• Non ci sono risultati.

Now, we note that 0 ≤ −ln(1 − xk) xk ≤ −2kln(1 − x) ∀x and − Z 1 1/2 ln(1 − x

N/A
N/A
Protected

Academic year: 2021

Condividi "Now, we note that 0 ≤ −ln(1 − xk) xk ≤ −2kln(1 − x) ∀x and − Z 1 1/2 ln(1 − x"

Copied!
1
0
0

Testo completo

(1)

Problem 12189

(American Mathematical Monthly, Vol.127, June-July 2020) Proposed by H. Katsuura (USA).

Evaluate

Z 1 0

(k + 1)xk−Pk j=0xjk xk(k+1)−1 dx , wherek is a positive integer.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let 0 < t < 1, then Z t

0

(k + 1)xk−Pk j=0xjk xk(k+1)−1 dx =

Z t 0

1

xk(k+1)−1d(xk+1) − Z t

0

1 xk−1dx

= Z tk+1

0

dx xk−1 −

Z t 0

dx xk−1 =

Z t tk+1

dx 1 − xk

= 1 k



−ln(1 − xk) xk−1

t

tk+1

+k − 1 k

Z t tk+1

−ln(1 − xk) xk dx.

Now, we note that

0 ≤ −ln(1 − xk)

xk ≤ −2kln(1 − x) ∀x ∈ [1/2, 1), and − Z 1

1/2

ln(1 − x) = 1 + ln(2) 2 imply thatR1

1/2

ln(1−xk)

xk dx is finite and therefore

t→1lim Z t

tk+1

−ln(1 − xk)

xk dx = 0.

Moreover, by letting t = 1 − s with s → 0+,



−ln(1 − xk) xk−1

t

tk+1

= −ln(1 − (1 − s)k)

(1 − s)k−1 +ln(1 − (1 − s)k(k+1)) (1 − s)k21

= −ln(ks + o(s))

1 + o(1) +ln(k(k + 1)s + o(s)) 1 + o(1)

= (− ln(ks) + ln(k(k + 1)s)) (1 + o(1))

= ln(k + 1) + o(1) → ln(k + 1).

Therefore, we may conclude that Z 1

0

(k + 1)xk−Pk j=0xjk

xk(k+1)−1 dx = lim

t→1

Z t 0

(k + 1)xk−Pk j=0xjk

xk(k+1)−1 dx = ln(k + 1)

k .



Riferimenti