• Non ci sono risultati.

X k=1 k Y j=1 x2j 1 − x2j−1 = 1 x + 1 ∞ Y j=1 1 1 − x2j−1 = q q − 1 ∞ Y j=1 1 1 + q1−2j

N/A
N/A
Protected

Academic year: 2021

Condividi "X k=1 k Y j=1 x2j 1 − x2j−1 = 1 x + 1 ∞ Y j=1 1 1 − x2j−1 = q q − 1 ∞ Y j=1 1 1 + q1−2j"

Copied!
1
0
0

Testo completo

(1)

Problem 11883

(American Mathematical Monthly, Vol.123, January 2016) Proposed by H. Ohtsuka (Japan).

For|q| > 1, prove that

X

k=0 k

Y

j=0

1

q2j + q = 1 q − 1

Y

j=0

1 q1−2j + 1.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

It suffices to show that for |x| 6= 1 and n ∈ N+ then

1 +

n

X

k=1 k

Y

j=1

x2j

1 − x2j1 =x2n+11+ 1 x + 1

n

Y

j=1

1

1 − x2j1. (1)

Infact, by letting x = −1/q we have that |x| < 1 and when n goes to infinity we obtain

1 +

X

k=1 k

Y

j=1

1

q2j + q = 1 +

X

k=1 k

Y

j=1

x2j

1 − x2j−1 = 1 x + 1

Y

j=1

1

1 − x2j−1 = q q − 1

Y

j=1

1 1 + q1−2j.

Thus, the required identity follows because

X

k=0 k

Y

j=0

1

q2j + q = 1 2q

1 +

X

k=1 k

Y

j=1

1 q2j+ q

= 1 2q

 q q − 1

Y

j=1

1 1 + q1−2j

= 1 q − 1

Y

j=0

1 q1−2j+ 1.

Finally we prove (1) by induction. It is easy to verify it for n = 1.

Now assume that (1) holds for n, then it holds for n + 1 if and only if

1 +

n+1

X

k=1 k

Y

j=1

x2j

1 − x2j−1 = x2n+1−1+ 1 x + 1

n

Y

j=1

1 1 − x2j−1+

n+1

Y

j=1

x2j 1 − x2j−1

=? x2n+2−1+ 1 x + 1

n+1

Y

j=1

1 1 − x2j−1 that is

x2n+1−1+ 1

x + 1 + x2n+2−2 1 − x2n+1−1

=? x2n+2−1+ 1 (x + 1)(1 − x2n+1−1)

which is true. 

Riferimenti