• Non ci sono risultati.

Fabio  Zwirner

N/A
N/A
Protected

Academic year: 2021

Condividi "Fabio  Zwirner"

Copied!
44
0
0

Testo completo

(1)

Fabio  Zwirner  

CERN  PH-­‐TH  

University  and  INFN  Padova   ERC  AdG  DaMeSyFla  

 

AMS  DAYS  AT  CERN,  15-­‐17  April  2015  

1  

(2)

2  

(3)

3  

(4)

4  

ν    oscillations  

gravity/astro/cosmo:  

dark  matter,  dark  energy,  inflation,  baryogenesis    

quantum  gravity  

(5)

5  

No  empirical  evidence  so  far,  strong  constraints   Tight  link  to  SM  physics  because  of  Naturalness  

Small  numbers  only  because  of  symmetries  

No  quantum  SM  symmetry  recovered  for  m

H

è 0   Unprotected  ratio  m

H

/M  for  any  scale  M>>m

H

 

M  <  O  (TeV)

SM  unnatural  unless  New  Physics  near  TeV  

(6)

6  

Convincing  evidence  for  Dark  Matter   (only  through  gravitational  interactions)    

Best  explanation  new  “neutral”  “objects”  

If  particles,  what  particle?  

Mass?  Non-­‐gravitational  interactions?    

No  compelling  option  

(7)

7  

Dark Matter

Nuclear Matter quarks, gluons

Leptons electrons, muons,

taus, neutrinos

Photons, W, Z, h bosons

Other dark particles

Astrophysical Probes

DM DM

DM DM

Particle Colliders

SM DM

SM DM

Indirect Detection

DM SM

DM SM

Direct Detection

DM DM

SM SM

Snowmass  2013     Cosmic  Frontier  WG4    

arXiv:1310.8621  

DM  mass?    

   

DM  non-­‐gravita0onal  interac0ons?    

Cirelli,  Neutel  2015  

(8)

8  

Dark  Ma5er  near  the  TeV  scale?    

   

Cirelli  

The  WIMP  miracle  

Weak-­‐scale  mass  (Gev  –  several  TeV)  

&  

“weak  interactions”    

ê  

<σ  v>  ~  3  x  10

-­‐26

 cm

3

 s

-­‐1

   

Right  order  of  magnitude  for  a    

thermal  relic  to  reproduce  Ω

DM

   

(9)

9  

•  WIMP  (EW  naturalness,  WIMP  miracle)  

•  Axion  (strong  CP  problem)  

•  Sterile  ν  (ν  mass,  desert  from  M top  to  M P )  

•  Gravitino  (supergravity)  

•  Asymmetric  (Ω DM   ~  5  Ω vis )  

•  Hidden-­‐sector  (model-­‐building,  …)  

•  …others…  (“anomalies”,  imagination,  …)  

(10)

0504028_10-A4-at-144-dpi.jpg (JPEG Image, 1615 × 1052 pixels) http://www.atlas.ch/photos/atlas_photos/selected-photos/lhc/0504028_10-A4-at-144-dpi.jpg

1 of 2 11/04/15 16:12

10  

(11)

11   4/7  of  design  energy    

<1/10  of  design  integrated  luminosity    

<1/100  of  achievable  integrated  luminosity  

(12)

12  

The  minimal,  weakly-­‐coupled   SM    

with  a  single  “elementary”  scalar  doublet   breaking  the  gauge  and  flavour  symmetries  

works  far  beyond  most  expectations        against  tests  at  growing  precision  and  energy     There  was  evidence  before  from    

LEP,  Tevatron,  B-­‐factories,  etc         After  LHC  Run  1:  

stronger  and  more  direct  evidence    

(13)

13  

•  Mass  where  favoured  by  EW  precision  tests  

•  Couplings  to  vectors  and  fermions  as  in  SM  

•  No  signs  of  exotic  states  in  γγ  or  gg  loops  

•  No  signs  of  mixing  with  other  states  

•  No  signs  of  invisible  decay  channels  

•  No  signs  of  additional  Higgs  bosons  

                     …all  with  still  large  errors,  but…      

(14)

14  

Fit  to  EWPT  in  2011        è

Combined  Higgs  mass  from     ATLAS  and  CMS  Run  1  data  

(at  2  per  mille  accuracy!)  

ê

 

(15)

15   Giardino,  

Kannike,   Masina,      

Raidal,     Strumia  

“The  universal   Higgs  fit”  

Based  on   ATLAS  &  CMS  

data  as  of   Summer  2014   Waiting  for  the  

official  LHC  

combination      

(16)

16  

An example: B s è µ + µ -  

BR LHCb+CMS =(2.8±0.7)x10 -­‐9       BR SM =(3.56±0.30)x10 -­‐9

Could have received sizeable contributions from New Physics

FCNC  &  CP-­‐violating  processes  involving  quarks   consistent  with  CKM  matrix  as  only  source  of  flavour  

violation  (generalized  GIM  cancellations  at  work)      

Stringent  bounds  also  on  FCNC  with  charged  leptons  

e.g.   2013  MEG  bound   BR(μ è eγ)  <  5.7  x  10

-­‐13  

(90%cl)

 

Negligible in SM, comparable in many New Physics models

(17)

17  

Model e, µ, τ, γ Jets Emiss

T

!L dt[fb−1] Mass limit Reference

InclusiveSearches3rdgen. ˜gmed.3rdgen.squarks directproductionEW directLong-lived particlesRPVOther

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 q, ˜g˜ 1.7 TeV m( ˜q)=m(˜g) 1405.7875

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 ˜g 1.2 TeV any m( ˜q) ATLAS-CONF-2013-062

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 ˜g 1.1 TeV any m( ˜q) 1308.1841

˜q ˜q, ˜q→q ˜χ01 0 2-6 jets Yes 20.3 q˜ 850 GeV m( ˜χ01)=0 GeV, m(1stgen. ˜q)=m(2ndgen. ˜q) 1405.7875

˜g˜g, ˜g→q¯q ˜χ01 0 2-6 jets Yes 20.3 ˜g 1.33 TeV m( ˜χ01)=0 GeV 1405.7875

˜g˜g, ˜g→qq ˜χ±1→qqW±χ˜01 1 e, µ 3-6 jets Yes 20.3 ˜g 1.18 TeV m( ˜χ01)<200 GeV, m( ˜χ±)=0.5(m( ˜χ01)+m(˜g)) ATLAS-CONF-2013-062

˜g˜g, ˜g→qq(ℓℓ/ℓν/νν) ˜χ01 2 e, µ 0-3 jets - 20.3 ˜g 1.12 TeV m( ˜χ01)=0 GeV ATLAS-CONF-2013-089

GMSB ( ˜ℓ NLSP) 2 e, µ 2-4 jets Yes 4.7 ˜g 1.24 TeV tanβ<15 1208.4688

GMSB ( ˜ℓ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 ˜g 1.6 TeV tanβ >20 1407.0603

GGM (bino NLSP) 2 γ - Yes 20.3 ˜g 1.28 TeV m( ˜χ01)>50 GeV ATLAS-CONF-2014-001

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 ˜g 619 GeV m( ˜χ01)>50 GeV ATLAS-CONF-2012-144

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 ˜g 900 GeV m( ˜χ01)>220 GeV 1211.1167

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 ˜g 690 GeV m(NLSP)>200 GeV ATLAS-CONF-2012-152

Gravitino LSP 0 mono-jet Yes 10.5 F1/2scale 645 GeV m( ˜G)>10−4eV ATLAS-CONF-2012-147

˜g→b¯b ˜χ01 0 3 b Yes 20.1 ˜g 1.25 TeV m( ˜χ01)<400 GeV 1407.0600

˜g→t¯t˜χ01 0 7-10 jets Yes 20.3 ˜g 1.1 TeV m( ˜χ01) <350 GeV 1308.1841

˜g→t¯t˜χ01 0-1 e, µ 3 b Yes 20.1 ˜g 1.34 TeV m( ˜χ01)<400 GeV 1407.0600

˜g→b¯t˜χ+1 0-1 e, µ 3 b Yes 20.1 ˜g 1.3 TeV m( ˜χ01)<300 GeV 1407.0600

˜b1˜b1, ˜b1→b ˜χ01 0 2 b Yes 20.1 ˜b1 100-620 GeV m( ˜χ01)<90 GeV 1308.2631

˜b1˜b1, ˜b1→t ˜χ±1 2 e, µ (SS) 0-3 b Yes 20.3 ˜b1 275-440 GeV m( ˜χ±1)=2 m( ˜χ01) 1404.2500

˜t1˜t1(light), ˜t1→b ˜χ±1 1-2 e, µ 1-2 b Yes 4.7 ˜t1 110-167 GeV m( ˜χ01)=55 GeV 1208.4305, 1209.2102

˜t1˜t1(light), ˜t1→Wb ˜χ01 2 e, µ 0-2 jets Yes 20.3 ˜t1 130-210 GeV m( ˜χ01) =m(˜t1)-m(W)-50 GeV, m(˜t1)<<m( ˜χ±1) 1403.4853

˜t1˜t1(medium), ˜t1→t ˜χ01 2 e, µ 2 jets Yes 20.3 ˜t1 215-530 GeV m( ˜χ01)=1 GeV 1403.4853

˜t1˜t1(medium), ˜t1→b ˜χ±1 0 2 b Yes 20.1 ˜t1 150-580 GeV m( ˜χ01)<200 GeV, m( ˜χ±1)-m( ˜χ01)=5 GeV 1308.2631

˜t1˜t1(heavy), ˜t1→t ˜χ01 1 e, µ 1 b Yes 20 ˜t1 210-640 GeV m( ˜χ01)=0 GeV 1407.0583

˜t1˜t1(heavy), ˜t1→t ˜χ01 0 2 b Yes 20.1 ˜t1 260-640 GeV m( ˜χ01)=0 GeV 1406.1122

˜t1˜t1, ˜t1→c ˜χ01 0 mono-jet/c-tag Yes 20.3 ˜t1 90-240 GeV m(˜t1)-m( ˜χ01)<85 GeV 1407.0608

˜t1˜t1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 ˜t1 150-580 GeV m( ˜χ01)>150 GeV 1403.5222

˜t2˜t2, ˜t2→˜t1+ Z 3 e, µ (Z) 1 b Yes 20.3 ˜t2 290-600 GeV m( ˜χ01)<200 GeV 1403.5222

˜ℓL,R˜ℓL,R, ˜ℓ→ℓ ˜χ01 2 e, µ 0 Yes 20.3 ˜ 90-325 GeV m( ˜χ01)=0 GeV 1403.5294

˜

χ+1χ˜1, ˜χ+1→ ˜ℓν(ℓ ˜ν) 2 e, µ 0 Yes 20.3 χ˜±1 140-465 GeV m( ˜χ01)=0 GeV, m( ˜ℓ, ˜ν)=0.5(m( ˜χ±1)+m( ˜χ01)) 1403.5294

˜

χ+1χ˜1, ˜χ+1→˜τν(τ˜ν) 2 τ - Yes 20.3 χ˜±1 100-350 GeV m( ˜χ01)=0 GeV, m(˜τ, ˜ν)=0.5(m( ˜χ±1)+m( ˜χ01)) 1407.0350

˜

χ±1χ˜02→ ˜ℓLν ˜ℓLℓ(˜νν), ℓ ˜ν ˜ℓLℓ(˜νν) 3 e, µ 0 Yes 20.3 χ˜±1, ˜χ0 700 GeV m( ˜χ±1)=m( ˜χ02), m( ˜χ01)=0, m( ˜ℓ, ˜ν)=0.5(m( ˜χ±1)+m( ˜χ01)) 1402.7029 2

˜

χ±1χ˜02→W ˜χ01Z ˜χ01 2-3 e, µ 0 Yes 20.3 χ˜±1, ˜χ0 420 GeV m( ˜χ±1)=m( ˜χ02), m( ˜χ01)=0, sleptons decoupled 1403.5294, 1402.7029 2

˜

χ±1χ˜02→W ˜χ01h ˜χ01 1 e, µ 2 b Yes 20.3 χ˜±1, ˜χ0 285 GeV m( ˜χ±1)=m( ˜χ02), m( ˜χ01)=0, sleptons decoupled ATLAS-CONF-2013-093

˜ 2

χ02χ˜03, ˜χ02,3→ ˜ℓR 4 e, µ 0 Yes 20.3 χ˜02,3 620 GeV m( ˜χ02)=m( ˜χ03), m( ˜χ01)=0, m( ˜ℓ, ˜ν)=0.5(m( ˜χ02)+m( ˜χ01)) 1405.5086 Direct ˜χ+1χ˜1prod., long-lived ˜χ±1 Disapp. trk 1 jet Yes 20.3 χ˜±1 270 GeV m( ˜χ±1)-m( ˜χ01)=160 MeV, τ( ˜χ±1)=0.2 ns ATLAS-CONF-2013-069

Stable, stopped ˜g R-hadron 0 1-5 jets Yes 27.9 ˜g 832 GeV m( ˜χ01)=100 GeV, 10 µs<τ(˜g)<1000 s 1310.6584

GMSB, stable ˜τ, ˜χ01→˜τ(˜e, ˜µ)+τ(e, µ) 1-2 µ - - 15.9 χ˜01 475 GeV 10<tanβ<50 ATLAS-CONF-2013-058

GMSB, ˜χ01→γ ˜G, long-lived ˜χ01 2 γ - Yes 4.7 χ˜01 230 GeV 0.4<τ( ˜χ01)<2 ns 1304.6310

˜q ˜q, ˜χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 q˜ 1.0 TeV 1.5 <cτ<156 mm, BR(µ)=1, m( ˜χ01)=108 GeV ATLAS-CONF-2013-092

LFV pp→˜ντ+ X, ˜ντ→e + µ 2 e, µ - - 4.6 ˜ντ 1.61 TeV λ311=0.10, λ132=0.05 1212.1272

LFV pp→˜ντ+ X, ˜ντ→e(µ) + τ 1 e, µ + τ - - 4.6 ˜ντ 1.1 TeV λ311=0.10, λ1(2)33=0.05 1212.1272

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 q, ˜g˜ 1.35 TeV m( ˜q)=m(˜g), cτLS P<1 mm 1404.2500

˜

χ+1χ˜1, ˜χ+1→W ˜χ01, ˜χ01→ee˜νµ,eµ˜νe 4 e, µ - Yes 20.3 χ˜±1 750 GeV m( ˜χ01)>0.2×m( ˜χ±1), λ121!0 1405.5086

˜

χ+1χ˜1, ˜χ+1→W ˜χ01, ˜χ01→ττ˜νe,eτ˜ντ 3 e, µ + τ - Yes 20.3 χ˜±1 450 GeV m( ˜χ01)>0.2×m( ˜χ±1), λ133!0 1405.5086

˜g→qqq 0 6-7 jets - 20.3 ˜g 916 GeV BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091

˜g→˜t1t, ˜t1→bs 2 e, µ (SS) 0-3 b Yes 20.3 ˜g 850 GeV 1404.250

Scalar gluon pair, sgluon→q¯q 0 4 jets - 4.6 sgluon 100-287 GeV incl. limit from 1110.2693 1210.4826

Scalar gluon pair, sgluon→t¯t 2 e, µ (SS) 2 b Yes 14.3 sgluon 350-800 GeV ATLAS-CONF-2013-051

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 M* scale 704 GeV m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147

Mass scale [TeV]

10−1 1

s= 7 TeV full data

s= 8 TeV partial data

s= 8 TeV full data

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

ATLAS Preliminary

s= 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Model ℓ, γ Jets EmissT !L dt[fb−1] Mass limit Reference

ExtradimensionsGaugebosonsCIDMLQHeavy quarksExcited fermionsOther

ADDGKK+ g /q 1-2 j Yes 4.7 MD 4.37 TeV n = 2 1210.4491

ADD non-resonantℓℓ 2e, µ 20.3 MS 5.2 TeV n = 3 HLZ ATLAS-CONF-2014-030

ADD QBH→ ℓq 1e, µ 1 j 20.3 Mth 5.2 TeV n = 6 1311.2006

ADD QBH 2 j 20.3 Mth 5.82 TeV n = 6 to be submitted to PRD

ADD BH highNtrk 2µ(SS) 20.3 Mth 5.7 TeV n = 6, MD= 1.5 TeV, non-rot BH 1308.4075

ADD BH high!pT ≥ 1 e, µ ≥ 2j 20.3 Mth 6.2 TeV n = 6, MD= 1.5 TeV, non-rot BH 1405.4254

RS1GKK→ ℓℓ 2e, µ 20.3 GKKmass 2.68 TeV k/MPl= 0.1 1405.4123

RS1GKK→ WW → ℓνℓν 2e, µ Yes 4.7 GKKmass 1.23 TeV k/MPl= 0.1 1208.2880

Bulk RSGKK→ ZZ → ℓℓqq 2e, µ 2 j / 1 J 20.3 GKKmass 730 GeV k/MPl= 1.0 ATLAS-CONF-2014-039

Bulk RSGKK→ HH → b¯bb¯b 4 b 19.5 GKKmass 590-710 GeV k/MPl= 1.0 ATLAS-CONF-2014-005

Bulk RSgKK→ tt 1e, µ ≥ 1b,≥ 1J/2j Yes 14.3 gKKmass 2.0 TeV BR = 0.925 ATLAS-CONF-2013-052

S1/Z2ED 2e, µ 5.0 MKK≈ R−1 4.71 TeV 1209.2535

UED 2γ Yes 4.8 Compact. scaleR−1 1.41 TeV ATLAS-CONF-2012-072

SSMZ→ ℓℓ 2e, µ 20.3 Zmass 2.9 TeV 1405.4123

SSMZ→ ττ 2τ 19.5 Zmass 1.9 TeV ATLAS-CONF-2013-066

SSMW→ ℓν 1e, µ Yes 20.3 Wmass 3.28 TeV ATLAS-CONF-2014-017

EGMW→ WZ → ℓν ℓ 3e, µ Yes 20.3 Wmass 1.52 TeV 1406.4456

EGMW→ WZ → qqℓℓ 2e, µ 2 j / 1 J 20.3 Wmass 1.59 TeV ATLAS-CONF-2014-039

LRSMWR→ tb 1e, µ 2 b, 0-1 j Yes 14.3 Wmass 1.84 TeV ATLAS-CONF-2013-050

LRSMWR→ tb 0e, µ ≥ 1b, 1 J 20.3 Wmass 1.77 TeV to be submitted to EPJC

CIqqqq 2 j 4.8 Λ 7.6 TeV η = +1 1210.1718

CIqqℓℓ 2e, µ 20.3 Λ 21.6 TeV ηLL=−1 ATLAS-CONF-2014-030

CIuutt 2e, µ(SS)≥ 1b,≥ 1j Yes 14.3 Λ 3.3 TeV |C| = 1 ATLAS-CONF-2013-051

EFT D5 operator (Dirac) 0e, µ 1-2 j Yes 10.5 M 731 GeV at 90% CL form(χ) < 80 GeV ATLAS-CONF-2012-147

EFT D9 operator (Dirac) 0e, µ 1 J,≤ 1j Yes 20.3 M 2.4 TeV at 90% CL form(χ) < 100 GeV 1309.4017

Scalar LQ 1stgen 2e ≥ 2j 1.0 LQ mass 660 GeV β = 1 1112.4828

Scalar LQ 2ndgen 2µ ≥ 2j 1.0 LQ mass 685 GeV β = 1 1203.3172

Scalar LQ 3rdgen 1e, µ, 1τ 1 b, 1 j 4.7 LQ mass 534 GeV β = 1 1303.0526

Vector-like quarkTT→ Ht + X 1e, µ ≥ 2b,≥ 4j Yes 14.3 T mass 790 GeV T in (T,B) doublet ATLAS-CONF-2013-018

Vector-like quarkTT→ Wb + X 1e, µ ≥ 1b,≥ 3j Yes 14.3 T mass 670 GeV isospin singlet ATLAS-CONF-2013-060

Vector-like quarkTT→ Zt + X 2/3e, µ 2/1 b 20.3 T mass 735 GeV T in (T,B) doublet ATLAS-CONF-2014-036

Vector-like quarkBB→ Zb + X 2/3e, µ 2/1 b 20.3 B mass 755 GeV B in (B,Y) doublet ATLAS-CONF-2014-036

Vector-like quarkBB→ Wt + X 2e, µ(SS)≥ 1b,≥ 1j Yes 14.3 B mass 720 GeV B in (T,B) doublet ATLAS-CONF-2013-051

Excited quarkq→ qγ 1γ 1 j 20.3 qmass 3.5 TeV onlyuandd,Λ = m(q) 1309.3230

Excited quarkq→ qg 2 j 20.3 qmass 4.09 TeV onlyuandd,Λ = m(q) to be submitted to PRD

Excited quarkb→ Wt 1 or 2e, µ1 b, 2 j or 1 j Yes 4.7 bmass 870 GeV left-handed coupling 1301.1583

Excited lepton→ ℓγ 2e, µ, 1γ 13.0 mass 2.2 TeV Λ = 2.2 TeV 1308.1364

LSTCaT→ W γ 1e, µ, 1γ Yes 20.3 aTmass 960 GeV to be submitted to PLB

LRSM Majoranaν 2e, µ 2 j 2.1 N0mass 1.5 TeV m(WR) = 2 TeV, no mixing 1203.5420

Type III Seesaw 2e, µ 5.8 N±mass 245 GeV |Ve|=0.055, |Vµ|=0.063, |Vτ|=0 ATLAS-CONF-2013-019

Higgs tripletH±±→ ℓℓ 2e, µ(SS) 4.7 H±±mass 409 GeV DY production, BR(H±±→ ℓℓ)=1 1210.5070

Multi-charged particles 4.4 multi-charged particle mass 490 GeV DY production,|q| = 4e 1301.5272

Magnetic monopoles 2.0 monopole mass 862 GeV DY production,|g| = 1gD 1207.6411

Mass scale [TeV]

10−1 1 10

s= 7 TeV s= 8 TeV

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 2014

ATLAS Preliminary

"

L dt = (1.0 - 20.3) fb−1 s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

Mass scales [GeV]

0 200 400 600 800 1000 1200 1400 1600 1800

233 ' λ µ tbt

R

t~ 233

λ t ν τ µ

R

t~ 123

λ t ν τ µ

R

t~ 122

t λ eν µ R

~t 112

λ'' qqqq

R

~q 233

' λ µ qbt

q~ 231

' λ µ qbt

q~ 233

λ ν qll

~q 123

λ qllν q

~ 122

λ qllν q

~ 112

'' λ qqqq

g~ 323

'' λ tbs

~g 112

'' λ qqq

~g 113/223 λ'' qqb g

~ 233

' λ µ qbt

g~ 231

' λ µ qbt

g~ 233

λ ν qll

~gg qllν λ123

~ 122

λ qllν g

~ 0

χ l

~l 0

χ 0 χ ν τ τ τ

±

χ 2 0 χ

0

χ 0 χ ν τ ll

± χ 2 0

χ 0

χ 0 χ H W

2 0 χ χ±

χ0

χ0 H Z

2 χ0

2 χ0

χ0

χ0 W Z

2 χ0

χ±

0

χ 0 χ Z Z

2 0 χ 2 0

χ 0

χ 0 χ ν -ν l + l

- χ +

χ 0

χ 0 χ ν lll

± χ 2 0

χ 0

χ

bZ b~

0

χ tW

b~

0

χ b

b~

) H 1 χ0 t

1

~t (

2

~t ) Z 1 0 χ

t 1

~t

( 2

~t H G)

0 χ ( 0

χ t b

t~

) 0

χ W

+ χ b(

~t 0

χ t

~t 0

χ q

~q )) 0

χ W

±

χ t(

~b b(

g~

) 0

χ W

± χ qq(

~g ) 0

χ

t

~t

t(

g~ 0

χ tt

~g 0

χ bb

g~

0

χ qq

g~

SUS-13-006 L=19.5 /fb SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-011 L=19.5 /fb x = 0.25 x = 0.50x = 0.75

SUS-14-002 L=19.5 /fb

SUS-13-006 L=19.5 /fb x = 0.05x = 0.95x = 0.50 SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-007 SUS-13-013 L=19.4 19.5 /fb

SUS-12-027 L=9.2 /fb SUS 13-019 L=19.5 /fb

SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fb SUS-13-003 L=19.5 9.2 /fb SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb EXO-12-049 L=19.5 /fb SUS-14-011 L=19.5 /fb

SUS-12-027 L=9.2 /fb SUS-13-008 L=19.5 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-003 L=19.5 /fb SUS-12-027 L=9.2 /fb SUS-13-019 L=19.5 /fb

SUS-13-018 L=19.4 /fb SUS-13-014 L=19.5 /fb

SUS-14-011 SUS-13-019 L=19.3 19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-013 L=19.5 /fb x = 0.50x = 0.20

SUS-12-027 L=9.2 /fb

SUS-13-003 L=19.5 9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-12-027 L=9.2 /fb SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fb SUS-13-013 L=19.5 /fb

SUS-13-006 L=19.5 /fb x = 0.95 x = 0.05x = 0.50

SUS-13-006 L=19.5 /fb

RPVgluino productionsquarkstopsbottomEWK gauginosslepton

Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

mlsp

+(1-x)

mother

m

intermediate = x m

For decays with intermediate mass,

Only a selection of available mass limits

*Observed limits, theory uncertainties not included Probe *up to* the quoted mass limit

Riferimenti

Documenti correlati

Infatti, nel questionario nazionale, la popolazione anziana era chiaramente più favorevole alla vaccinazione, sentendosi probabilmente più a rischio per le gravi

Pertanto, internati/utenti, con scarso funzionamento sociale, come da valutazione mediante lo strumento ICF (Classificazione Internazionale del Funzionamento, delle

Quando due dispositivi Bluetooth stabiliscono una connessione, creano un tipo di rete personale definita PICONET. Ogni piconet può contenere fino ad

All’atto della presentazione le liste dei candidati devono indicare un referente di lista e devono essere sottoscritte da un numero di firme almeno pari al numero dei

All’atto della presentazione le liste dei candidati devono indicare un referente di lista e devono essere sottoscritte da un numero di firme almeno pari al numero dei

Giuliano Manara per avermi dato la possibilità di svolgere questo lavoro di tesi e per la disponibilità e l’umanità sempre dimostrate.. Desidero inoltre ringraziare tutti i

da Novembre 2015 Referente delle due MEDA Elastiche MEDA A di Bagnoli e MEDA B di Napoli, della Stazione Zoologica Anton Dohrn, relativamente allo sviluppo

The status of the northeastern Atlantic and Mediterranean small mussel drills of the Ocinebrina aciculata complex (Mollusca: Gastropoda: Muricidae), with the description of