• Non ci sono risultati.

1 2n X σ∈{1,−1}n n Y i=1 σi  ti+ n X j=1 σjai,j

N/A
N/A
Protected

Academic year: 2021

Condividi "1 2n X σ∈{1,−1}n n Y i=1 σi  ti+ n X j=1 σjai,j"

Copied!
1
0
0

Testo completo

(1)

Problem 11959

(American Mathematical Monthly, Vol.124, February 2017) Proposed by D. Knuth (USA).

Prove that, for any n-by-n matrix A with(i, j)-entry ai,j and any t1, . . . , tn, the permanent of A is 1

2n X

n

Y

i=1

σi

ti+

n

X

j=1

σjai,j

, where the outer sum is over all2n choices of(σ1, . . . , σn) ∈ {1, −1}n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

FA(t1, . . . , tn) := 1 2n

X

σ∈{1,−1}n n

Y

i=1

σi

ti+

n

X

j=1

σjai,j

. We will show that FA(t1, . . . , tn) = perm(A) by induction on n.

If n = 1 then the formula holds:

FA(t1) =1

2(1 · (t1+ 1 · a1,1) + (−1) · (t1+ (−1) · a1,1)) = a1,1= perm(A).

Assume that n > 1, then we first prove that the multivariable polynomial FA is constant by show- ing that the partial derivatives are identically zero. By symmetry, it suffices to check the partial derivative with respect to tn,

∂FA

∂tn (t1, . . . , tn) = 1 2n

X

σ∈{1,−1}n

σn

n−1

Y

i=1

σi

ti+

n

X

j=1

σjai,j

= 1 2n

X

σ∈{1,−1}n−1

1 ·

n−1

Y

i=1

σi

ti+ 1 · ai,n+

n−1

X

j=1

σjai,j

+ 1 2n

X

σ∈{1,−1}n−1

(−1) ·

n−1

Y

i=1

σi

ti+ (−1) · ai,n+

n−1

X

j=1

σjai,j

=FA(t1+ a1,n, . . . , tn−1+ an−1,n) − FA(t1− a1,n, . . . , tn−1− an−1,n) 2

=perm(A) − perm(A)

2 = 0.

where A is the (n − 1)-by-(n − 1) matrix obtained by removing both the n-th row and the n-th column of A.

Hence, it remains to show that FA(0, . . . , 0) = perm(A). Let Fn be the set of functions of {1, . . . , n}

in itself, then

FA(0, . . . , 0) = 1 2n

X

σ∈{1,−1}n n

Y

i=1

n

X

j=1

σiσjai,j

= 1 2n

X

σ∈{1,−1}n

X

f∈Fn

n

Y

i=1

σiσf(i)ai,f(i)



= X

f∈Fn

1 2n

X

σ∈{1,−1}n n

Y

i=1

σiσf(i)ai,f(i) = perm(A)

because 1 2n

X

σ∈{1,−1}n n

Y

i=1

σiσf(i)ai,f(i) =

 Qn

i=1ai,f(i) if f is a permutation,

0 otherwise.



Riferimenti