• Non ci sono risultati.

Identification of the SAAT gene involved in srawberry flavor biogenesis by use of DNA microarrays

N/A
N/A
Protected

Academic year: 2021

Condividi "Identification of the SAAT gene involved in srawberry flavor biogenesis by use of DNA microarrays"

Copied!
14
0
0

Testo completo

(1)

7 BIBLIOGRAFIA

Aharani A., Keizer L.C., Bouwmeester H.J., Sun Z.,Alvarez-Huerta M.,Verhoeven H.A.,Blaas J.,Van Houwelingen A.M., Devos R.C.,Van der Volt H.,Jansen R.C., Guis M.,Mol j.,Davis R.W.,Schena M., Van Tunen A.J.,O’Connell A.P (2000). Identification of the SAAT gene involved in srawberry flavor biogenesis by use of DNA microarrays.

Plant cell 5, 647-662

Alezander.L., Grierson D., (2002).Ethilene biosynthesis and action in tomato fruit: a model for climateric fruit ripening. J.Exp.Bot 53: 3039- 2055.

Almeida D.P.F, Huber D.J. (2007) Polygalacturonase-mediated dissolution and depolimerization of pectins in solution mimicking the pH and mineral composition of tomato fruit apoplast. Plant Science, 172:1087-1094.

Alpi Amedeo. Pectina. Enciclopedia della scienza e della tecnica (2008).

Angelini R. (2008). Il pesco. Coltura & coltura: collana ideata e coordinata da Renzo Angelini. Bayer Crop Science Srl.

Asard H., May J., Smirnoff N. (2004). Vitamin C function and biochemistry in animals and plants.[libro] Gerard Science/ BIOS Scientific Publisher.

Avanzato D. (1991). Frutticoltura speciale Reda edizione per l’agricoltura.

Awad M., Young R.E. (1979). Postharvest variation in cellulase, polygalacturonase and pectin methyl esterase in avocado (Persea americana Mill., cv Fuerte) fruits in relation to respiration and ethylene production. Plant. Physiol. 64: 306-308.

Barka E.A., Kalantari S., Makhlof J., Arul J. (2000). Impact of UV-C irradiation of the cell wall degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. Aust J. Agric. Chem.48: 667-671

Barka E.A., Kalantari S., Makhlof J., Arul J.(2000). Effect of UV-C irradiation on lipid peroxidation markers during ripening of tomato (Lycopersicon esculentum L) fruits. Aust. Journ of Plant Physiology 27(2): 147-152.

Barnavon L., Doco T., Terrier N., Ageorges A., Romien C., Pellegrin P.(2001). Involvement of pectin methyl esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes

(2)

in the degree of methyl-esterification of cell wall pectins. Phytochemistry 58: 693-701.

Barry C.S, Llop-Tous M.I., Grierson D. (2000). The regulation of 1- aminocyclopropane-1- carboxilicacid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato.

Plant Phisiology 123: 979-986.

Bassi D., Magnani I., Rizzo M. (1998). Calcium and pectin influence peach flesh texture. Acta Hort, 465: 433-438.

Biale Jacob. (1964).Growth, maturation and senescence in fruits.

Science, 146, issue 3646, 880-888.

Björn L.O and Wang T.(2001) Is provitamin D a UV-B receptor in plants? Plant Ecology 154:3-8

Bonghi C., Ferrarese L., Ruperti B., Tonutti P., Ramina A. (1998).

Endo-β-1,4-glucanases are involved in peach fruit growth and ripening and regulated by ethylene. Physiologia Plantarum 102: 346-352

Bonghi C., Ramina A., Tonutti P., (2001). La fisiologia della maturazione dei frutti di pesco. ××׀v Convegno Peschicolo, pag.133-137.

Bordenave.M. Analysis of Pectin Methyl Esterases. Plant Cell Wall Analysis (1996). Modern Methods of Plant Analysis, 11, 165-180.

Bradford M.M. (1976). A rapid sensitive metod for the quantification of microgram quantities of protein utilizing the principle of protein-dye- binding. Analitical Biochemistry,72: 248-254.

Brecht J.A., Kader A.A., Ramming D.J. (1984). Description and postharvest physiology of some slow-ripening nectarine genotypes. J.

Am. Soc. Hortic. 109:596-600.

Brett C.T., Waldron K.W.(1996).Phisiology and biochemistry of plant cell walls,2nd edn. London,UK:Chapman & Hall.

Brovelli E.A., Brecht J.K., Sherman W.B., Sims C.A. (1999). Non melting-flesh trait in peach is no related to low ethylene production rate.

Hort Science 34(2): 313-315.

Brown B.A., Handland L.R., Jenkins G.I (2009). UV-B Action Spectrum for UV-R 8 Mediated HY5 Transcript Accumulation in Arabidopsis. Phytochemistry and Photobiology, 58:1147-1155.

Brummell D.A., Dalcin V., Crisosto C.H., Labawitch J.M. (2004).Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany 55: 2029-2039.

(3)

Brummell D.A., Harpster M.H., (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant molecular Biology 47: 311-340.

Brummell D.A., Harpster M.H., Civello P.M., Palys J.M., Bennett A.B., Dunsmuir P. (1999) Modification of Expansin protein Abundance in Tomato Fruit Alters Softening and Cell Wall Polymer Metabolism during ripening. The Plant Cell, 11: 2203-2216.

Burg SP 1973. Ethylene in plant growth. Proc. Natal Acad .Sci.USA 70, 591-597.

Burns J.G., Gardner P.T., O’Neil j., Crawford S., Morecraft I., McPhailD.B., Lister C., Matwews D., MacLean M.R., Lean M.E j., Duthie G.G., Crozier A. (2000) Relationship among Antioxidant Activity, Vasodilatation Capacity and Phenolic Content of Red Wines.

Journal of Agricoltural and Food Chemistry, 48 (2): .220-230.

Cabras e Martelli (2004) Chimica degli alimenti. Piccin editore.

Cara B., Giovannoni J.J. (2008). Molecular biology of ethylene during tomato fruit development and maturation Plant Science, 175:1087-1094.

Carpita N.C., Gibeaut D.M (1993). Structural models of primary cell walls in flawering plants: consitency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3,: 1- 30.

Casati P and Walbot V.(2004). Rapid transcriptome response of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biology, 5: R 16.

Castagna A., Chiavaro E., Dall’Asta C., Rinaldi M., Galaverna G., Ranieri A. (2013). Effect of postharvest UV-B irradiation on nutraceutical quality and physical properties of tomato fruits. Food Chemistry 137: 151-158.

Chae H.S., Kieber J.J.(2005) Role in ACS turnover in regulating ethylene biosynthesis. Trend in Plant Science 10, (6), : 291-296-Elsevier

Chang C., Bleeker A.B (2004) Ethylene BiologY. More than a Gas.

Plant Physiology,136: 2895-2899.

Chen Y. F., Etheridge N., Schallen E.G. (2005). Ethylene Signal Transduction . Ann. Bot. 95: 901-915.

Clareton M. (2000) Peach and nectarine production in France: trends, consumption and perspectives. In: Summaries Prunus breeders meeting, EMBRAPA, clima temperado Pelotas (RS), Brazil, November 29 to December:. 83–91.

(4)

Columba P. (2002). Alla scoperta della pesca ideale . Il Divulgatore.

3/4: 67-70.

Cosgrove D.J. (1997) Assembly and enlargement of the primary cell wall in plants. Ann. Rev Cell Dev Biol 13: 171-201

Cosgrove D.J. (2000 a). Expensive growth of plant cell wall. Physiol.

Biochemistry. 38 (1-2): 109-129.

Cosgrove D.J. (2000 b). Loosening of plant cell wall by expansins.

Nature, 407: 321-326.

Crisosto C., Crisosto G. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol. Technol. 38: 239–246.

Crisosto C.H. (2002) How do we increase peach consumption?

Proceedings of 5th International Symposium on Peach, ISHS, Acta Hort.

592: 601–605

Crisosto C.H. (2002) How do we increase peach consumption?

Proceedings of 5th International Symposium on Peach, ISHS, Acta Hort.

592, 601–605

Crisosto C.H., Garen D.,Cid L., Day K.R. (1999) Peach size affects storage, market life. California Agricolture 53 (5): 33-36.

Crisosto G.M., Crisosto C.H., Watkins M., (1997). Chemical and organoleptic description of white flesh nectarines and peaches. Acta Horticolturae 456:׀v International Peach Symposium.

(CTIFT) 1997. Pesche consommation et itinérarie qualité. Edition Centre Technique Interprofessionel des Fruits and Legumes.

Desmond R.L., Bassi D.(2008). The peach. Botany, Production and Uses. CAB International.

Dowson C.G., Brady C.J., Gooley A. (1992). Exopolygalacturonase protein accumulates late in peach fruit ripening. Physiol Plant. 85: 133- 140.

Eicholaz I., Huyskens-keil S., Keller S., Ulrich D., KrohL.W., Rhon S. (2011). UV-B induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinum corymbosum L.) Food Chemistry 126: 60-64.

FAOSAT (2010) FAO Statistical Databases Agrocolture. http//:apps fao.org.Accessed.

Favory J.J, Gruber H., Rizzini L., Oravecz A., Funks M., Albert A., Cloix C., Jekins G., Oakeley E.J., Seidlitz H.K., Nagy F.,Ulm R.

(2009). International of COP1 and UVR8 regulates UV-B induced

(5)

photomorphogenesis and stress acclimatation in Arabidopsis. The EMBO Journal 28: 591-601.

Fideghelli C (2002). The Italian National peach breeding project. Acta Hort, 592:73-79.

Fideghelli C. (1973). Manuale di peschicoltura Edagricole

Fisher R.L , Bennett A.B. (1991).Role of cell wall Hydrolases in fruit ripening. Annual Rewiew of Plant Physiology and Plant Molecular Biology 42: 675-703.

Fishman M.L., Levaj B., Gillespie D., Scorza R. (1993). Changes in the physico-chemical proprie of peach fruit pectin during on tree ripening and storage. J. Am. Soc. Hortic. Sci. 118: 343-349.

Fletcher A.E., Breeze E., Shetty P.S (2003) Antiooxidant vitamins and mortality in older persons: findings from the nutrition add-on study to medical research concil trial of assessment and management of older people in the community. American Journal of Chemical Nutrition, 78:

999-1010.

Frankhauser C., Chen M. (2008) Transposing phytochrome into the nucleus. Trend in Plant Science. 13, (11): 596-601.

Frohnmayer H e Staiger D. (2003). Ultraviolet-B radiation-mediated response in plants:balancyng damage and protection. Plant Physiology 133:1420-1428.

Gamberini Andrea. (2006). Marcatori e geni di controllo della tessitura della polpa di pesca. Tesi di Dottorato di Ricerca in Colture Arboree ed Agrosistemi Forestali, Ornamentali e Paesaggistici.

Ghiani A., Negrini N., Morgutti S., Baldin F., Nocito F.F., Spinardi A., Mignani I., Bassi D., Cocucci M. (2011) Melting of ‘Big Top’

Nectarine Fruit: Some Physiological, Biochemical, and Molecular Aspects. J. Am. Soc. Hort. Sci. 136 (1):61–68.

Ghiani A., Negrini N., Morgutti S., Nocito F.F., Spinardi A.M., Ortugno C., Mignani I., Bassi D., Cocucci M. (2007). Flesh softening in melting flesh, non-melting flesh and stony hard peaches:

endopolygalacturonase expression and phosphorilation of soluble polypeptides in relation to ethylene production. Advances in Plant Ethylene Research,.175-180.

Ghiani A., Onelli E., Aina R., Cocucci M., Citterio S. (2011). A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase (endo-PG) is

(6)

maily involved in pericarp textural changes, not in firmness reduction.

Journal of Experimental Botany, 1-12.

Giovannoni J.J (2001). Molecular biology of fruit maturation and ripening. Annual review of Plant Phisiology and Plant Molecular Biology 52: 725-749.

Giovannoni J.J (2004). Genetic Regulation of Fruit Develpoment and Ripening. The Plant Cell, 16: 170-180. Supplement.

Giovannoni J.J, DellaPenna D., Bennett A.B., Fisher R.L. (1989).

Expression of chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruits results in polyuronide degradation but not fruits softening. Plant Cell 1: 53-63.

Giusti A.M., Bignetti E., Cannella C.(2008) Exploring new Frontiers in Total Food Qualityd Definition and Assessment: from Chimical to Neurochemical Properties. Biopress Technology, 1: 130-142.

Goldberg Y.P., Nicholson D.W., Rasper D.M., Kalchman M.A., Koide H.B., Grahm R.K., Bromm M., Kezemi., Esfarjani P., Thornberry N.A., Vaillancourt J.P., Hayden M.R. Clavage of huntingtin by apopain, a proapoptotic cysteina protease, is modulated by the polyglutamine tract. Nature genetics 13, 442-449

Gonzales-Aguilar G., Wang C.Y., Buta G.J.(2004). UV-C irradiation reduce breckdown and chilling injury of peaches during cold storage. J.

Sci .Food Agric. 84: 415-422.

Gou H and Ecker J.R (2004). The Ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 7 (1): 40-42.

Gou H and Ecker J.R.(2003) Plant Responses to Ethylene Gas are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell, 115: 667-677.

Gross K.C. (1982). A rapid and sensitive spectrophotometric method for assaying poligalacturonase using 2-cyanoacetamide. Hort Science 17:933-934.

Hadfield K.A., Bennett A.B. (1998). Polygalacturonase: many genes in search of a function. Plant Physiol. 117: 337-343

Hagen S.F.,Borge G.I., Bengtsson G. B, Bilger W., Berge A., Haffner K. Solhaung K.A. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh cv.

Aroma): effect of postharvest UV-B irradiation. Postharvest Biol.

Technol. 45, 1-10.

(7)

Haji T., Yaegaki H., Yamaguci M. (2001). Changes in ethylene production and flesh firmness of meling, nonmelting and stony hard peaches after harvest J.Japan. Soc.Hort.Sci. 70 (4): 458-459

Haji T., Yaegaki H., Yamaguci M. (2003). Softeniong and stony hard peaches by ethylene and the induction of endogenous ethylene by 1- Aminocyclopropane -1-Carboxilic-Acid. (ACC) J. Japan. Soc. Hort. Sci.

72 (3): 212-217.

Hayama H., Ito A., Moriguchi T., Kashimura Y. (2003). Identification of a new espansi gene closely associated with peach fruit softening.

Postharvest Biology and Technology 29: 1-10.

Hayama H., Shimada T., Fujii H., Ito a., Kashimura Y. (2006).

Ethylene-regulation of fruit softening and softening related genes in peach. J. Exp. Botany. 57: 4071-4077.

Hayama H., Shimada T., Fujii H., Ito A., KashimuravY. (2006 a).Ethylene regulation of fruit softening and softening-related genes in peach. J. Exp. Bot. 57: 4071-4077.

Hayama H.,Shimada T., Haji T., Ito A., Kashimura Y.,Yoshioka H.

(2000). Molecolar cloning of a ripening-related espansi cDNA in peach:

evidence for no relationship between espansi accumulation and change in fruit firmness during storage. Journal of Plant Physiology 157: 567-573

He J.M., She X.P., Meng Z.N., Zhao W.O.(2004). Reduction of Rubisco amount by UV-B radiation is related to increate H2O2 content in leaves of mug bean seedlings. Center of Bioinf-School Life Science and Technology 30: 291-296.

Hewett E.W., Kom H.O., Lallu N. (1999). The role of ethylene in kiwifruit softening. Acta Horticulturae, 498: 203-216.

Hilaire C., Mathieu V., Scandella D. (2000). La teneur en sucres des peches et nectarines. 2e partie. Infos-Ctifl 162: 42–45.

Huber D.J (1983). The Role of Cell Wall Hydrolases in Fruit Softening.

Horticultural Reviews.5, 169-219.

Internodato R., Rosa M., Nieva C.B., Gonzáles J.A., Hilae M., Prado F.E. (2011). Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Envinoramental and Experimental Botany 70:204-211.

Jen J.J., Robinson M.L. (1984). Pectolytic enzymes in sweet bell peppers (Caspicum annum L.) J. Food Sci. 49: 1085-1087.

(8)

Jordan B.R., Chlow W.S., Strid A., Anderson J. (1991). Reduction in CAB and PBS RNA transcript in response to supplementary UV-B radiation. Febbs. Lett. 5-8.

Kaewsuksaeng S., Urano I., Aiamla-OR S., Shigyo M., Yamauchi N.

(2011). Effect pf UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan) fruit. Postharvest Biology and Thecnology 61:124-130.

Kalt Wihlemina.(2005) Effects of Production and Processing Factors on major Fruit and Vegetable Antioxidants. Journal of Food Science ,(70),.R11-R19.

Kaur C and Kapoor H.C (2001).Antioxidants in peach fruits and vegetables. The Millennium’s health. International Journal of Food Science and Technology, 36:703-725.

Klee H J.(2004) Ethylene Signal Transduction. Moving beyond Arabidopsis. Plant Physiology, 135: 660-667.

Kovács E., Keresztes A. (2002). Effects of gamma and UV-B/C radiation on plant cells. Micron, 33, (2):199-210.

Kramer M., Sanders R., Bolkan H., Waters C., Sheeny R.E., Haiatt W.R. (1992). Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase processing, firmness and disease-resistance.

Postharvest Biology and Technology vol 1, Issue 3 Pages 241-255.

Laemmli (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Langley K.R., Martin A., Stenning R., Murray A.J., Hobson G.E., Schuch W.W., Bird C.R. (1994). Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity.

Journal of .Science of Food and Agricolture. 66: 547-554

Lazzeri Valerio (2009). Studio sull’effetto della schermatura UV-B sui frutti di pomodoro Wilde type e del mutante fotomorfogenico hp-1:

aspetti biochimici e molecolari. Tesi di dottorato di ricerca.

Lee K W., Lee H.J., Surh Y.J., Lee C.Y (2003). Vitamin C and cancer chemoprevention: reappraisal. American Journal of Clinic Nutrition, 78:

1074-1078.

Lester H.A., Corey J.L., Davidson N., Brecha N., Quick M.W. (1994).

Protein kinase c modulates the activity of a cloned gamma-aminobutyric acid transporter espresse in Xenopus oocites via regulated subcellular redistribution of the transporter The Journal of Biological Chemistry, 269: 14759-14767.

(9)

Liu C., Han X., Cai L., Lu X., Ying T., Jiang Z (2011).Postharvest UV-B irradiation mantains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biology and Technology, 59:232-237.

Longo C. (1986). Biologia vegetale morfologia e fisiologia. Unione topografica–Editrice Torinese.

Maffei M. Fisiologia vegetale Piccin (1998).[libro].

Marini R. P. (2002). Tree menagement of improving peach fruit quality.

Rewiew presented at the Mid Atlantic Fruit and Vegetables Convention.

Marini R.P (2002). Tree menagement of improving peach fruit quality

Marìn-Rodriguez M.C., Orchard J., Seymur G.B. (2002) Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany 53, 2115-2119.

McMurchie E.J., McGlasson W.B., Eaks I. L. (1972)

Micheli F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trend in Plant Science, 6. (9),:414- 419 Elsevier.

Moore S., Vrebalov J., Paytron P.,Giovannoni J.J. (2002) Use of genomic tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot.53:2023-2030.

Morgutti S., Negrini N., Mignani I., Bassi D., Cocucci M. (2005).

Flesh softening and fosforilation of soluble polypeptides in relation to ethylene production in Prunus persica fruits with different ripening patterns. Acta Hortic 682: 155-162.

Morgutti S., Negrini N., Nocito F.F., Ghiani A., Bassi D., Cocucci M.

(2006). Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with non melting and melting flesh fruit phenotypes. New Phytologist.

171:315-328.

Murr D.P and Yang S.F, (1975) Conversion of 5-methylthioadenosine to methionine by apple tissue. Phytochemistry 14: 1291-1292.

Newmann P.A. Sratosferic Photochemistry. Chapter 5, section 4.2.8. on elettronic textbook.

Nishina A., Kuboto K., Kameoka H., Osowa T.(1991). Antioxiding component, musizin in Rumex japonicus. HOUTT. Journal American Oil Chem. Soc. 68:.735-739.

(10)

Okamura M. (1980). An improbal method for determination of L- ascorbic acid and L- deydroascorbic acid in the blood plasma. Clin Chim Acta. 103: 259-268.

Oravecz A., Braumann A., Màtè Z., Brzekinzka a., Molinier J., Oakeley E.J., Adam E., Shäfer E., Nagy I., Ulm R. (2006).

Constitutively Photomorphogenic 1 is Required for the UV-B Response in Arabidopsis. Plant Cell 18 (8): 1975-1990.

Orr G., Brady C. (1993). Relationship of endopolygalacturonase activity to frut softening in a freestone peach. Postharvest Biol. Tec. 3:

121-130.

Paoletti R., Sies H., Burg J., Grossi E., Paoli A. (1998). [libro]

Vitamina C. The state of the art in diseases prevention sixty years after the Nobel Prize. ISBN 88-470 0014-9. Springer Verlag, Italia Milano Books google com

Peace C.P., Crisosto C.H., Gradziel T.M. (2005).

Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach .Mol. Breeding 16: 21-31

Piciocchi Natalia .norma ENISO 8402; rivista 74, 2009.

Pietta Pier-Giorgio. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63 (7): 1035-1042.

Pombo M.A., Dotto M.C., Martínez G.A., Civello P.M (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology. 51: 141-148

Pressey R., Avants J.K. (1978) Differences in polygalacturonase composition of clingstone and freestone peaches. J. Food Sci. 43: 1415- 1417, 1423.

Pressey R., Avants J.K., (1973). Separation and characterization of endopolygalacturonase and exopolygalacturonase from peaches. Plant Physiology, 52: 525-526.

Pressey R., Hinton D.M., Avants K. (1971). Poloygalacturonase activity and solubilization of pectin in peaches during ripening J. Food Sci. 36: 1070-1073.

Ramina A., Chang C., Giovannoni J., Klee H., Perata P ., Wolterning E. (eds) (2007). Advances in Plant Ethylene research. Processing in the 7th. Int. Symp on the Plant Hormone Ethylene. Dordrecht the Netherlands. 175-180

(11)

Ramina A., Rascio N.(1994) Cell Enlargement and Cell Separation During Peach Fruit Development. International Journal of Plant Science 155: 49-56

Rau G.U., Paran I. (2003). Polygalacturonase: a candidate gene for the soft flesh and decidous fruit mutation in Cospicum. Plant Molecular Biology.

Ren C., Kermode A.R.(2000). An increase in pectinmethylesterases activity accompanies dormancy breakage and germination of yellow ceder seeds. Plant Physiology, 124 (1): 231-242.

Renzo Angelini. Il pesco (2008) Coltura & Coltura. Collana ideata e coordinata da Renzo Angelini. Bayer Crop Science Srl.

Rizzini L., Favory J.J., Cloix C., Faggionato D., O’Hara A.,Kaiserly E., Baumeister R., Shafer E., Nagy F., Jenkins G.I., Ulm R. (2011).

Perception of UV-B by the Arabidopsis UVR 8 Protein. Science 332 (6025): 103-106

Rose J. K. C and Bennett A.B (1999). Cooperative disassembly of the cellulase xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science 4 (5): 176-183.

Rose J. K. C., Cosgrove D.J., Albersheim P., Darville A.G., Bennett A.B. (2000). Detection of expansins proteins and activity during tomato fruit ontogeny. Plant Physiology 123:1583-1592.

Ruperti B., Bonghi C., Tonutti P., Rasori A., Ramina A. (2011) Characterization and expression of two members of peach 1- amynociclopropane-1-carboxilate oxidase gene family. Physiologia Plantarum. 111,(3): 336-344.

Santocono M., Zuttia M., Berrettini M., Fedeli D., Falcioni D. (2006).

Influence of astaxanthin, xeaxanthin and lutein on DNA damage and repair in UV-A irradiated cells. Journal of Photochemistry and Photobiology B: Biology,85,(3): 206-215

Shägger H., Von Jagow G.( 1897). Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1-100 KDalton. Anal. Biochem. 166: 368-379.

Sies H.(1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82,: 291-295.

Smith C.J.S., Watson C.F., Morris P.C., Bird C.R., Seymour G.B., Gray J.E., Arnold C., Tucker G.A., Shuch W., Handing S., Grierson D (1990). Inheritance and effect on ripening and antisense

(12)

polygalacturonase genes in transgenic tomatoes. Plant. Mol .Biol. 14:

369-379.

Soldatini Gian Franco. (1996). Gli antiossidanti vegetali. Ruolo delle sostanze antiossidanti della dieta nel mantenimento della salute. Centro studi sull’alimentazione Gino Alfonso Spada, Milano , pag.67-105.

Srilaong Y., Aiamla-OR S., Saontorhwat A., Shigyo M., Yamauchi N.

(2011). UV-B irradiation retards chlorophyll degradation in lime (Citrus latifolia Tan) fruit. Postharvest Biology and Thecnology 59:110-112.

Star Cecil, Biology Concepts, Applications. Thompson Brooks, Coll (2005) ISBN053446226X

Stec M.G.H., Hodgson J.A., Macrae E.A., Triggs C.M (1989). Role of fruit firmness in the sensory evaluation of kiwi fruit (Actinidia deliciosa cv Hayward). J. of the Science of Fruit and Agriculture 47: 417-433.

Stevens C., Liu J., Kahan V.A., Lu J.Y., Kabwe M.K., Wilson C.L., Ygwegbe E.C.K., Calutz E., Droby S. (2004). The effects of low-dose ultraviolet light-c tretment on polygalacturonase activity delay ripening and Rhizopus soft rot development of tomatoes. J. Crop Protection 23:

551-554.

Tarquini Filippo (2011). Effetti del trattamento con radiazione UV-B in post raccolta sul potenziale nutraceutico di frutti di pomodoro. Tesi di laurea.

Tatsuki M., Haji T., Yamaguchi M. (2006). The involvement of 1- aminicyclopropane -1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. Journal of Experimental Botany, 57: 1281-1289.

Tavarini Silvia. (2008). Aspetti qualitativi e salutistici dei frutti da consumo fresco. Tesi di Dottorato di ricerca in “Scienze delle Produzioni vegetali ECO-compatibili”. Università di Pisa, Facoltà di Agraria.

Tonutti P., Bonghi C., Ramina A. (1996). Fruit firmness and ethylene biosynthesis in three cultivars of peach (Prunus persica L. Batsch).

J.Hort.Sci. 71: 141-147.

Torres C.A., Andreus P.K. (2006). Changes in antioxidant metabolites enzymes and pigment in fruit exocarp of four tomato genotypes, beta contenute ,hight pigment-1 , ripening inhibitor. Plant Physiology and Biochemistry. 44: (11-12) 806-818.

Trainotti L., Spolaore S., Ferrarese L., Casadoro G (1997).

Characterization of ppEG1, a member of multigene family which encodes endo-β-1,4-glucanase in peach. Plant Molecular Biology,34:

791-802

(13)

Trainotti L., Zanon D., Casadoro G. (2003). A cell wall oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J. Exp. Bot. 389: 1821-1832.

Treatment of Fruit with Propilene gives Information abaut the Biogenesis of Ethylene. Nature 273, 235-236.

Ulijas A.T., Viestra R.D. (2011). Phytochrome structure and phytochemistry: recent avances toward a complete molecular picture Curr. Opin. Plant. Biol.13: 700-747.

Valli R. (2001). Arboricoltura generale e speciale .Edizioni Agricole Calderini Edagricole s.r.l.

Van Resen J. J. S., Vredenerg W.J., Rodriguez G.C. (2007). Time sequence of the damage to acceptor and donor sides of photosystem 2 by UV-B radiation as evaluated by chlorophyll a fluorescience. Photosynth.

Res. 94: 291-297.

Vanoli M., Visai C., Rizzoli A (1995). Peach quality: influence of ripening and cold storage. ISHC. Horticolturae 379. International Symposium on Post Harvest Factors and Thecnology.

Vanzani P., Rossetto M., De Marco V., Rigo A., Scarpa M.(2011).

Efficiency and capacity of antioxidant rich foods in trapping peroxyl radicals: A full evaluation of radical scavenging activity. Food Research International , 44 ,(1): 269-275.

Ventura M., Magnanimi E.,Sansavin S. (1998) Sistema automatico di misurazione dei gas nella maturazione dei frutti . Rivista di Frutticoltura e di Ortofloricoltura 60: 63-67.

Vertuani S., Angusti A, Manfredini S (2004). The Antioxidants and Pro-Anthioxidant Network: an Overview. Current Pharmaceutical Design, Volume 10, Numero 14, May 2004, pp.1677-1694 (18).

Vicente A.R., Pineda C., Lemoine L., Civello P.M., Martinez G.A., Chaves A.R (2005). UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology 35: 69-78.

Visai C., Vanoli M. Caratteristiche aromatiche durante l’accrescimento e la maturazione di frutti di pesco [citazione] ××׀Convegno Peschicolo 1993.

Wade H.K., Bibikova T.N., Valentine W.J., Jenkins G. (2001).

Interaction within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. The Plant Journal, 25 ,(6): 675-685.

(14)

Wakabayashi K.,Chun J.P., Huber D.J (2000). Extensive solubilization and depolimerization of cell wall polysaccharides during avocado (Persea americana) ripening involved concentred action of polygalacturonase and pectinmethylesterases. Physiologia Plantarum, 108, (4): 345-352.

Wang K.L.C., Li H., Ecker J.R.(2002) Ethylene Biosynthesis and Signaling Networks. The Plant Cell May, (14): 131-151.

Wargovich M. J (2000). Anticancer and properties of fruits and vegetables. Horticolturae Science , 35: 573-575.

Wills R.B.H. & Greenfield H. (1981) Methodogical Considerations in producing data for food composition tables. Food Technology Australia (33): 122-124.

Xue L., Zhang Y., Zhang T., An L., Wang X. (2005). Effects on Enhanced Ultraviolet-B Radiation on Algae and Cyanobacteria. Critical Review in Microbiology.(31): 79-89.

Yamagami T., Tsuchisaka A., Yamade k., Haddon W.F., Harden L.A., Theologist A. (2003). Biochemical Diversity among the 1- Aminocyclopropane -1-carboxylate Synthase Isozymes Encoded by the Arabidopsis Gene Family. The Journal of Biological Chemistry, 278:

49102-49112.

Yamasaki H., Sakihama Y.,Ikeharan N.(1997). Flavonoid Peroxidase Reaction as a Dtoxification Mechanism of Plant Cells against H2O2 Plant Physiology,.115: 1405-1412.

Yi C and Deng X.W. (2005). COP1-from plant photomorphogenesis to mammalian tumorigenesis. Trends in Cell Biology, 15, (11): 618-625.

Riferimenti

Documenti correlati

1 - Geographic distribution of Zieglerodina eladioi (Valenzuela-Ríos, 1994). a) Occurrence of the species: letters indicate the areas of origin of the collections studied in this

della medesima legge dispone, poi, che “le dichiarazioni per l’acquisto, la conservazione, il riacquisto e la rinunzia alla cittadinanza e la prestazione del giuramento

On the other hand, (1) quasars are anisotropic sources even if the degree of anisotropy is expected to be associated with the viewing angle of the accretion disk in radio-quiet

In this specific case, we can adopt Radford’s (2004) analysis of non thematic verbs and posit that copular be has a strong feature when [+fin] which triggers movement from V to T,

Nonostante la notevole divergenza delle sequenze amminoacidiche nella famiglia delle OBP, come illustrato nell’Introduzione, è stato possibile riconoscere membri di questa classe

Se ne deduce che le differenti caratteristiche osservate nelle stelle che compongono un ammasso, dal momento che queste hanno stessa età, distanza e composizione chimica,

I risultati ottenuti dimostrano che, in planarie trattate con dsDjPHB2, incapaci di formare il blastema, a 7 giorni dal taglio (seconda rigenerazione), sono evidenziabili