Esercizi sui sistemi differenziali
Risolvere i seguenti problemi di Cauchy con l’uso delle trasformate di Laplace:
1.
(
y10 + y1+ y2 = e2x
y20 − y1− 2y2 = (3− x)e−x , y1(0) = y2(0) = 0.
2.
(y10 = y1− 2y2+ ex
y20 = y1− y2− x , y1(0) = 1, y2(0) = 0.
3.
x0 = x− y y0 = x− z z0 = x
, x(0) = y(0) = 1, z(0) = 0.
4.
x0 = x + y y0 =−x + 3y z0 =−z
, x(0) = 1, y(0) = 2, z(0) = 1.
5.
(
x00− y0 = 0
y00+ y0 + x0 = 2e−tsin t , x(0) =−1, x0(0) = y(0) = 2, y0(0) =−2.
6.
(
x00= y + t
y00 = x + 1 , x(0) = x0(0) = 0, y(0) = 1, y0(0) =−1.
7.
(
x00− x0− 2y0 = e−t
y00− x0 = 0 , x(0) = 0, x0(0) = y(0) = y0(0) = 1.
8.
(
x00− 2y0 = sin t
y00+ x0 = 6e−2t− 2 , x(0) = y(0) = 0, x0(0) = 1, y0(0) =−2
Svolgimento:
( 1)
sF1(s) + F1(s) + F2(s) = s−21
sF2(s)− 2F2(s)− F1(s) = s+13 − (s+1)1 2
=⇒
((s + 1)F1(s) + F2(s) = s−21 (s− 2)F2(s)− F1(s) = (s+1)3s+22
=⇒ (
F2(s) = s−21 − (s + 1)F1(s)
1− (s + 1)(s − 2)F1(s)− F1(s) = (s+1)3s+22
=⇒ (
. . .
1−(s+1)3s+22 = (s2− s − 1)F1(s) =⇒ (. . .
F1(s) = (s+1)1 2
=⇒
(F2(s) = s−21 −s+11 F1(s) = (s+1)1 2
=⇒ (
y2(x) = e2x − e−x y1(x) = xe−x.
1
( 2)
sF1(s)− 1 = F1(s)− 2F2(s) + s−11
sF2(s) = F1(s)− F2(s)−s12 =⇒ (
(s− 1)F1(s) + 2F2(s) = 1 + s−11 F1(s) = (s + 1)F2(s) + s12
=⇒ (
(s2− 1)F2(s) +ss−12 + 2F2(s) = s−1s F1(s) = (s + 1)F2(s) +s12
=⇒ (
F2(s)(s2+ 1) = s−1s −ss−12
F1(s) = (s + 1)F2(s) + s12
=⇒ (F2(s) = s21+1
s3−s2+2s−1 s2(s−1)
. . .
Ponendo s21+1 · s3−ss2(s2+2s−1)−1 = as + sb2 + s−1c +ds+es2+1, si trova b = s3− s2+ 2s− 1
(s2+ 1)(s− 1) |s=0 = 1, c = s3− s2+ 2s− 1
s2(s2 + 1) |s=1 = 1 2 quindi
a
s+ds + e
s2+ 1 = 1 s2+ 1
s3− s2+ 2s− 1 s2(s− 1) − 1
s2− 1
2(s− 1) = 2s− s4− s2
2s2(s− 1)(s2+ 1) =−s2+ s + 2 2s(s2+ 1). Pertanto,
a =−s2+ s + 2
2(s2+ 1) |s=0=−1, e ds + e
s2+ 1 =−s2+ s + 2 2s(s2+ 1) +1
s = s2− s
2s(s2+ 1) = s− 1 2(s2+ 1). In definitiva,
F2(s) =−1 s + 1
s2 + 1
2(s− 1)+ s− 1
2(s2+ 1) =⇒ y2(x) =−1 + x + 1 2ex+ 1
2(cos x− sin x).
Dalla seconda equazione del sistema si ricava
y1(x) = y20(x)+y2(x)+x = 1+1 2ex−1
2sin x−1
2cos x−1+x+1 2ex+1
2cos x−1
2sin x+x = ex−sin x+2x.
3)
sF1(s)− 1 = F1(s)− F2(s) sF2(s)− 1 = F1(s)− F3(s) sF3(s) = F1
⇒
s2F3(s)− 1 = sF3(s)− F2(s) sF2(s)− 1 = sF3(s)− F3(s) . . .
⇒
(s2 − s)F3(s) = 1− F2(s) (s− 1)F3(s) = sF2(s)− 1 . . .
(s2 − s)F3(s) = 1− F2(s) (s2 − s)F3(s) = s2F2(s)− s . . .
⇒
. . . . . .
1− F2(s) = s2F2(s)− s
⇒
. . . . . .
F2(s) = ss+12+1
(s2 − s)F3(s) = 1− ss+12+1 F2(s) = ss+12+1
. . .
⇒
F3(s) = s21+1
F2(s) = ss+12+1
F1(s) = s2s+1
⇒
z(t) = sin t
y(t) = sin t + cos t x(t) = cos t.
2
4)
sF1(s)− 1 = F1(s) + F2(s) sF2(s)− 2 = −F1(s) + 3F2(s) sF3(s)− 1 = −F3
⇒
F2(s) = (s− 1)F1(s)− 1
s(s− 1)F1(s)− s − 2 = −F1(s) + 3(s− 1)F1(s)− 3 F3(s) = s+11
⇒
. . .
(s2 − 4s + 4)F1(s) = (s− 1) . . .
⇒
. . .
F1(s) = (ss−2)−12 = s−21 +(s−2)1 2
. . .
⇒
F2(s) = (s(s−1)−2)22 − 1 F1(s) = s−21 +(s−2)1 2
F3(s) = s+11
⇒
F2(s) = (s2s−2)−32 = s−22 + (s−2)1 2
F1(s) = s−21 +(s−2)1 2
F3(s) = s+11
⇒
y(t) = e2t(2 + t) x(t) = e2t(1 + t) z(t) = e−t.
5) Dato cheL[e−tsin t](s) =L[sin t](s + 1) = 1+(s+1)1 2, si ha (s2F1(s) + s− 2 − sF2(s) + 2 = 0
s2F2(s)− 2s + 2 + sF2(s)− 2 + sF1(s) + 1 = 1+(s+1)2 2
⇒ (
F2(s) = sF1(s) + 1
(s2+ s)(sF1(s) + 1) + sF1(s) = 2s− 1 + s2+2s+22
⇒ (
. . .
(s3+ s2+ s)F1(s) =−s2+ s− 1 + s2+2s+22
⇒ (
. . .
F1(s) = s3+s12+s· −ss24+2s+2−s3−s2 =−s2+2s+2s
⇒ (. . .
F1(s) =−1+(s+1)s 2 =−1+(s+1)s+1 2 +1+(s+1)1 2
⇒ (F2(s) = 1−s2+2s+2s2 = s2(s+1)2+2s+2 = 21+(s+1)s+1 2
F1(s) =−1+(s+1)s+1 2 +1+(s+1)1 2
⇒ (
y(t) = 2e−tcos t
x(t) = e−t(sin t− cos t) 6)(
s2F1(s) = F2(s) +s12
s2F2(s)− s + 1 = F1(s) + 1s ⇒ (
F2(s) = s2F1(s)− s12
s4F1(s)− 1 − s + 1 = F1(s) +1s ⇒ (
. . .
(s4− 1)F1(s) = s + 1s ⇒ (. . .
F1(s) = s(ss24+1−1) = s(s21−1).
Ponendo s(s21−1) = as +s−1b + s+1c si ottiene a =−1, b = c = 12, quindi F1(s) =−1
s +1 2( 1
s− 1+ 1
s + 1 ⇒ x(t) = 1
2(et+ e−t)− 1 = cosh t − 1.
Inoltre, dalla seconda equazione si deduce y(t) = x(t) + 1 = cosh t; pertanto y0(t) = sinh t + C e y(t) = cosh t + Ct + K per opportune costanti C, K. Imponendo i dati iniziali di y(t) si deduce C = −1 e K = 0; quindi y(t) = cosh t − t.
Negli svolgimenti dei prossimi due esercizi alcuni passaggi sono stati omessi.
3
7)(
s2F1(s)− 1 − sF1(s)− 2sF2(s) + 2 = s+11 s2F2(s)− s − 1 − sF1(s) = 0 ⇒
( . . .
F1(s) = sF2(s)− 1 − 1s ⇒ (
(s2− s)(sF2(s)− 1 −1s)− 2sF2(s) + 1 = s+11
. . . ⇒
(F2(s) = (s2− 2 + s+11 )s(s−2)(s+1)1 = s(s+1)s3+s2−2s−12(s−2)
. . .
Ponendo s(s+1)s3+s2−2s−12(s−2) = as + s+1b +(s+1)c 2 + s−2d si ottiene prima a = 12, c = 13, d = 187 e poi per differenza b = 19. Quindi
F2(s) = 1 2s +1
9 1 s + 1+ 1
3 1
(s + 1)2 − 7 18
1 s− 2, da cui
y(t) = 1 2 +1
9e−t+ 1
3te−t+ 7 18e2t.
Derivando due volte la y(t) e sostituendo nella seconda equazione si trova
x0(t) =−5
9e−t+ 1
3te−t+14 9 e2t e quindi essendo x(t) = x(0) +Rt
0 x0(τ ) dτ =Rt
0 x0(τ ) dτ , si deduce x(t) = 2
9e−t −1
3te−t+ 7
9e2t− 1.
8)(
s2F1− 1 − 2sF2(s) = s21+1
s2F2(s) + 2 + sF − 1(s) = s+26 −2s ⇒
(F1(s) = s12 1 + 2sF − 2(s) + s21+1
s2F2(s) + 2 + 1s + 2F2(s) +s(s21+1) = s+26 − 2s (. . .
F2(s) =−s(s+2)(s2s2+s+42+1) =−2s +s+11 + s2s+1
quindi y(t) = e−2t + cos t − 2. Dalla prima equazione del sistema di ricava x00(t) =
− sin t − 4e−2t, da cui x0(t) = x0(0) +
Z t
0
x00(τ ) dτ = 1 + [2e−2τ + cos τ ]t0 = 2e−2t+ cos t− 2 x(t) = x(0) +
Z t 0
x0(τ ) dτ = [−e−2τ + sin τ − 2τ]t0 =−e−2t+ sin t− 2t + 1.
4