Problem 11840
(American Mathematical Monthly, Vol.122, May 2015) Proposed by G. Stoica (Canada).
Let z1, . . . , zn be complex numbers. Prove that
n
X
k=1
|zk|
!2
−
n
X
k=1
zk
2
≥
n
X
k=1
|Re(zk)| −
n
X
k=1
Re(zk)
!2
.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
Let zk= xk+ iyk for k = 1, . . . , n, then, by Cauchy-Schwarz inequality,
|zj||zk| =q
|xj|2+ |yj|2·p|xk|2+ |yk|2≥ |xj||xk| + |yj||yk| ≥ |xj||xk| + yjyk. Hence
n
X
k=1
|zk|
!2
−
n
X
k=1
zk
2
= 2 X
1≤j<k≤n
|zj||zk| − 2 X
1≤j<k≤n
Re(zjzk)
= 2 X
1≤j<k≤n
(|zj||zk| − (xjxk+ yjyk))
≥ 2 X
1≤j<k≤n
(|xj||xk| − xjxk)
=
n
X
k=1
|xk|
!2
−
n
X
k=1
xk
2
=
n
X
k=1
|xk| +
n
X
k=1
xk
! n X
k=1
|xk| −
n
X
k=1
xk
!
≥
n
X
k=1
|xk| −
n
X
k=1
xk
!2
=
n
X
k=1
|Re(zk)| −
n
X
k=1
Re(zk)
!2 ,
where we also applied the inequalityPn
k=1|xk| ≥ |Pn
k=1xk|.