• Non ci sono risultati.

2t−1 X j=0 (−1)j 3j + 1 + 2t−1 X j=0 (−1)j 3j + 2

N/A
N/A
Protected

Academic year: 2021

Condividi "2t−1 X j=0 (−1)j 3j + 1 + 2t−1 X j=0 (−1)j 3j + 2"

Copied!
2
0
0

Testo completo

(1)

Problem 11364

(American Mathematical Monthly, Vol.115, May 2008) Proposed by P. P. Dalyay (Hungary).

Let p be a prime greater than 3, and t the integer nearest p/6.

(a) Show that if p = 6t + 1, then

(p − 1)!

2t−1

X

j=0

(−1)j 3j + 1 +

2t−1

X

j=0

(−1)j 3j + 2

 ≡0 (mod p).

(b) Show that if p = 6t − 1, then

(p − 1)!

2t−1

X

j=0

(−1)j 3j + 1 +

2t−2

X

j=0

(−1)j 3j + 2

 ≡0 (mod p).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let ω = e2πi/3, then

p−1

X

k=1

ωkp k



= (1 + ω)p−1 − ωp= e(6t±1)πi/3−1 − e2(6t±1)πi/3= e±πi/3−1 − e±2πi/3= 0 On the other hand, if p = 6t + 1 then the rhs can be written as follows

p−1

X

k=1

ωkp k



=

2t

X

j=1

ω3j p 3j

 +

2t−1

X

j=1

ω3j+1

 p 3j + 1

 +

2t−1

X

j=0

ω3j+2

 p 3j + 2



=

2t

X

j=1

p 3j

 p − 1 3j − 1

 +

2t−1

X

j=0

ω p 3j + 1

p − 1 3j

 +

2t−1

X

j=0

ω2 p 3j + 2

 p − 1 3j + 1



= p

2t

X

j=1

1 3j

 p − 1 3j − 1

 +

2t−1

X

j=0

ω 3j + 1

p − 1 3j

 +

2t−1

X

j=0

ω 3j + 2

 p − 1 3j + 1



 Therefore, by taking the imaginary part we have that

2t−1

X

j=0

1 3j + 1

p − 1 3j



2t−1

X

j=0

1 3j + 2

 p − 1 3j + 1



= 0.

Since for 0 ≤ k ≤ p − 1 (p − 1)!p − 1

k



= (p − 1)(p − 2) · · · (k + 1) · (p − 1)(p − 2) · · · (p − k) ≡ (−1)k+1 (mod p) then the above identity gives (a).

If p = 6t − 1 then the rhs of the first equation can be written as follows

p−1

X

k=1

ωkp k



=

2t−1

X

j=1

ω3j p 3j

 +

2t−1

X

j=1

ω3j+1

 p 3j + 1

 +

2t−2

X

j=0

ω3j+2

 p 3j + 2



=

2t−1

X

j=1

p 3j

 p − 1 3j − 1

 +

2t−1

X

j=0

ω p 3j + 1

p − 1 3j

 +

2t−2

X

j=0

ω2 p 3j + 2

 p − 1 3j + 1



= p

2t

X

j=1

1 3j

 p − 1 3j − 1

 +

2t−1

X

j=0

ω 3j + 1

p − 1 3j

 +

2t−2

X

j=0

ω 3j + 2

 p − 1 3j + 1



(2)

Hence, by taking the imaginary part we have that

2t−1

X

j=0

1 3j + 1

p − 1 3j



2t−2

X

j=0

1 3j + 2

 p − 1 3j + 1



= 0

which gives (b). 

Riferimenti