumvalueamounts
to0.53MW/m2attheuppersurfaceofthecassettewhichisroughly
onehalfofthemaximumneutronwallloadattheoutboard
equa-torialfirstwall(1.33MW/m2).
3.2. Nuclearheating
Fig.3showsthespatialdistributionsofnuclearheatingpower
densityinEuroferforthewater-cooled(left)andthehelium-cooled
(right)cases,respectively.ItshowsthatnuclearheatinginEurofer
wasconcentratednearthesurfaceofthecassetteanddecreased
rapidlyintheoutwardradialdirection(notabene:thecolorcode
scaleislogarithmic).Thevolumetricheatingpowerdensityranged
between0.1 and 6 MW/m3 for thewater-cooled cassettebody
whereasitvariedfrom0.2to4MW/m3forthehelium-cooledcase
(0.1-3.5MW/m3withB
4Cshield).
Table1
ChemicalcompositionofEurofer97steel(wt.%)[7].
Fe Cr W Mn V Ta C Ni Mo Ti Nb Al B Co
Fig.2.SectionalgeometryanddimensionsoftheDEMOdivertorcassettemodelasof2016.(a)toroidalmid-section,(b)radialprojectionview,(c)toroidalandpoloidalcross sections(d)outboardpartofatoroidalcutsectionshowingribs.
Fig.3. SpatialdistributionsofnuclearheatingpowerdensityinEuroferinthecassette(left:water-cooled,right:helium-cooledwithoutB4Cshield).
Table2
Totalnuclearheatingpowersinthemajorcomponents.
Nuclearheatingin54cassettes(MW) H2O-cooled(H2O:46vol.%) He-cooled(He:50vol.%) He+B4C(20%)(He:50vol.%)
Innerverticaltarget 5.4 4.9 3.8
Outerverticaltarget 8.1 7.0 5.4
PFCskinoncassettebody 16.7 14.0 11.3
Cassettebody(bulk) 96.1 47.0 55.6
Total 126.3 72.9 76.1
Thenuclearheatingpowerinthemajorcomponentsofdivertor (in54cassettes)issummarizedinTable2.Thetotalnuclearheating
powerintheentiredivertoramountsto126,73and76MWforthe
water-cooled,helium-cooledandhelium-cooledwithB4Cshield,
respectively.Thehigherheatingpowerinthewater-cooled
cas-settewasduetothepresenceofwaterwheresubstantialamount
ofpowerisdepositedcontrarytohelium.Fortheunderlying
vac-uumvesselmadeofSS316L,water-coolingprovidedmoreeffective
shielding(max.0.7MW/m3)comparedtothehelium-cooledcases
(max.1–1.8MW/m3).
Inthehelium-cooledcases,thepresenceoftheB4Cshielddid
bringnotableshieldingeffectinthePFCs,butthiseffectwas
can-celedout by theincreased heatingpower in thecassettebody
resultinginonlyminutedifferenceinthetotalpower.
3.3. Latticedamagebyirradiation
Themaximumvaluesofdpa(displacementperatom)predicted
forthemajorcomponentsofthedivertorafter2fpy(fullpower
year)andforthevacuumvesselpartlocatingdirectlybehindthe
cassetteafter6fpyaresummarized inTable3.The2fpyisthe
envisaged period of continuous service before replacement for
maintenance(forvacuumvessel:6fpy).
Fig.4showsthespatialdistributionsofirradiationdamagerate
inthedivertorexpressedintermsofdpaperfpy(left:water-cooled,
right:helium-cooled).Thedpainthecopperheatsinkwasalways
higherthaninthetungstenarmorduetothelowerenergy
thresh-oldandhigherdisplacementcross-sectionofCucomparedtoW.
Thespatialvariationofdpadamageamountedtoafactoroftwofor
Fig.4. Spatialdistributionsofirradiationdamagerate(dpaperfpy)inthedivertor(left:water-cooled,right:helium-cooledwithoutB4Cshield).
upperregionneartheblanketwhilethelowerdpaappearedinthe lowerpartofthetargetaroundthestrikepoint.Helium-coolingled toslightlyhigherdpadosethanwater-coolingduetomoderation ofneutronthroughthesteelbodyandwatercoolant.The maxi-mumcumulateddoseintheWarmorafter2fpy(specifiedPFC lifetime)reached3dpaforwater-and3.2dpaforhelium-cooling. IntheCuCrZrtube,themaximumdosewas12.8dpaforwater-and 14.2dpaforhelium-cooling.Accordingtothepreviousirradiation testdata,CuCrZrexhibitssaturationoftensilebehaviorinthedose rangeof0.5-2.5dpa[8]or1–10dpa[9]at150–300◦C.Thus,the
peakdpavalues(13–14dpa)mayprobablybeacceptable.
Themaximumaccumulateddamageinthesteelcassettebody
was6dpa(after2fpy)forwater-coolingwhereasitreached10
dpaforhelium-cooling(9dpawithB4Cshield).Ifthewatercoolant
temperatureiskeptabove180◦Cinthecassettebody,then6dpa
wouldbeacceptableforEurofersteelastheshiftofthefracture
toughnesstransitiontemperaturebyirradiationupto6dpastill
doesnot bringthesteelintofullyembrittledstate[10].Forthe
helium-cooledcase,theinletcoolanttemperaturewillhavetobe
higherthan210◦Ctoavoidfullembrittlementofthesteelbody
at9–10dpa.Thedpaprofilesexhibitedrapiddeclineintheradial
direction.Intheouterbottomregionthedosedecreaseddownto
0.02dpainthewater-cooledcassette.Inthehelium-cooledcase,
thedoseinthesameregionwasoneorderofmagnitudehigherdue
toreducedshieldingcapability.
Thecumulativedamageinthevacuumvessel(SS316L)after
6fpywas1.8,4.8and3.9dpaforthewater-andhelium-cooled
caseswithandwithoutB4Cshield,respectively.It isnotedthat
thealloweddpalimitspecifiedfortheausteniticstainlesssteelis
2.75dpaatwhichthefracturetoughnessisreducedbynomore
than30%[11].Water-coolingensuressufficientneutronshielding
forthevacuumvesselwhileitdoesnotseemtobethecaseforthe
helium-coolingcases.
3.4. Heliumtransmutation
Formationofheliumbubblesbytransmutationcausessevere
embrittlementand swellingaffecting reweldabilityrequired for
remotemaintenance.Themaximumheliumproductioninthesteel
cassettebodyreached100appmafter2fpy.Theassumedboron
contentinEurofer97was0.002wt.%(Table1)whichisthe
max-imumallowableimpurity concentrationlimitfor borondefined
intheF4Especification[7].Theheliumconcentrationlimitbelow
whichreweldingusingelectronbeamissupposedtobepossible
is1–3appm[11]beingtwoordersofmagnitudelowerthanthe
predictedmaximumvalueontheplasma-facingsurface.For
ensur-ingreliablereweldingofcoolingpipes,thecuttingzonehastobe
locatedintheoutermostoutboardregionsufficientlyshieldedby
theblanketsandcassetteitself.
3.5. Forthcominganalyses
Thenextneutronicsanalysiscampaignwillincludetheeffectof
thedome,realisticdistributionofmaterialsinarefinedCADmodel
andreviseddivertorcassettelayout(e.g.portplugin thelower
domainforshieldingthevacuumvessel).
4. Coolingschemeandthermohydraulicanalysis
4.1. Operationtemperaturerangeforthewater-cooledcassette
Thebaselinecoolingconceptisbasedonwater-coolingwhile
helium-cooling isconsideredasadvanceddesign option.In this
paper,discussionisfocusedonthewater-coolingcase.
Itis oneofthebasicdesignrequirementsthatthestructural
materialofthecassettebody(i.e.Eurofersteel)beoperatedinsuch
awaythatuncontrolledfastfractureisavoided.Inthisdesignstudy,
fracturetoughnesstransitiontemperature(FTTT)wasemployedas
measureofcriticaltemperaturebandacrosswhich thematerial
stateinthecrack-tipregionrapidlychangesfromductileto
brit-tle.AsFTTTismeasuredusingprecrackedspecimens,itisregarded
moreconservativecomparedtoDBTT(ductile-to-brittletransition
temperature)byimpacttests.Theloweroperationtemperature
limitofirradiatedEurofercanbedefinedaccordingtotheFTTTdata
at6dpaasfollows[12]:>180◦C(withHeproduction)or>120◦C(no
Heproduction).TheupperservicetemperaturelimitofEurofer97
isknowntobearound550◦C,abovewhichthesteelrapidlyloses
strength.Thethermohydraulicdesignforcoolingthesteelcassette
bodyshouldrespectthesetemperatureconstraints.
4.2. Water-coolingofcassettebody
Theinteriorofthecassettebodyisdividedintomany
cham-bersseparatedbyribs(20mmthick)eachwithahole(diameter:
40–70mm)throughwhich thepressurizedcoolant isguided to
flow. A schematicview of thecassette interior is illustratedin
Fig.5(a).Theoutletandinletcoolantfeedingpipesconnectedto
theoutboardedgefaceareshown.Thelayoutsofthefeedingpipes,
ribsandholeswereoptimizedonthebasisofiterativeCFD
simula-tions.Therectangularcrosssectionofthecassettebodyconsisted
(right)wherethedirectionofcoolantflowisschematicallyillustrated.
Table4
InputparametersconsideredforCFDanalysisofthewater-cooledcassettebodyand thepredictedresultsofthermo-hydraulicperformance.
H2O-cooledcassette Pipedesign1 Pipedesign2
Coolantinlettemp.(◦C) 150 180
Coolantinletpressure(MPa) 3.5 3.5
Massflowrate(kg/s) 308 861
Coolantoutlettemp.(◦C) 220 210
Pressuredrop(MPa) 0.01 0.1
Pumpingpower(kW) 4 93
Coolantmax.temp.(◦C) 242(atthewall) 214(atthewall)
Cassettebodytemp.(◦C) <330 <330
Fig.6. Streamlinesandspeedofthewatercoolantflowinginthedivertorcassette (left).Twodifferentdesignconceptsofthecoolingpipeconnectionstothecassette body(right).
andoutletcoolantstreams(seeFig.5(b)).Theoutershellplateis
30mmthick.
Toassess thecooling performance of the water-cooled
cas-settebody,full3Dthermohydraulicanalysiswascarriedoutbased
onfinite volumemethodusingcommercialcomputationalfluid
dynamics(CFD)code,ANSYS-CFX(v16).Theinputcoolant
param-etersandtheresultsof3DCFDanalysisaresummarizedinTable4.
DetailsoftheCFDsimulationarefoundelsewhere[13,14].
InFig.6,thestreamlinesofwatercoolantareplottedtogether
withthespeed distributionincolorcode.In general,thewater
flowexhibitsareasonablestreamlinepattern,buttwolarge
vor-ticesformedintheoutboardregionneedtobereducedbyfurther
optimizationoftheribstructure.
Itis foundthatthewater-coolingcase exhibitsa reasonable
thermalandhydraulicperformance.Particularly,water-coolingis
beneficialintermsofthelowpumpingpower(4kWintotal)and
highheatcapacity.Themaximumtemperaturedevelopinginthe
steelbodywasfarbelowthemaximumallowableservice
tempera-turelimit(550◦C).Thewatercoolantbulkwasheatedupto220◦C
inthe outletregion.The maximumtemperature inthe coolant
reachedlocallyupto242◦Cinthethinboundarylayernearthe
innersurfacewhichwasclosetothevaporizationtemperatureat
Table5
Thermohydraulicperformanceofthewater-cooledtargetPFCpredictedforthree differentcoolingoptions.
percassette Option1 Option2 Option3
Massflowrate(kg/s) 60 110 60
Temperaturerise(◦C) 9 5 9
Pressuredrop(MPa) 1.4 1.5 1.8
Min.velocity(m/s) 17 15 15
Min.CHFmargin 1.6 1.6 1.4
thegivenpressure.Forincreasingthemargintofilmboilingwater, massflowrateneedstobeincreased.
4.3. Water-coolingoftargetPFCs
Thethermohydraulicperformanceofthewater-cooled diver-tortargetPFCwasassessedbymeansof3DCFDsimulations.The targetPFCsareexposedtohighheatfluxloadsgeneratedby radia-tion(53MW),plasmabombardment(39MW)andnuclearheating (14MW).Thismeansthat54in-andoutboardtargetplateshave toexhaustthedeposited thermalpowerof106MWintotal.At theplasmastrikepointthemaximumpowerdensitywasassumed toreachabout20MW/m2 duringslowtransients(lossofplasma detachment)in2–3s.Duringaquasi-stationaryoperation(pulse duration:2h)theheatfluxdensityprofilewasassumedtorange
from1to10MW/m2[15].Thepowerexhaustcapabilityhastobe
assuredintermsofglobalenergybalanceaswellaslocalmarginto
criticalheatflux(CHF)atthetubewall.Tothisend,ahighlyefficient
coolingschemeandtechnologiesaredemanded.
InWPDIV,threedifferentoptionsofcoolingcircuithavebeen
devisedandestimated(Fig.7).Followingcoolantparameterswere
assumedforthePFCsasCFDboundaryconditions[2]:
–Peakheatfluxdensityatstrikepoint:20MW/m2
–Heatfluxpeakingfactoratthetubewall:2
–Coolanttemperature:150◦C(PFCinlet)
–Coolantpressure:5MPa(PFCinlet)
–MassflowrateperpipeinPFC:1.67kg/s
TheresultsofthecomparativeCFDanalysisaresummarizedin
Table5.AllthreeoptionsallowsufficientmargintotheCHFatthe
strikepointfortheappliedsurfaceheatflux.Itisnotedthatthe
recommendedmargintoCHFis1.4 atleast.Theriseofcoolant
temperaturelooksalsomoderateforallthreecases.
Ontheotherhand,pressuredropisquitesignificant,especially
foroption3.Anotherconcernisthehighcoolantspeedlocally
peak-ingupto20m/ssothatcorrosion-erosionofpipewallisfostered.
Theoutcomeof thisCFDanalysisimpliesthat thepeak coolant
tempera-Fig.7. Threedifferentcoolingschemeoptionsconsideredforthethermohydraulicdesignofthedivertortargetplate.
tureand/orincreasingthetuberadius.Afollow-upinvestigationis
ongoingtargetingthecoolantspeedofabout10m/s,pressuredrop
below1.4MPaandCHFmarginhigherthan1.4.Here,the
oper-ationtemperaturerangerecommendedfortheirradiatedCuCrZr
heatsinktube(structuralmaterial)bythestructuraldesigncode
ITERSDC-ICimposesconstraintontheapplicablecoolant
temper-ature[16,17].Forrelaxingsuchconstraint,advanceddesignrules
basedonnon-ductilefracturemechanicscanbeemployedsothat
theuseoflow-temperatureoperationofdivertorPFCsisjustified.
5. Electromagneticforceanalysis
Globalplasmainstabilitiessuchasplasmadisruptionsand
ver-ticaldisplacementevents(VDEs)induceorgeneratehugetransient
electriccurrentsintheconductivesteelcassettebody.Disruptions
induceeddycurrentswhereasVDEsgeneratehalocurrents.The
interactionofthecurrentswiththemagneticfieldinducesLorentz
force(F=J× B)asimpactload.Particularly,theforceinducedbya
VDEcanimposeacriticalimpactonthedivertorduetohighcurrent
density.InWPDIV,finiteelementmethod(FEM)-based3D
elec-tromagneticanalysiswascarriedouttoassesssuchimpactloads
assumingvariousparametriccombinations.Inthispaper,onlythe
resultforthemostcriticalcaseispresented(productofhalo
frac-tionand toroidal peaking factor:1, halocurrent partition ratio
betweenthemainbodyandotherparts:1).Thedurationtimeof
linearcurrentquenchwasassumedtobe50ms[18](ForDEMO,it
wasrevisedto70ms[19]).Itwasassumedthatplasmadisruption
began10saftertheinitiationoffastdischarge(characteristictime:
27s).Contactresistancewasneglected.Theradialdecayoftoroidal
magneticfieldrangedfrom8.3Tto5.6T(nominalBT:5.6T).
5.1. Halocurrent
Fig.8illustratestheelectricpotentialfieldgeneratedbyaVDE
incolor code(left) togetherwitharrowsindicating thecurrent
pathanddirection(right).Theelectricpotentialbuiltupalongthe
poloidaldirectionfromtheinboardtoptowardtheoutboardend
formingthehalocurrent path.Themaximumhalocurrent
den-sityreached2.2MA/m2.Concentrationofcurrentdensityoccurred
locallyattheshelledgesandcorners.
Fig.8.ElectricpotentialfieldgeneratedbyaVDE(left)andhalocurrentpath indi-catedwitharrows(right).
Fig.9.InducedLorentzforcesinthedivertorcassetteshellplate(left:vertical,right: radialcomponent).
5.2. Lorentzforcesandstresses
The induced Lorentz forces in the shellplate are plotted in
Fig.9(left:vertical,right:radialcomponent).Strongupward
verti-calforceappearedinthemiddlepartofthecassettebody(30MN)
anddownwardverticalforceintheinboardandoutboardwings
(10MN). Theupwardvertical forcecauses(elastic)deformation
ofthemiddlepartwherethedisplacementreachesupto1.4mm
upwards.
Fig.10showstheinducedstressfields(vonMisesstress)inthe
outershellplate(left)andintheinternalribs(right).Thestressstate
intheentirecassettestructureremainedintheelasticregimeeven
inthemostsevereloadingcaseconsideredinthisanalysis.This
resultindicatesthatthecassettebodyisrobustenoughto
with-standthetransientelectromagneticimpactloadscausedbyplasma
well.Examplesare:FEM-basedstructuralanalysisandcode-based
designstudy,optimizationofCADmodels,developmentofcassette
fixationscheme,experimentalverificationofCFD,andfunctional
analysis,etc.(willbereportedelsewhere.)
7. Conclusions
Theinitialdesignexplorationstudyinthepreconceptualdesign
phase to develop European DEMO divertor has been recently
concluded.Inthesubproject‘Cassettedesignandintegration’,
fol-lowingresultsarethemajorachievements:
1CAD:complete3Dconfigurationmodelwascreated.
2Neutronics:theradiologicalimpactwasanalyzedforthecase
domeisnotdeployed.ArmoringofcassettesurfacewiththePFCs
similartothetargetnecessitatedimprovedshielding.
3Thermohydraulics:forbothtargetPFCsandcassettebody,the
currentdesignofwater-coolingcircuitsseemedadequate.
4Electromagneticanalysis:thecurrentcassettemodelseemedto
berobustenoughtoaccommodateVDEimpactloads.
[7]TechnicalspecificationsEUROFERmaterialdatabase,F4E-2008-GRT-010 (PNS-MD).
[8]W.Timmis,MaterialAssessmentReportontheUseofCopperAlloysinDEMO EFDAReportWP12-MAT02-M03,2013.
[9]P.Fenici,etal.,J.Nucl.Mater.212–215(1994)399–403. [10]E.Gaganidze,J.Aktaa,Fus.Eng.Des.88(2013)118–128. [11]V.Barabash,etal.,J.Nucl.Mater.367–370(2007)21–32.
[12]G.Mazzone,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.013.
[13]P.A.DiMaio,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.012.
[14]P.A.DiMaio,etal.,FusionEng.Des.(2017),http://dx.doi.org/10.1016/j. fusengdes.2017.02.025.
[15]R.P.Wenninger,Nucl.Fusion54(2014)114003. [16]J.H.You,Nucl.Mater.Energy5(2015)7–18. [17]J.H.You,Nucl.Fusion55(2015)113026.
[18]T.C.Hender,etal.,Ch.3.MHDstability,operationallimitsanddisruptions, Nucl.Fusion47(2007)S128–202.