• Non ci sono risultati.

Primary ciliary dyskinesia: diagnostic and phenotypic features

N/A
N/A
Protected

Academic year: 2021

Condividi "Primary ciliary dyskinesia: diagnostic and phenotypic features"

Copied!
16
0
0

Testo completo

(1)

C a p i t o l o I V

BIBLIOGRAFIA

CAPITOLO I - LA DISCINESIA CILIARE PRIMARIA

1. Afzelius BA. Disorders of ciliary motility. Hosp Pract. 1986; 21: 73-80

2. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;

169: 459-67

3. Bush A, Chodhari R, Collins N, Copeland F, Hall P, Harcourt J, et al. Primary ciliary dyskinesia: current state of the art. Arch Dis Child. 2007; 92: 1136-40

4. Siewert AK. Ueber einem Fall von Bronchiectasie bei einem Patienten mit Situs viscerum inversus. Berliner klinische Wochenschrift. 1904; 41: 139-41

5. Kartagener M. Zur Pathogenese der Bronchiektasen. I. Mitteilung: Bronchiektasen bei Situs viscerum inversus. Beiträge zur Klinik und Erforschung der Tuberkulose und der Lungenkrankenheiten. 1933; 83: 489-501

6. Afzelius BA, Eliasson R, Johnsen O, Lindholmer C. Lack of dynein arms in immotile human spermatozoa. J Cell Biol. 1975; 66: 225-32

7. Gibbons IR, Rowe AJ. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965; 149: 424-6

8. Camner P, Mossberg B, Afzelius BA, Evidence of congenitally nonfunctioning cilia in the tracheobronchial tract in two subjects. Am Rev Respir Dis. 1975; 112: 807-9

9. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976; 193: 317-9 10. Eliasson R, Mossberg B, Camner P, Afzelius BA. The immotile-cilia syndrome. A

congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med. 1977; 297: 1-6.

11. Sleigh MA. Primary ciliary dyskinesia. Lancet. 1981; 2: 476

12. Hogg C. Primary ciliary dyskinesia: when to suspect the diagnosis and how to confirm it.

Paediatr Respir Rev. 2009; 10: 44-50

(2)

13. Papon JF, Coste A, Roudot-Thoraval F, Boucherat M, Roger G, Tamalet A, et al. A 20- year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2010; 35: 1057-63

14. Zariwala MA, Omran H, Ferkol TW. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011; 8: 430-3

15. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011; 364: 1533-43 16. Bush A, O’Callaghan C. Primary ciliary dyskinesia. Arch Dis Child. 2002; 87: 363-5 17. Kuehni CE, Frischer T, Strippoli MP, Maurer E, Bush A, Nielsen KG, et al. Factors

influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J. 2010; 36: 1248-58

18. Van der Schans CP. Bronchial mucus transport. Respir Care. 2007; 52: 1150-6

19. Richardson PS. The physical and chemical properties of airway mucus and their relation to airway function. Eur J Respir Dis Suppl. 1980; 111: 13-5

20. Chilvers MA, Rutman A, O'Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax. 2003; 58: 333-8 21. Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific

ultrastructural defects in Primary ciliary dyskinesia. J Allergy Clin Immunol. 2003; 112:

518-24

22. Jorissen M, Bertrand B, Eloy P. Ciliary dyskinesia in the nose and paranasal sinuses.

Acta Otorhinolaryngol Belg. 1997; 51: 353-66

23. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007; 69: 377-400

24. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol. 2009; 187:

921-33

25. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. The nexin- dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013; 45: 262-8.

26. Schidlow DV. Primary ciliary dyskinesia (the immotile cilia syndrome). Ann Allergy.

1994; 73: 457-68

(3)

27. Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008; 85: 23-61

28. Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol. 2007; 69: 401- 22

29. Mizuno N, Taschner M, Engel BD, Lorentzen E. Structural studies of ciliary components.

J Mol Biol. 2012; 422: 163-80

30. Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys. 2011; 510: 93-100

31. Pifferi M, Bush A, Di Cicco M, Pradal U, Ragazzo V, Macchia P, Boner AL. Health- related quality of life and unmet needs in patients with primary ciliary dyskinesia. Eur Respir J. 2010; 35: 787-94.

32. Leigh MW, O'Callaghan C, Knowles MR. The challenges of diagnosing primary ciliary dyskinesia. Proc Am Thorac Soc. 2011; 8: 434-7

33. Coren ME, Meeks M, Morrison I, Buchdahl RM, Bush A. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr. 2002; 91: 667-9

34. Barbato A, Frischer T, Kuehni CE, Snijders D, Azevedo I, Baktai G, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009; 34: 1264-76

35. O'Callaghan C, Chilvers M, Hogg C, Bush A, Lucas J. Diagnosing primary ciliary dyskinesia. Thorax. 2007; 62: 656-7

36. Bush A, Hogg C. Primary ciliary dyskinesia: recent advances in epidemiology, diagnosis, management and relationship with the expanding spectrum of ciliopathy. Expert Rev Respir Med. 2012; 6: 663-82

37. Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation. 2007; 115: 2814-21

38. Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, et al. Laterality Defects other than Situs Inversus Totalis in Primary Ciliary Dyskinesia: Insights into

(4)

Situs Ambiguus and Heterotaxy. Chest. 2014 Feb 27. doi: 10.1378/chest.13-1704. [Epub ahead of print]

39. Nakhleh N, Francis R, Giese RA, Tian X, Li Y, Zariwala MA, et al. High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy.

Circulation. 2012; 125: 2232-42

40. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998; 95: 829-37

41. Ferkol T, Leigh M. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol. 2006; 30: 335-40

42. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 2013; 188: 913-22

43. Brown DE, Pittman JE, Leigh MW, Fordham L, Davis SD. Early lung disease in young children with primary ciliary dyskinesia. Pediatr Pulmonol. 2008; 43: 514-6

44. Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, Molina PL. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol. 2007; 188: 1232-8

45. Jain K, Padley SP, Goldstraw EJ, Kidd SJ, Hogg C, Biggart E, Bush A. Primary ciliary dyskinesia in the paediatric population: range and severity of radiological findings in a cohort of patients receiving tertiary care. Clin Radiol. 2007; 62: 986-93

46. Boon M, Jorissen M, Proesmans M, De Boeck K. Primary ciliary dyskinesia, an orphan disease. Eur J Pediatr. 2013; 172: 151-62

47. Pifferi M, Bush A, Caramella D, Di Cicco M, Zangani M, Chinellato I, et al. Agenesis of paranasal sinuses and nasal nitric oxide in primary ciliary dyskinesia. Eur Respir J. 2011;

37: 566-71

48. Prulière-Escabasse V, Coste A, Chauvin P, Fauroux B, Tamalet A, Garabedian EN, et al.

Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg. 2010; 136: 1121-6

(5)

49. Campbell R. Managing upper respiratory tract complications of primary ciliary dyskinesia in children. Curr Opin Allergy Clin Immunol. 2012; 12: 32-8

50. Halbert SA, Patton DL, Zarutskie PW, Soules MR. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener's syndrome. Hum Reprod. 1997; 12:

55-8

51. Svedbergh B, Jonsson V, Afzelius B. Immotile-cilia syndrome and the cilia of the eye.

Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981; 215: 265-72

52. Ibañez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet. 2002; 11: 715-21 53. Bonneau D, Raymond F, Kremer C, Klossek JM, Kaplan J, Patte F. Usher syndrome type

I associated with bronchiectasis and immotile nasal cilia in two brothers. J Med Genet.

1993; 30: 253-4

54. Balci S, Bostanoğlu S, Altinok G, Ozaltin F. New syndrome?: Three sibs diagnosed prenatally with situs inversus totalis, renal and pancreatic dysplasia, and cysts. Am J Med Genet. 2000; 90: 185-7

55. Brown DE, Pittman JE, Leigh MW, Fordham L, Davis SD. Early lung disease in young children with primary ciliary dyskinesia. Pediatr Pulmonol. 2008; 43: 514-6

56. Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J. 1997; 10: 2376-9

57. Pifferi M, Bush A, Pioggia G, Caramella D, Tartarisco G, Di Cicco M, et al. Evaluation of pulmonary disease using static lung volumes in primary ciliary dyskinesia. Thorax.

2012; 67: 993-9

58. Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med. 2010; 181: 1262-8

59. Date H, Yamashita M, Nagahiro I, Aoe M, Andou A, Shimizu N. Living-donor lobar lung transplantation for primary ciliary dyskinesia. Ann Thorac Surg. 2001; 71: 2008-9

60. Leigh MW, Shapiro AJ, Pittman JE, Davis DS, Lee H, Krischer J, et al. Definition of clinical criteria for diagnosis for primary ciliary dyskinesia. Am J Respir Crit Care Med.

2012; 185: A2483 [abstract]

(6)

61. Canciani M, Barlocco EG, Mastella G, de Santi MM, Gardi C, Lungarella G. The saccharin method for testing mucociliary function in patients suspected of having primary ciliary dyskinesia. Pediatr Pulmonol. 1988; 5: 210-4

62. Lundberg JO, Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM, Alving K.

Primarily nasal origin of exhaled nitric oxide and absence in Kartagener's syndrome. Eur Respir J. 1994; 7: 1501-4

63. Pifferi M, Caramella D, Cangiotti AM, Ragazzo V, Macchia P, Boner AL. Nasal nitric oxide in atypical primary ciliary dyskinesia. Chest. 2007; 131: 870-3

64. Walker WT, Jackson CL, Lackie PM, Hogg C, Lucas JS. Nitric oxide in primary ciliary dyskinesia. Eur Respir J. 2012; 40: 1024-32

65. Marthin JK, Nielsen KG. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia. Eur Respir J. 2011; 37: 559-65

66. Marthin JK, Nielsen KG. Hand-held tidal breathing nasal nitric oxide measurement - a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia. PLoS One. 2013; 8: e57262

67. American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med. 2005; 171:

912-30

68. Corbelli R, Bringolf-Isler B, Amacher A, Sasse B, Spycher M, Hammer J. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest. 2004; 126:

1054-9

69. Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, et al.

Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia.

Ann Am Thorac Soc. 2013; 10: 574-81

70. Rutland J, Cole PJ. Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet. 1980; 2: 564-5

71. Verra F, Fleury-Feith J, Boucherat M, Pinchon MC, Bignon J, Escudier E. Do nasal ciliary changes reflect bronchial changes? An ultrastructural study. Am Rev Respir Dis.

1993; 147: 908-13

(7)

72. Sanderson MJ. High-speed digital microscopy. Methods. 2000; 21: 325-34

73. Schipor I, Palmer JN, Cohen AS, Cohen NA. Quantification of ciliary beat frequency in sinonasal epithelial cells using differential interference contrast microscopy and high- speed digital video imaging. Am J Rhinol. 2006; 20: 124-7

74. Stannard WA, Chilvers MA, Rutman AR, Williams CD, O'Callaghan C. Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am J Respir Crit Care Med.

2010; 181: 307-14

75. Thomas B, Rutman A, O'Callaghan C. Disrupted ciliated epithelium shows slower ciliary beat frequency and increased dyskinesia. Eur Respir J. 2009; 34: 401-4

76. Smith CM, Kulkarni H, Radhakrishnan P, Rutman A, Bankart MJ, Williams G, et al.

Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur Respir J.

2014; 43: 485-96

77. Shoemark A, Dixon M, Corrin B, Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J Clin Pathol. 2012; 65: 267-71

78. O'Callaghan C, Rutman A, Williams GM, Hirst RA. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J. 2011; 38: 603-7

79. Carson JL, Collier AM, Hu SS. Acquired ciliary defects in nasal epithelium of children with acute viral upper respiratory infections. New Engl J Med. 1985; 312: 463-8

80. Gamarra F, Bergner A, Stauss E, Stocker I, Grundler S, Huber RM. Rotation frequency of human bronchial and nasal epithelial spheroids as an indicator of mucociliary function.

Respiration. 2006; 73: 664-72

81. Jorissen M, Willems T, Van der Schueren B. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture. Acta Otolaryngol. 2000;

120: 291-95

82. Pifferi M, Montemurro F, Cangiotti AM, Ragazzo V, Di Cicco M, Vinci B, et al.

Simplified cell culture method for the diagnosis of atypical primary ciliary dyskinesia.

Thorax. 2009; 64: 1077-81

(8)

83. Pifferi M, Bush A, Montemurro F, Pioggia G, Piras M, Tartarisco G, Di Cicco M, et al.

Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis.

Eur Respir J. 2013; 41: 960-5

84. Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, et al.

Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med. 2005; 171: 1343-9

85. Fliegauf M, Omran H. Novel tools to unravel molecular mechanisms in cilia-related disorders. Trends Genet. 2006; 22: 241-5

86. Cohen-Cymberknoh M, Simanovsky N, Hiller N, Gileles Hillel A, Shoseyov D, Kerem E. Differences in disease expression between primary ciliary dyskinesia and cystic fibrosis with and without pancreatic insufficiency. Chest. 2014; 145: 738-44

87. Van der Schans CP. Conventional chest physical therapy for obstructive lung disease.

Respir Care. 2007; 52: 1198-206

88. Gremmo ML, Guenza MC. Positive expiratory pressure in the physiotherapeutic management of primary ciliary dyskinesia in paediatric age. Monaldi Arch Chest Dis.

1999; 54: 255-7

89. King PT, Holmes PW. Use of antibiotics in bronchiectasis. Rev Recent Clin Trials. 2012;

7: 24-30

90. Justo JA, Danziger LH, Gotfried MH. Efficacy of inhaled ciprofloxacin in the management of non-cystic fibrosis bronchiectasis. Ther Adv Respir Dis. 2013; 7: 272-87 91. Desai M, Weller PH, Spencer DA. Clinical benefit from nebulized human recombinant

DNase in Kartagener’s syndrome. Pediatr Pulmonol. 1995; 20: 307-8

92. Phillips GE, Thomas S, Heather S, Bush A. Airway response of children with primary ciliary dyskinesia to exercise and beta2-agonist challenge. Eur Respir J. 1998; 11: 1389- 91

93. Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia: efficacy of functional endoscopic sinus surgery. Laryngoscope. 1993; 103: 1269-72

94. Chhin B, Negre D, Merrot O, Pham J, Tourneur Y, Ressnikoff D, et al. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

PLoS Genet. 2009; 5: e1000422

(9)

95. Ostrowski LE, Yin W, Patel M, Sechelski J, Rogers T, Burns K, et al. Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther. 2014; 21: 253-61

96. Montella S, Santamaria F, Salvatore M, Maglione M, Iacotucci P, De Santi MM, Mollica C. Lung disease assessment in primary ciliary dyskinesia: a comparison between chest high-field magnetic resonance imaging and high-resolution computed tomography findings. Ital J Pediatr. 2009; 35: 24

CAPITOLO II – LA GENETICA DELLA DISCINESIA CILIARE PRIMARIA

97. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of- function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999; 65: 1508-19

98. Horani A, Brody SL, Ferkol TW. Picking up speed: advances in the genetics of primary ciliary dyskinesia. Pediatr Res. 2014; 75: 158-64

99. Boon M, Smits A, Cuppens H, Jaspers M, Proesmans M, Dupont LJ, et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis. 2014; 9: 11

100. Olbrich H, Häffner K, Kispert A, Völkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002; 30: 143-4

101. Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat. 2008; 29: 289-98

102. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008; 83: 547-58

(10)

103. Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, Parvari R.

Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011; 88: 599-607

104. Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci USA. 2007; 104: 3336-41

105. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al.

CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012; 44: 714-9

106. Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013; 92: 88-98

107. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013; 93: 357-67

108. Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, Reinhard C, et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 2009; 85: 883-9

109. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008; 456: 611-6 110. Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al.

Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012; 44: 381-9

111. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, et al. Loss- of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012; 91:

958-64

112. Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, et al.

Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012; 91: 685-93

(11)

113. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 2013; 45: 995- 1003

114. Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013; 93: 711-20

115. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al.

Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. Am J Hum Genet. 2013; 93:

672-86

116. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al.

Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013; 93: 346-56

117. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al.

CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011; 43: 72-8 118. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. The

coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011; 43: 79-84

119. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, et al.

CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013; 8: e72299

120. Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, et al. Loss-of- function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 2013; 93: 561-70

121. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al.

Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009; 84:

197-209

(12)

122. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012; 91: 672-84

123. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006; 43: 326-33

124. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X- linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006; 120: 171-8 125. Bush A, Ferkol T. Movement: the emerging genetics of primary ciliary dyskinesia. Am J

Respir Crit Care Med. 2006; 174: 109-10

126. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009; 11:

473-87

127. Tamalet A, Clement A, Roudot-Thoraval F, Desmarquest P, Roger G, Boule M, et al.

Abnormal central complex is a marker of severity in the presence of partial ciliary defect.

Pediatrics 2001, 108: E86

128. Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet. 2012; 49: 410-6

129. Vallet C, Escudier E, Roudot-Thoraval F, Blanchon S, Fauroux B, Beydon N, et al.

Primary ciliary dyskinesia presentation in 60 children according to ciliary ultrastructure.

Eur J Pediatr. 2013, 172: 1053-60

130. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.

Am J Respir Crit Care Med. 2014; 189: 707-17

131. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell. 1999; 4: 459-68

(13)

132. Supp DM, Brueckner M, Kuehn MR, Witte DP, Lowe LA, McGrath J, et al. Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development. 1999; 126: 5495-504

133. Pifferi M, Michelucci A, Conidi ME, Cangiotti AM, Simi P, Macchia P, Boner AL. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure.

Eur Respir J. 2010; 35: 1413-6

134. Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure.

Thorax. 2012, 67: 433-41

135. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function.

Annu Rev Physiol. 2007; 69: 423-50

CAPITOLO III – IL NOSTRO STUDIO

136. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A. et al.

Standardisation of spirometry. Eur Respir J. 2005; 26: 319-38

137. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al.

Standardisation of the measurement of lung volumes. Eur Respir J. 2005; 26: 511-22 138. Zapletal A, Šamánek M, Paul T. Lung function in children and adolescents: methods,

reference values. Basel; New York: Karger; 1987

139. Bhalla M, Turcios N, Aponte V, Jenkins M, Leitman BS, McCauley DI, Naidich DP.

Cystic fibrosis: scoring system with thin-section CT. Radiology. 1991; 179: 783-8

140. Pifferi M, Caramella D, Bulleri A, Baldi S, Peroni D, Pietrobelli A, Boner AL. Pediatric bronchiectasis: correlation of HRCT, ventilation and perfusion scintigraphy, and pulmonary function testing. Pediatr Pulmonol. 2004; 38: 298-303

141. Hopkins C, Browne JP, Slack R, Lund V, Brown P. The Lund-Mackay staging system for chronic rhinosinusitis: how is it used and what does it predict? Otolaryngol Head Neck Surg. 2007; 137: 555-61

(14)

142. Orlandi RR, Wiggins RH 3rd. Radiological sinonasal findings in adults with cystic fibrosis. Am J Rhinol Allergy. 2009; 23: 307-11

143. Scuderi AJ, Harnsberger HR, Boyer RS. Pneumatization of the paranasal sinuses: normal features of importance to the accurate interpretation of CT scans and MR images. AJR Am J Roentgenol. 1993; 160: 1101-4

144. Tiddens HA, Donaldson SH, Rosenfeld M, Paré PD. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively? Pediatr Pulmonol. 2010; 45: 107-17

(15)

A b b r e v i a z i o n i i n o r d i n e a l f a b e t i c o

AAA: ATPases Associated with cellular Activities

ANOVA: Analysis of variance

ATS: American Thoracic Society

CC: Coppia centrale

DCP: Discinesia Ciliare Primaria

DNAH11: Dynein Axonemal Heavy Chain 11

DS: Deviazione Standard

ERS: European Respiratory Society

FC: Fibrosi Cistica

FEF25-75%: Forced Expiratory Flow between 25 and 75% of vital capacity

FEV1: Forced Expiratory Volume in 1 second

FRCpleth: Functional Residual Capacity made by plethysmography

FVC: Forced Vital Capacity

HRCT: High Resolution Computed Tomography

IDA: Inner Dynein Arm

IQR: Scarto interquartile

LID e LIS:Lobo Inferiore Destro e Lobo Inferiore Sinistro

M: Media

Me: Mediana

N-DRC: Nexin-Dynein Regulatory Complex

nNO: nasal Nitric Oxide

NGS: Next Generation Sequencing

ODA: Outer Dynein Arm

PCD: Primary Ciliary Dyskinesia

PEF: Peak of Expiratory Flow

PEP: Positive Expiratory Pressure

PFR: Prove di Funzionalità Respiratoria

ppb: parti per bilione

RV: Residual Volume

SVI: Situs Viscerum Inversus

SS: Situs Solitus

TC: Tomografia Computerizzata

TEM: Transmission Electron Microscope

TLC: Total Lung Capacity

(16)

I n d i c e d e l l e f i g u r e e d e l l e t a b e l l e

FIGURE:

Fig. 1 - Ultrastruttura dell’assonema ciliare... 7

Fig. 2 - Struttura della dineina ... 9

Fig. 3 - Il gene DNAH11: localizzazione cromosomica e distribuzione degli esoni ... 42

Fig. 4 - Rappresentazione schematica della proteina DNAH11 e del suo dominio globulare .... 43

Fig. 5 - Età alla diagnosi nella popolazione studiata ... 54

Fig. 6 - Epoca della diagnosi del Situs Viscerum Inversus ... 55

Fig. 7 - Incidenza delle cardiopatie congenite ... 56

Fig. 8 - Esito dello studio funzionale ed ultrastrutturale delle ciglia respiratorie ... 57

Fig. 9 - Localizzazione delle bronchiectasie nei 46 soggetti sottoposti a TC del torace ... 60

Fig.10 - Agenesia ed ipoplasia dei seni paranasali nei 47 soggetti sottoposti a TC dei seni paranasali ... 61

Fig.11 - Correlazione tra score dell’interessamento sinusale ed età dei soggetti ... 61

Fig.12 - Classi di severità dell’impegno bronchiectasico nei soggetti mutati in DNAH11 e in quelli con ultrastruttura ciliare patologica ... 66

Fig.13 - Score dell’impegno sinusale ... 66

Fig.14 - Valori di nNO nei soggetti dei tre gruppi analizzati ... 68

Fig.15 - Classi di severità alla TC del torace nei tre gruppi analizzati ... 70

TABELLE: Tab. 1 - Geni patogenetici nella DCP ... 37

Tab. 2 - Caratteristiche cliniche della popolazione studiata ... 59

Tab. 3 - Mutazioni nel gene DNAH11 riscontrate nei soggetti con ultrastruttura ciliare normale ... 63

Tab. 4 - Confronto tra le caratteristiche cliniche dei soggetti con mutazioni in DNAH11 e quelle dei soggetti con ultrastruttura ciliare patologica ... 65

Tab. 5 - Confronto tra le caratteristiche cliniche dei soggetti con mutazioni in DNAH11 e quelle dei soggetti con deficit di ODA/IDA e di CC ... 68

Tab. 6 - Parametri della funzionalità respiratoria nei tre gruppi ... 69

Riferimenti

Documenti correlati

 contenimento degli infortuni. L’identificazione della popolazione bersaglio è fondamentale; ogni popolazione lavorativa è caratterizzata da un determinato livello di

The plasma insulin increase upon ABA administration was expected, based on the in vitro effect of ABA on insulinoma cells and on murine and human β-cells: exogenous ABA, added

The tool which is presented in this thesis is composed of a web interface which allows the user to create a narrative starting from a specific subject, a tripli- fication component

Con il termine bilanciamento si intende l’assegnazione delle operazioni di montaggio alle diverse stazioni, in modo tale da ridurre il numero di stazioni della

The gain curves measured at 25.54 GHz for the central feed of the K-band receiver were obtained from the observations of the bright radio source 3C 84 (see Sect.. Figure 4 (right

These resins have been exposed to four different types of environments, representative of the most used commercial products, by means of the pack test, which allows to put in

Aspects like people ’s limited visibility and eligibility towards formal welfare services, their uncertain legal status, their temporal “liminality” and their non-linear patterns

In questo modo da soggetto sofferente che passivamente subisce la cura, egli diventa soggetto attivo del proprio percorso di guarigione e i servizi psichiatrici sono integrati