• Non ci sono risultati.

• Luthria D.L., Mukhopadhyay S., Krizek D.T. Content of total phenolic acids in tomato fruits as influenced by cultivar and solar UV radiation Journal of Food Composition and Analysis 2006

N/A
N/A
Protected

Academic year: 2021

Condividi "• Luthria D.L., Mukhopadhyay S., Krizek D.T. Content of total phenolic acids in tomato fruits as influenced by cultivar and solar UV radiation Journal of Food Composition and Analysis 2006"

Copied!
6
0
0

Testo completo

(1)

11.BIBLIOGRAFIA

• Luthria D.L., Mukhopadhyay S., Krizek D.T. Content of total phenolic acids in tomato fruits as influenced by cultivar and solar UV radiation Journal of Food Composition and Analysis 2006

• Giuntini G. , Graziani G., Lercari B., Fogliano V., Soldatini G.F., and Ranieri A.. Changes of Carotenoid and Ascorbic Acid Contents in Fruits of Different Tomato Genotypes Related to the Depletion of UV-B Radiation J.Agric. Food Chem.,2005

• Calabrese G. e C. Cibo etico, cibo dietetico 2007

• Verhoeyen M.E., Bovy A., Collins G, Muir S., Robinson S., C.H.R. de Vos and S. Colliver.

Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway Journal of Experiment Botany 2002.

• La Malfa G.. Il pomodoro da mensa in Italia 2001

• Stevens M.A., Kader A.A., Albright-Holton M. Intercultivar variation in composition of locular and pericarp portions of fresh market tomatoes. J. Am. Soc. Hort. Sci., 1977.

• Mohr W.P. and Stein M. Fine structure of fruit development in tomato. Can. J. Plant Sci 1969

• Monselise S.P., Varga A., Bruinsma J. Growth analysis of the tomato fruit Lycopersicum esculentum1978.

• Crozier A., Lean M.E.J., McDonald M.S., Black C Quantitative analysis of the flavonoid

content of commercial tomatoes, onions, lettuce, and celery. J. Agric. Food Chem 1997

(2)

• Torres C. A., Andrews P.K.. Developmental changes in antioxidant metabolites, enzymes, and pigments in fruit exocarp of four tomato (Lycopersicon esculentum Mill. ) genotypes: β- carotene, high pigment-1, ripening inhibitor, and ‘Rutgers’. Plant physiology and biochemistry 2006

• Ho L.C., Hewitt J.D. Fruit development. In: The Tomato Crop, a Scientific Basic for Improveme nt (J.G. Atherton, J. Rudich, Eds) Chapman and Hall, London. 1988

• Crookes P.R., Grierson D. Ultra strucutre of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol., 1983

• Crozier A., Burns J., Aziz A.A., Stewart A.J., Rabiasz H.S., Jenkins G.I., Edwards C.A., Lean Mej Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability 2000

• Duthie G., Crozier A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol 2000

• Tonucci L. H., Holden J. M., Be ec her G. R., Khac hik F., Davis, C. S., Mulokozi G.

Carotenoid content of thermally proce ssed toma to-based food products. J. Agric. Food Chem 1995

• Grierson D., Kader A.A. Fruit Ripening and Quality. In. The tomato Crop, a Scientific Basis for Improvement (J.G. Atherton, J. Rudich, Eds). Chapman and Hall, London. 1986

• Archbold D.D., Dennis F.G. Jr., Flore J.A. Accumulation of C-labelled material from foliar- applie d C-sucrose by tomato ovaries during fruit se t and initial development. J. Am. Soc.

hort. Sci., 1982

• Pietta P.G. Flavonoidi as antioxidants. J. Nat. Prod 2000

• Lenucci M.S., Cadinu D., Taurino M., Piro G., and Dalessandro G.. Antioxidant Composition

in Cherry and High-Pigment Tomato Cultivars, 2006

(3)

• Ioannidi E., Kalamaki M.S., Engineer C., Pateraki I., Alexandrou D., Mellidou I., Giovannonni J. and. Kanellis A.K.. Espression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to strees conditions 2009

• Lemaire-Chamley M., Petit J., Garcia V., Just D., Baldet P., Germain V., Fagard M., Mouassite M., Cheniclet M. and Rothan C.. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant physiology 2005

• Hertog M.G.L., Feskens.E.J., ukromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet 1980

• Tesi Elisa Becatti. Contenuto e profilo dei carotenoidi e dei flavonoidi in frutti di mutanti etilenici di pomodoro maturati in assenza di UV-B. 2007

• Alexander L. and Grierson D.. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of experimental botany Fruit development and ripening special isuue 2002

• Mamiko Kitagawa, Nobutaka Nakamura, Hiroyuki Usuda, Takeo Shina, Hirotaka Ito, Junichi Yasuda, Takahiro Inakuma, Yukio Ishiguro, Takafumi Kasumi, and Yasuhiro Ito.

Ethylene biosynthesis regulation in tomato fruit from the F

1

hybrid of the ripening inhibitor ( rin ) mutant. Biosci Biotechnol. Biochem. 2006

• .Barry Cornelius S and. Giovannoni James J Ethylene and Fruit Ripening Journal of Plant Growth Regulation 2007

• Tsoy Konstantin i, Bin Park Hyung, Min Kim Young, Jong Il Chung, Sung Chul Shin, Hae Jung Shim, Won Suk Lee, Han Geuk Seo, Jae Heun Lee, Ki churl Chang, and Hye Jung Kim.

Protective Effect of Anthocyanins from Black. Soybean Seed Coats on UVB-induced

Apoptotic cell Death in Vitro and Vivo 2008

(4)

• Svobodova Alena, Zdarilova Adè la, Jitka Vosta lov. Lonicera caerulea and Vaccinium myrtillus fruit polyphenols protect HaCat keratinocytes against UVB-induced phototoxic stress and DNA damage. Journal of Dermatological Science 2009

• Caldwell M.M., Ballare C.L., Bornman J.F., Flint S.D., Bjorn L.O. Teramura A.H., Kulandaive lu G., Tevini M. Terrestrial ecosystems, increate solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2003

• Blumthaler M., Ambach W. Indication of increasing solar utraviolet-B radiation flux in alpine regions Science 1990

• Davies J.N. e Hobson G.E. The costituents of tomato fruit- the influence of environment, nutrition and genotype. CRC Crit. Rev. Food Sci. Nutr. 1981

• Nebenfùhr Andreas, White TJ and Terri L. Lomax. The diagetropica mutations alters auxin induction of a subset of the Aux/IAA gene family in tomato. Plant Molecular Biology 2000

• Stepanova Anna N and R Ecker Joseph. Ethylene signalling: from mutants to molecules.

Current opinion in Plant Biology 2000

• Becatti Elisa, Petroni Katia , Giuntini Deborah, Castagna Antonella, Calvenzani Valentina, Serra Giovanni, Mensuali- Sodi Anna, Tonelli Chiara, Ranieri Annamaria .Solar UV-B Radiation Influences Carotenoid Accumulation of Tomato Fruit through Both Ethylene- Dependent and -Independent Mechanisms J. Agric. Food Chem 2009

• Klee Harry and Tieman Denise. The tomato ethylene receptor gene family: form and function. Phisiologia plantarum 2002

• Klee Harry J. Control of ethylene-mediated processes in tomato at the level of receptors.

Journal of experimental botany, Fruit development and ripening special isuue 2002

• Klee Harry J. Ethylene signal transduction. Moving beyond Arabidopsis. Plant physiology

2004

(5)

• Zobel R. W. Some physiological characteristics of the ethylene-requiring tomato mutant Diagetropica. Plant Physiology 1973

• Barry Cornelius S., McQuinn Ryan P., Thompson Andrew J., Seymour Graham B., Grierson Donald, and Giovannoni James J.. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant physiology 2005

• Barry C.S. Fox E.A., Hsiao-ching Yen, Sanghyeob Lee, Tie-jin Ying, Donald Grierson, and James J. Giovannoni. Analysis of the ethylene response in the epinastic mutant of tomato.

Plant Physiology 2001

• Hackett Rachel M., Wen H Chin-o, Lin Zhefeng, Humphrey C.C. Foote, Rupert G. Fray, and Don Grierson. Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiology 2000

• Wang Kevin L.-C., Hai Li, and Ecker Joseph R.. Ethylene biosynthesis and signalling networks. The plant cell 2002

• Alexander Lucille and Grierson Don. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of experimental botany, Fruit development and ripening special isuue 2002

• Mustilli A.C., Fenzi F., Ciliento R., Alfano F., Bowler C. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED 1.

Plant Cell 1999

• Boccalardo H.E., Mazza C.A., Mazzella M.A., Casal J.J., Ballare C.L. Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis Plant Physiol 2001

• Boylon M.T., Quail P.H. Oat phytochrome is biologically active in transgenic tomatoes

(6)

• Kerckhoffs L.H.J., Schreuder M.E.L., Van Tuinen A., Koorneeef M., Keandrick R.E.

Phytocrome control of anthocyanin biosynthesis in tomato seedling: Analysis using photomorphogenic mutants. Photochem. Photobiol. 1997

• Peters J.L., Schreuder M.E.L., Veduin S.J.W., Kendrick R.E. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol. 1992

• Giliberto L., Perrotta G., Pallara P., Weller J.L.,. Fraser P.D., Bramley P.M., Fiore A., Tavazza M., and Giuliano G. Manipulation of the Blue Light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content.

Plant physiology 2005

• Rob Alba, Mrie-Michele Crdonnier-Pratt, and Lee H. Pratt. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant physiology 2000

• Ferenc Nagry, Stefan Kircher and Eberhard Schafer. Intracellular trafficking of photoreceptors during light-induced signal transduction in plants. Journal of cell science 2001

• Terry M.J., Wahleithner J.A. and Lagarias J.C. The biosynthesis of the plant photoreceptor

phytochrome Biophysics Arch Biochem. Biophys 1993

Riferimenti

Documenti correlati

della domanda e dei documenti di cui la stessa deve essere corredata. Le domande, indirizzate al Consiglio superiore della magistratura, devono essere presentate al

Dei loro lavori contestò in più occasioni l’attendibilità scientifica e il me‑ todo di raccolta dei casi (opinione dei greci era che la malaria potesse provo‑ care direttamente

Systematic errors on the estimates of the growth rate f σ 8 when using the full parent mock flux-limited samples of blue and red galaxies in the redshift range 0.6 ≤ z ≤ 1.0..

Posto tra l’edificio del Risorgi- mento e la Porta Moresca, uno dei quattro ingressi della mostra, ospitava pubblicazioni, materiali e oggetti relativi alla salute e

orientano, ormai, per una datazione dei materiali siciliani a partire dalla fine del V/inizi del IV sec. cioè in momenti cronologici differenti rispetto a quelli cam-

“[…] Sin d’ora possiamo però sottolineare alcune criticità, quali: i finanziamenti inadeguati al Servizio Sanitario Nazionale, come già evidenziato dal CNB nel “Parere

58 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; (b) Institute

The MeerTime project is a five-year program on the MeerKAT array by an international consortium that will regularly time over 1000 radio pulsars to perform tests of