• Non ci sono risultati.

Multiphase flow, 4, 323-337

N/A
N/A
Protected

Academic year: 2021

Condividi "Multiphase flow, 4, 323-337"

Copied!
8
0
0

Testo completo

(1)

Anderson jr, J. D. (1995). Computational fluid dynamics. New York: McGraw-Hill.

Ardron, K. H. (1978). A two-fluid model for critical vapour-liquid flow. Int. J.

Multiphase flow, 4, 323-337.

Barmin, A. A., & Melnik, O. (1993). Feature of eruption dynamics of high viscosity gs-satured magmas. Izv Ros Akad Nauk Mekh Zhidk Gaza, 2(49).

Bouré, J. A., Fritte, A. A., Giot, M. M., & Réocreux, M. L. (1976). Highlights of two-phase critical flow: on the links between maximum flow rates,sonic velocities, propagation and transfer phenomena in single and two-phase flows. Int. J. Multiphase Flow, 3, 1-22.

Bower, S. M., & Woods, A. W. (1997). Control of magma volatile content and chambre depth on mass erupted during explosive volcanic eruptions. J.

Geophys. Res., 102(B5), 10,273-10,290.

Buresti, G., & Casarosa, C. (1989). One-dimensional adiabatic flow of equilibrium gas-particle mixtures in long vertical ducts with friction. J. Fluid Mech., 203, 251-227.

Burnham, C. W., & Davis, N. F. (1974). The role of H2O in silicate melts. ii, thermodynamic and phase relations in the system NaAlSi3O8− H2O to 10 kilobars, 700c-1100c. Amer. J. Sci., 274, 902-940.

Caputo, M. (1979). Two-thousand years of geodetic and geophysical observations in the Phlegrean Fields near Naples. J. R. Astron. Soc., 56, 316-328.

Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., & Ventura, G. (2001). CO2 degassing and energy release at solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res., 106, 16213-16221.

Civetta, L., Orsi, G., Pappalardo, L., Fisher, R. V., Heiken, G., & Ort, M. (1997).

Geochemical zoning, mingling, eruptive dynamics and depositional proces- ses - the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol.

(2)

Geotherm. Res., 75, 183-219.

Costa, A., & Macedonio, G. (2003). Viscous heating in fluids with temperature- dependent viscosity: implications for magma flows. Nonlinear processes in geophysics, 10(6), 545-555.

Costa, A., & Macedonio, G. (2004). Viscous heating in fluids with temperature- dependent viscosity: triggering of secondary flows. (under consideration for publication in J. Fluid Mech.)

Dagan, R., Elias, E., Wacholder, E., & Olek, S. (1993). A two-fluid model for critical flashing flows in pipes. Int. J. Multiphase flow, 19(1), 15-25.

de’ Gennaro, M., Incoronato, A., Mastrolorenzo, G., Adabbo, M., & Spina, G.

(1999). Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (southern Italy). J.

Volcanol. Geotherm. Res., 91, 303-320.

de Lorenzo, S., Gasparini, P., Mongelli, F., & Zollo, A. (2001). Thermal state of Campi Flegrei caldera inferred from seismic attenuation tomography. J.

Geodynamics, 32, 467-486.

de Lorenzo, S., & Mongelli, A. Z. F. (2001). Source parameters and threee- dimensional attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the thermal state of the Campi Flegrei caldera (Southern Italy). J. Geophys. Res., 206, 16265-16286.

De Natale, G., Pingue, F., Allard, P., & Zollo, A. (1991). Geophysical and geoche- mical modelling of the Campi Flegrei caldera. J. Volcanol Geotherm. Res., 48, 199-222.

de Vita, S., Orsi, G., Civetta, L., Carandente, A., D’Antonio, M., Di Cesare, T., et al.

(1999). The Agnano-Monte Spina eruption(4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res., 91, 269-301.

De Vito, B., Rolandi, G., Gans, P. B., Calcert, A., Bohrson, W. A., Spera, F. J., et al.

(2001). New costraints on the pyroclastic eruption history of the Campania volcanic plain (Italy). Mineral. Petrol., 73, 47-65.

Deino, A. L., Orsi, G., de Vita, S., & Piochi, M. (2004). The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the campi flegrei caldera (italy). J. Volcanol. Geotherm. Res, 133, 157-170.

Dellino, P., Isaia, R., La Volpe, L., & Orsi, G. (2001). Statistical analysis of textu-

(3)

ral data from complex pyroclastic sequence: implication for fragmentation processes of the Agnano-Mont Spina eruption (4.1 ka), Phlegraean Fields, southern Italy. Bull. of Volcanol., 63(7), 443-461.

Dellino, P., Isaia, R., La Volpe, L., & Orsi, G. (2004). Interaction between particles trasported by fallout and surge in the deposits of Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J. Volcanol. Geotherm. Res., 133, 193-210.

Di Girolamo, P., Ghiara, M. R., Lirer, L., Munno, R., Rolandi, G., & Stanzione, D.

(1984). Vulcanologia e petrologia dei Campi Flegrei. Boll. Soc. Geol. It., 103, 349-413.

Di Vito, M., Isaia, R., Orsi, G., Southon, J., de Vita, S., D’Antonio, M., et al. (1999).

Volcanic and deformation history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res., 91, 221-246.

Dingwell, D. B., & Webb, S. L. (1989). Structural relaxation in silicate melts and non-newtonian melt rheology in geological processes. Phys. Chem. Miner., 16, 508-516.

Dobran, F. (1987). Nonequilibrium modeling of two-phase critical flows in tubes.

J. Heat Transfer, 109, 731-738.

Dobran, F. (1992). Nonequilibrium flow in volcanic conduits and application to the eruptions of mt. st. helens on may 18, 1980, and vesivius in ad 79. J.

volcanol. geotherm. res., 49, 285-311.

Dobran, F., Barberi, F., & Casarosa, C. (1990). Modeling of volcanological processes and simulation of volcanic eruption. In Magma transport processes in volcanic conduits (chap. 2.3). CNR Gruppo nazionale per la vulcanologia.

Dobran, F., & Papale, P. (1993). Magma-water interaction in closed systems and application to lava tunnels and volcanic conduits. J. Geophys. Res., 98, 14,41-14,58.

Eichelberger, J. C. (1995). Silicic volcanism : Ascent of viscous magmas from crustal reservoirs. Annu Rev. Earth Planet., 23, 41-63.

Elias, E., & Chambré, P. L. (1984). A mechanistic non-equilibrium model for two-phase critical flow. Int. J. Multiphase flow, 10(1), 21-40.

Fontanella, F., & Pasquali, A. (1982). Calcolo numerico - metodi e algoritmi.

In Interpolazione ed approssimazione di funzioni (Vol. 2, chap. 6). Bologna:

Pitagora editrice.

(4)

Giberti, G., & Wilson, L. (1990). The influence of geometry on the ascent of magma in open fissures. Bull.Volcanol, 52, 515-521.

Giordano, D., & Dingwell, D. B. (2003). Viscosity of hydrous etna basalt;

implications for plinian-style basaltic eruptions. Bull. VOlcanol., 65(1), 8-14.

Giordano, D., Dingwell, D. B., & Romano, C. (2000). The geology and geophysics of tenerife. J. volcanol. geotherm. res., 103(1-4), 239-245.

Hess, K. U., & Dingwell, D. B. (1996). Viscosities of hydrous leucogranitic melts:

a non-arrhenian model. Am. Mineral., 81, 1297-1300.

Hindmarsh, A. C. (1980). Lsode and lsodi, two new initial value ordinary differential equation solvers. Acm-signum newsletter, 15(4), 10-11.

Isaia, R., D’Antonio, M., Dell’Erba, F., Di Vito, M., & Orsi, G. (2004). The Astroni volcano: the only example of close eruptions within the same vent area in the recent history of the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm.

Res, 133, 171-192.

Ishii, M. (1975). Thermo-fluid dynamics theory of the two-phase flow. Paris: Eyrolle.

Ishii, M. (1977). One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes (Tech. Rep.). Argonne, Illinois: Argonne Natl. Lab. (ANL-77-47)

Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet and particulate flows. AIChE journal, 25, 843-855.

Jaupart, C. (1996). Physical models of volcanics eruptions. Chem. Geol., 128, 217-227.

Jaupart, C., & Allègre, C. J. (1991). Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. EPSL, 102, 413-429.

John, J. E. A., & Haberman, W. L. (1980). Introduction to fluid mechanics. New Jersey: Prentice-Hall.

Kunii, D., & Levenspiel, O. (1991). Fluidization engineering. Woburn, Mass.:

Butterworth-Heinemann.

Lange, R. A. (1994). The effect of H2O, CO2 e F on the density and viscosity of silicate melts. Rev. Mineral., 30, 331-369.

Lellouche, G. S. (2001). An exact exit condition for multiphase critical flow. Nuclear Engineering and Design, 205, 251-263.

Luciani, G. (n.d.). Simulazione numerica della risalita del magma durante le fasi plinianne dell’eruzione di Agnano Monte Spina, Campi Flegrei. (Tesi di laurea,

(5)

Università degli studi di Pisa, a.a. 2002-2003)

Marsh, B. D. (1981). On the cristallinity, probability of occurence and rheology of lava and magma. Contrib. Mineral. Petrol., 78, 85-98.

Massol, H., Jaupart, C., & Pepper, D. W. (2001). Ascent and decompression of viscous vesicular magma in a volcanic conduit. J. Geophys. Res., 106(B8), 16,223-16,240.

MAstin, L. G., & Ghiorso, M. S. (2000). A numerical program for steady-state flow of magma-gas mixture through vertical eruptive conduits (Tech. Rep.). Vancouver, Washington: U.S. Geological Survey.

McGetchin, T. R., & Ulrich, G. W. (1973). Xenoliths in maars and diatremes with inferences for the Moon, Mars and Venus. J. Geophys. Res., 78, 1833-1853.

Melnik, O. (2000). Dynamics of two-phase conduit flow of high-viscosity gas- satured magma: large variations of sustained explosive eruption intensity.

Bull. Volcanol., 62, 153-170.

Neri, A. (2001). Numerical simulation of gas/pyroclastic dispersion processes and pyroclastic flow dynamics. In Simulation of eruptive scenarios at Phlegrean Fields based on field, laboratory, and numerical studies, and applications for volcanic hazard. First Year Report. GNV project 2000-2002/17.

Neri, A., & Dobran, F. (1994). Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J. Geophys. Res., 101, 8153-8174.

Neri, A., Papale, P., & Macedonio, G. (1998). The role of magma composition and water content in explosive eruptions, 2. pyroclastic dispersion dynamics. J.

Volcanol. Geotherm. Res, 87, 95-115.

Orsi, G., Civetta, L., D’Antonio, M., Di Girolamo, P., & Piochi, M. (1995). Step- filling and development of a three-layers magma chamber: the Neapolitan Yellow Tuff case history. J. volcanol. geotherm. res., 67, 291-312.

Orsi, G., D’Antonio, M., de Vita, S., & Gallo, G. (1992). The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatomagmatic eruption: eruptive dynamics, magma withdrawal and caldera collapse. J. volcanol. geotherm. res., 53, 275- 287.

Orsi, G., de Vita, S., & Di Vito, M. (1996). The restless, resurgent Campi Flegrei ne- sted caldera (Italy): costraints on ita evolution and configuration. J. volcanol.

geotherm. res., 74, 179-214.

Orsi, G., Di Vito, M. A., & Isaia, R. (2004). Volcanic hazard assessment at the

(6)

campi flegrei caldera. Bull. of Volcanol., ????

Orsi, G., Petrazzuoli, S., & Wohletz, K. (1999). the interplay of mechanical and thermo-fluid dynamical systems during an unrest episode in calderas: the Campi Flegrei caldera (Italy) case. J. volcanol. geotherm. res., 91, 453-470.

Ort, M. H., Rosi, M., & Anderson, C. A. (1999). Correlation of deposits and vent locations of the proximal Campanian Ignimbrite depositis, Campi Flegrei, Italy, based on natural remnant magnetization and anisotropy of magnetic susceptibility characteristics. J. volcanol. geotherm. res., 91, 167-178.

Papale, P. (1997). Thermodynamic modeling of the solubulity of a one-component H2O or CO2 fluid in silicate liquids. Contrib. Mineral. Petrol., 126, 237-251.

Papale, P. (1998). Volcanic conduit dynamics. In A. Freundt & M. Rosi (Eds.), From magma to tephra, modelling physical processes of explosive volcanic eruptions (chap. 3). New York: Elsevier science.

Papale, P. (1999a). Modeling of the solubility of a two-component H2O + CO2

fluid in silicate liquids. Am. Mineral., 84, 477-492.

Papale, P. (1999b). Numerical simulations of magma ascent along volcanic conduits. Phys. and chem. earth (A), 24, 957-961.

Papale, P. (1999c). Strain-induced magma fragmentation in explosive eruptions.

NATURE, 397, 425-428.

Papale, P. (2001a). The dynamics of magma flow in volcanic conduits with variable fragmentation efficienty and nonequilibrium pumice degassing. J. Geophys.

Res., 106(B6), 11,043-11,065.

Papale, P. (2001b). Numerical simulation of magma ascent dynamics. In Simulation of eruptive scenarios at Phlegrean Fields based on field, laboratory, and numerical studies, and applications for volcanic hazard. First Year Report. GNV project 2000-20002/17.

Papale, P., & Dobran, F. (1994). Magma flow along the volcanic conduit during the plinian and pyroclastic flow phases of the May 18,1980 Mt. St. Helens eruption. J. Geophys. Res., 99, 4355-4373.

Papale, P., Neri, A., & Macedonio, G. (1998). The role of magma composition and water content in explosive eruptions - 1.conduit ascent dynamics. J. volcanol.

geotherm. res., 87, 95-115.

Papale, P., & Polacci, M. (1999). Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions. Bull.Volcanol, 60, 583-594.

(7)

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Nume- rical recipes in fortran (the art of scientific coputing) (second ed.). Cambridge university press.

Ramos, J. I. (1995). One-dimensional, time-dependant, homogeneous, two-phase flow in volcanic conduits. Int. j. numer. meth. fluids, 21, 253-278.

Ramos, J. I. (1999). Two-dimensional simulations of magma ascent in volcanic conduits. Int. j. numer. meth. fluids, 29, 765-789.

Romano, C., Giordano, D., Papale, P., Mincione, V., & Dingwell, D. B. (2003). The dry and hydrous viscosities of alkaline melts from vesuvius and phlegrean fields. Chem. Geol., 202(1-2), 23-38.

Rosi, M., & Bertagnini, A. (2001). Selection of stratigraphic layers of major interest for The project, reconstruction of their stratigraphy and dispersal.

In Simulation of eruptive scenarios at Phlegrean Fields based on field, laboratory, and numerical studies, and applications for volcanic hazard. First Year Report.

GNV project 2000-2002/17.

Rosi, M., & Santacroce, R. (1984). Volcanic hazard assessment in the Phle- grean Fields: a contribution based on stratigraphic and historical data. Bull.

volcanol., 47(2), 359-170.

Rosi, M., & Sbrana, A. (Eds.). (1987). Phlegrean fields (Vol. 9). CNR, Quaderni de

‘La ricerca scientifica’, 114.

Rosi, M., Vezzoli, L., Aleotti, P., & Censi, M. D. (1991). Campanian ignimbrite eruption: proximal deposits. IAVCEI Commission on explosive volcanism.

Rosi, M., Vezzosi, L., Aleotti, P., & De Cenzi, M. (1996). Interaction between caldera collapse and eruptiove dynamics during the Campanian Ignimbrite eruption, Phlegrean Fields, Italy. Bull. Volcanol., 57, 541-554.

Rosi, M., Vezzosi, L., Castelmenzano, A., & Grieco, G. (1999). Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy). J.

volcanol. geotherm. res., 91, 179-198.

Rutherford et al. (2001). In Simulation of eruptive scenarios at Phlegrean Fields based on field, laboratory, and numerical studies, and applications for volcanic hazard.

First Year Report. GNV project 2000-2002/17.

Shaw, H. R. (1972). Viscosities of magmatic silicate liquids: An empirical method of prediction. Amer. J. Sci., 272, 870-893.

Trapp, J. A., & Ransom, V. H. (1982). A choked-flow calculation criterion for

(8)

nonhomogeneous, nonequilibrium, two-phase flows. Int. J. Multiphase flow, 8(6), 669-681.

Turcotte, D. L., Ockendon, H., Ockendon, J. R., & Cowley, S. J. (1990). A mathematical model of vulcanian erupstions. Geophys. J. Int., 103, 211-217.

Valentine, G. A. (1998). Eruption column physics. In A. Freundt & M. Rosi (Eds.), From magma to tephra, modelling physical processes of explosive volcanic eruptions (chap. 4). New York: Elsevier science.

Valentine, G. A., & Wohletz, K. H. (1989). Numerical models of plinian eruption columns and pyroclastic flows. J. Geophys. Res., 94, 1867-1887.

Vergniolle, S., & Jaupart, C. (1986). Separated two-phase flow and basaltic eruptions. J. Geophys. Res., 91(B12), 12,842-12,860.

Wallis, G. B. (1969). One-dimensional two-phase flow. New York: McGraw-Hill Book Company.

Wallis, G. B. (1980). Critical two-phase flow. Int. J. Multiphase flow, 6, 97-112.

Wilson, L. (1980). Relationship between pressure,voletile content and ejecta velocity in three types of volcanic explosion. J. volcanol. geotherm. res., 8, 297-313.

Wilson, L., & Head III, J. W. (1981). Ascent and eruption of basaltic magma on the earth and moon. J. Geophys. Res., 86(B4), 2971-3001.

Wilson, L., Sparks, R. S. J., & Walker, G. P. L. (1980). Explosive volcanic eruptions- iv.the control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. astr. Soc., 63, 117-148.

Woods, A. W. (1995). The dynamics of explosive volcanic eruptions. Rev. of Geophys., 33(4), 495-530.

Woods, A. W., & Bower, S. M. (1995). The decompression of volcanic jets in a crater during explosive volcanic eruptions. EPSL, 131, 189-205.

Riferimenti

Documenti correlati

               

PDOs: Patients derived organoids; OC: Ovarian cancer; HGSOC: High grade serous ovarian cancer; PDS: Primary debulking surgery; IDS: Interval debulking surgery; NACT:

Il tema delle emozioni mi ha da sempre incuriosita e affascinata, in particolare quello dell’intelligenza emotiva. Per questo fin dal principio ho subito pensato che questa

4 parla della necessità che le università includano nelle loro stra- tegie istituzionali l’apprendimento permanente (così l’art 2, comma 1, punto1 dello statuto della rete), di una

The aim of this paper is to test the hypothesis that radio-loud AGNs preferably occur in quiescent galaxies with large velocity dispersions (black hole masses) over a broad range

Simulation comparison of the nonlinear physical, linear first order and neural network models to each other and the observed data demonstrated that firstly, all models were accu-

Nonostante l’urgenza caratterizzante il problema della presenza femminile in colonia, il governo fascista non riteneva idonea all’avventura africana qualunque donna desiderasse

Both EUM and DTA have been considered in machine learning venues, instead, where different EUM algorithms have been proposed, and the optimal (Bayes) classifier at the population