• Non ci sono risultati.

De…nition 1 We de…ne for a function f : R ! R f (t ) := lim

N/A
N/A
Protected

Academic year: 2021

Condividi "De…nition 1 We de…ne for a function f : R ! R f (t ) := lim"

Copied!
15
0
0

Testo completo

(1)

1 Introduction

In the next sections we shall describe the mathematical model of a set of particles which move freely as independent Brownian motions but may proliferate at random times with certain random time-dependent rates of proliferation.

Let us anticipate a few notations.

De…nition 1 We de…ne for a function f : R ! R f (t ) := lim

s%t

f (s); the left limit of f at t;

Jf (t) := f (t) f (t ); the jump size of f at t:

Further, let (X

t

)

t 0

be a stochastic process. We de…ne its quadratic variation, when the limit exists and is independent of the partitions,

[X]

t

= P lim

k!1 n 1

X

j=0

X

tk

j+1^t

X

tk j^t

2

;

where the maximal distance of two consequent sites in the partition f0 = t

k0

< t

k1

< <

t

kn

= T g converges to 0 as k ! 1. We denote the continuous part of the quadratic variation by [X]

c

, i.e.

[X]

ct

= [X]

t

X

s t

JX

s2

:

2 The model

Assume we have a …ltered probability space ( ; F; F

t

; P ), stopping times T

0a;N

< T

1a;N

, independent Brownian motions B

at

,

I

a;N

:= [T

0a;N

; T

1a;N

) X

ta;N

=

( if t = 2 I

a;N

X

(a; );N

T1(a; );N

+ B

ta

if t 2 I

a;N

and X

a;N

T1a;N

= lim

t"T1a;N

X

ta;N

. Or

X

ta;N

=

( if t = 2 I

a;N

X

a;N

T0a;N

+ B

ta

if t 2 I

a;N

where X

a;N

T0a;N

= X

(a; );N

T1(a; );N

= lim

t"Ta;N

1

X

ta;N

.

(2)

It remains to specify T

1a;N

, given T

0a;N

and the other objects. Assume we have, on ( ; F; F

t

; P ) independent standard Poisson processs N

t0;a

t 0

and denote their …rst jump times by

0;a

(N

t0;a

is equal to zero for t <

0;a

and equal to 1 at t =

0;a

; recall that

0;a

> 0 with probability one). Assume we have continuous adapted non-decreasing process

a;N

t t 0

, equal to zero for t T

0a;N

, with the following property: either

a;Nt

<

0;a

for all t, and in this case we set T

1a;N

= +1, or there exists T

1a;N

such that

a;Nt

<

0;a

for t < T

1a;N

and

a;Nt

=

0;a

for t T

1a;N

. De…ne

N

ta;N

= N

0;aa;N t

:

The stopping time T

1a;N

is the …rst (and unique) jump time of N

ta;N

. More precisely, we have

N

ta;N

= 1

[Ta;N

1 ;1)

(t) : Indeed, if T

1a;N

= +1, where 1

[Ta;N

1 ;1)

(t) is the function identically equal to zero, we have

a;N

t

<

0;a

for all t, hence N

0;aa;N t

is also identically equal to zero; if T

1a;N

< 1 and t < T

1a;N

, where 1

[Ta;N

1 ;1)

(t) = 0, we have

a;Nt

<

0;a

and thus N

0;aa;N t

= 0; …nally, if T

1a;N

< 1 and t T

1a;N

, where 1

[Ta;N

1 ;1)

(t) = 1, we have

a;Nt

=

0;a

and thus N

0;aa;N t

= N

0;a0;a

= 1.

3 Preliminaries on Itô formula for processes de…ned on ran- dom time intervals

3.1 SDEs on random time intervals In the sequel, let us always assume T

1

> T

0

.

When we write

dX

t

= b

t

dt +

t

dB

t

on t 2 [T

0

; T

1

] where T

0

; T

1

are stopping times, we mean that

X

t

= X

T0

+ Z

t

T0

b

s

ds + Z

t

T0

s

dB

s

for t 2 [T

0

; T

1

] : When we write

dX

t

= b

t

dt +

t

dB

t

on t 2 (T

0

; T

1

) where T

0

; T

1

are stopping times, we mean that

dX

t

= b

t

dt +

t

dB

t

on t 2 T

00

; T

10

for every pair of stopping times T

00

T

10

2 (T

0

; T

1

). Similar de…nitions apply to other cases,

like [T

0

; T

1

).

(3)

3.2 Itô formula on random time intervals If 2 C

1;2

and

X

t

= X

T0

+ Z

t

T0

b

s

ds + Z

t

T0

s

dB

s

for t 2 [T

0

; T

1

) then

(t; X

t

) = (T

0

; X

T0

) + Z

t

T0

(@

s

(s; X

s

) ds + r (s; X

s

) b

s

) ds + Z

t

T0

r (s; X

s

)

s

dB

s

+ Z

t

T0

1

2 T r

s Ts

D

2

(s; X

s

) ds for t 2 [T

0

; T

1

):

3.3 SDEs for processes with jumps Assume, for the process Y

t

2 R, we have

Y

t

= Y

T0

+ Z

t

T0

b

s

ds + Z

t

T0

s

dB

s

for t 2 [T

0

; T

1

) Y

t

= 0 otherwise.

Then Y

t

satis…es, for all t 0, the following identity:

Y

t

= Z

t

0

1

s2[T0;T1)

b

s

ds + Z

t

0

1

s2[T0;T1) s

dB

s

+ Y

T0

1

t T0

Y

T1

1

t T1

for t 0:

The proof of this identity is simply made by checking the validity for t < T

0

, then for t 2 [T

0

; T

1

) and …nally for t T

1

.

If needed, we may formally write

d (Y

t

) = (

t=T0

1

T0>0 t=T1

) Y

t

+ 1

t2[T0;T1)

b

t

dt + 1

t2[T0;T1) t

dB

t

:

4 Back to our case

Proposition 2 Let be a function from R

d

f g ! R, of class C

2

on R

d

, equal to zero at . Then

X

ta;N

= X

a;N

T0a;N

1

t Ta;N

0

X

a;N

T1a;N

1

t Ta;N

1

+

Z

t 0

1

s2Ia;N

r X

sa;N

dB

sa

+ 1 2

Z

t 0

1

s2Ia;N

X

sa;N

ds:

(4)

Proof. We have

X

ta;N

= 0 if t = 2 I

a;N

X

ta;N

= X

a;N

T0a;N

+ Z

t

T0a;N

r X

sa;N

dB

sa

+ 1 2

Z

t T0a;N

X

sa;N

ds if t 2 I

a;N

:

Hence it is su¢ cient to apply the result of Subsection 3.3.

Set

S

tN

:= 1 N

X

a2 t

Xta;N

= 1 N

X

a2

1

t2Ia;N

Xta;N

so that, for as above (namely ( ) = 0) S

tN

; = 1

N X

a2

1

t2Ia;N

X

ta;N

= 1 N

X

a2

X

ta;N

:

Proposition 3 Let be a function from R

d

f g ! R, of class C

2

on R

d

, equal to zero at . Then

S

tN

; = S

0N

; + 1 N

X

a2

X

a;N

T1a;N

1

t Ta;N 1

+ M

t1; ;N

+ 1 2

Z

t 0

S

sN

; ds where

M

t1; ;N

:= 1 N

X

a2

Z

t 0

1

s2Ia;N

r X

sa;N

dB

sa

:

Proof. We have S

tN

; = 1

N X

a2

X

a;N

T0a;N

1

t Ta;N 0

1 N

X

a2

X

a;N

T1a;N

1

t Ta;N 1

+ 1 N

X

a2

Z

t 0

1

s2Ia;N

r X

sa;N

dB

sa

+ 1 N

X

a2

1 2

Z

t 0

1

s2Ia;N

X

sa;N

ds

= 1 N

X

a2

X

a;N

T0a;N

1

t Ta;N

0

1 N

X

a2

X

a;N

T1a;N

1

t Ta;N

1

+ M

t1; ;N

+ 1 2

Z

t 0

S

Ns

; ds:

(5)

Now,

1 N

X

a2

X

a;N

T0a;N

1

t Ta;N

0

1 N

X

a2

X

a;N

T1a;N

1

t Ta;N

1

= S

0N

; + 1 N

X

a2

X

a;N

T1a;N

1

t Ta;N

1

: Indeed, in the …rst sum,

N1

P

a2

X

a;N

T0a;N

1

t Ta;N

0

, there are terms with T

0a

= 0, which sum-up to S

0N

; , and terms with T

0a

> 0, which mean that two new particles arise at time T

0a

and one particle dies; the particle which dies is included in the sum

N1

P

a2

X

a;N

T1a;N

1

t Ta;N 1

. The sum of two new particles minus the old particle is equal to one new particle, and a way

to describe the sum of only one new particle is

N1

P

a2

X

a;N

T1a;N

1

t Ta;N

1

. Recall that, in our scheme, we always have T

1a;N

> 0 (since T

1a;N

> T

0a;N

), hence there is no danger to add also particles already existing at time zero, in the sum

N1

P

a2

X

a;N

T1a;N

1

t Ta;N

1

. Proposition 4 Let be bounded (in addition to the previous properties). Then the process

M

t2; ;N

:= 1 N

X

a2

X

a;N

T1a;N

1

t Ta;N 1

1 N

X

a2

Z

t 0

X

sa;N

d

a;Ns

is a martingale, with respect to the …ltration G

t

:= F

t

.

Proof. We have

X

a;N

T1a;N

1

t Ta;N 1

= Z

t

0

X

sa;N

dN

sa;N

: It is known that, since N

ta;N

= N

0;aa;N

t

, the process N

ta;N a;Nt

is a G

t

-martingale; namely,

a;N

t

is the compensator of N

ta;N

(notice: these facts have an elementary proof in the case when

a;Nt

is deterministic; but the result is true also in the random case; a reference available on line is [1], lemma 3.2.

By the theory of stochastic integration with respect to point processes, the compensator of R

t

0

X

sa;N

dN

sa;N

is the Lebesgue-Stilties integral Z

t

0

X

sa;N

d

a;Ns

:

The di¤erence of the two processes, M

t2; ;N

, is a martingale (not only a local martingale,

due to the boundedness of ). The result remains true under summation (this require some

technical work, omitted).

(6)

Corollary 5 If

a;Nt

has the form

a;N

t

=

Z

t 0

1

s2Ia;N

X

sa;N

; S

sN

ds then

S

tN

; = S

0N

; + 1 2

Z

t 0

S

sN

; ds + Z

t

0

; S

sN

S

sN

; ds + M

t1; ;N

+ M

t2; ;N

:

Proof. We observe that 1

N X

a2

Z

t 0

X

sa;N

d

a;Ns

= 1 N

X

a2

Z

t 0

X

sa;N

1

s2Ia;N

X

sa;N

; S

sN

ds = Z

t

0

S

sN

; ; S

sN

ds:

Let us now take, as a particular case of (x), the function

N

(x

0

x). We write h

Nt

:=

N

S

tN

so, for instance, S

tN

;

N

(x

0

) = h

Nt

(x

0

). Renaming, at the end of the computation, x

0

by x, we get:

Corollary 6

h

Nt

(x) = h

N0

(x) + 1 2

Z

t 0

h

Ns

(x) ds + Z

t

0

N

; S

sN

S

sN

(x) ds + M

t1;N

(x) + M

t2;N

(x)

where

N

; S

Ns

S

sN

(x) denotes R

N

(x y) y; S

sN

S

sN

(dy) and M

t1;N

(x) := 1

N X

a2

Z

t 0

1

s2Ia;N

r

N

x X

sa;N

dB

sa

:

M

t2;N

(x) := 1 N

X

a2

N

x X

a;N

T1a;N

1

t Ta;N 1

Z

t 0

N

; S

sN

S

sN

(x) ds:

5 Estimates on the martingale terms

Let us recall a few general facts. Given a semi-martingale M

t

(di che regolarità? ) we associate to it the quadratic variation [M; M ]

t

and the predictable quadratic variation hM; Mi

t

, which is the predictable compensator of [M; M ]

t

. If M is a (local?) martingale, it is also the unique predictable process such that M

t2

hM; Mi

t

is a martingale (local?).

It follows

E M

t2

= E [hM; Mi

t

] = E [[M; M ]

t

] :

(7)

Example 7 If M

t

= B

t

, then [M; M ]

t

= t, hM; Mi

t

= t, E M

t2

= t.

Example 8 If N

t

is an increasing jump process with discrete jumps, then [N; N ]

t

= P

s t

(J N

s

)

2

.

Example 9 If the jumps have size 1, then [N; N ]

t

= N

t

and hN; Ni

t

is thus the compen- sator A

t

of N

t

itself. Set M

t

= N

t

A

t

and assume A

t

continuous (by a theorem, it is so if the jumps are not predicatble). Then [M; M ]

t

= [N; N ]

t

= N

t

, hM; Mi

t

= A

t

and

E M

t2

= E h

(N

t

A

t

)

2

i

= E [M

t

] = E [A

t

] :

Example 10 In particular, if N

t

= N

0t

, N

t0

standard Poisson, the previous facts hold with A

t

=

t

.

Example 11 If d

s

=

s

ds, H is predictable and bounded, and M

t

:=

Z

t 0

H

s

d N

0s s

= Z

t

0

H

s

dN

0s

Z

t

0

H

s s

ds then [M; M ]

t

= R

0

H

s

dN

0s t

. But, in case N

0t

= 1

[T;1)

(t), Z

t

0

H

s

dN

0s

= H

T

1

[T;1)

(t) = H

T

N

0t

and thus Z

0

H

s

dN

0s

t

= H

T

N

0 t

= H

T2

N

0t

= Z

t

0

H

s2

dN

0s

whose compensator (hence the compensator of [M; M ]

t

) is

hM; Mi

t

= Z

t

0

H

s2

d

s

: Summarizing,

E M

t2

= E H

T2

N

0t

= E Z

t

0

H

s2

dN

0s

= E Z

t

0

H

s2

d

s

:

Given two semi-martingales M

t(i)

(di che regolarità? ), i = 1; 2, we associate to them the joint or mutual variation M

(1)

; M

(2) t

and the predictable joint variation M

(1)

; M

(2) t

, which is the predictable compensator of M

(1)

; M

(2) t

. If M

(1)

; M

(2)

are (local) mar- tingales, is it true that M

(1)

; M

(2) t

is also the unique predictable process such that M

t(1)

M

t(2)

M

(1)

; M

(2) t

is a martingale (local?)? It would follow

E h

M

t(1)

M

t(2)

i

= E hD

M

(1)

; M

(2)

E

t

i

= E hh

M

(1)

; M

(2)

i

t

i :

Notice that, if M

(1)

; M

(2)

are jump processes that do not jump simultaneously, then M

(1)

; M

(2) t

= 0, hence E h

M

t(1)

M

t(2)

i

= 0.

(8)

Example 12 If a = 1; 2, N

ta

= N

0;aa

t

, N

t0;a

independent standard Poisson, d

as

=

as

ds, H

a

predictable and bounded, and

M

t(a)

:=

Z

t 0

H

sa

d N

0;aa s

as

= Z

t

0

H

sa

dN

0;aa s

Z

t 0

H

sa as

ds

= H

Taa

N

0;aa t

Z

t 0

H

sa as

ds

then h

M

(1)

; M

(2)

i

t

= h

H

T11

N

0;11

; H

T22

N

0;22

i

t

= 0 since they do not jump simultaneously. Hence E h

M

t(1)

M

t(2)

i

= 0.

5.1 First martingale term

By taking a …nite sum approximation and then passing to the limit, one can check that E M

t1; ;N 2

= 1

N

2

X

a2

E

" Z

t 0

1

s2Ia;N

r X

sa;N

dB

sa

2

# :

We have used the fact that E

Z

t 0

1

s2Ia;N

r X

sa;N

dB

sa

Z

t

0

1

s2Ia0;N

r X

sa0;N

dB

as0

= 0

for a 6= a

0

, a known property for Itô integrals w.r.t. indepedent Brownian motions, when the integrands are of class M

2

(here it is true since r

N

is bounded). Then by Itô isometry,

E M

t1; ;N 2

= 1 N

2

X

a2

E Z

t

0

1

s2Ia;N

r X

sa;N 2

ds

= 1 N E

"Z

t 0

1 N

X

a2

1

s2Ia;N

r X

sa;N 2

ds

#

= 1 N E

Z

t 0

D

jr j

2

; S

sN

E ds 1

N kr k

21

Z

t

0

E 1; S

Ns

ds:

It follows

N !1

lim E M

t1; ;N 2

= 0

by an estimate on E 1; S

sN

discussed afterwards.

(9)

Similarly,

E M

t1;N

(x)

2

= 1 N

2

X

a2

E

" Z

t 0

1

s2Ia;N

r

N

x X

sa;N

dB

sa

2

#

= 1 N

2

X

a2

E Z

t

0

1

s2Ia;N

r

N

x X

sa;N 2

ds

= 1 N E

"Z

t 0

1 N

X

a2

1

s2Ia;N

r

N

x X

sa;N 2

ds

#

= 1 N E

Z

t 0

D

jr

N

(x )j

2

; S

sN

E ds :

Here we have to use the structure of

N

. Precisely, if we assume that

N

(x) =

Nd N1

x , we have D

jr

N

(x )j

2

; S

sN

E

=

Nd 2

Z

d

N

r

N1

(x y)

2

S

Ns

(dy) : (1) To control such term it is necessary to assume

sup

N 2N d 2 N

N < 1:

When the second moments E M

t1; ;N 2

and E M

t1;N 2

have been estimated, one can prove similar estimates with the supremum in time inside the expectation, using the martingale property.

5.2 Second martingale term

Consider now

M

t2; ;N

= 1 N

X

a2

X

a;N

T1a;N

1

t Ta;N 1

1 N

X

a2

Z

t 0

X

sa;N

d

a;Ns

= 1 N

X

a2

Z

t 0

X

sa;N

d N

sa;N a;Ns

which is a martingale with respect to the …ltration G

t

:= F

t

. Since the jumps of N

sa;N

and N

sa0;N

, for a 6= a

0

never occur at the same time, we have (see 12) E

Z

t 0

X

sa;N

d N

sa;N a;Ns

Z

t 0

X

sa0;N

d N

sa0;N as0;N

= 0:

(10)

Hence

E M

t2; ;N 2

= 1 N

2

X

a2

E

" Z

t 0

X

sa;N

d N

sa;N a;Ns

2

# : It is known, see 11, that

E

" Z

t 0

X

sa;N

d N

sa;N a;Ns

2

#

= E

"

X

a;N

T1a;N 2

1

t Ta;N 1

#

or also E

" Z

t 0

X

sa;N

d N

sa;N a;Ns

2

#

= E Z

t

0

X

sa;N 2

d

a;Ns

: Then, using the …rst expression,

E M

t2; ;N 2

= 1 N

2

X

a2

E

"

X

a;N

T1a;N 2

1

t Ta;N 1

#

= k k

21

1 N

X

a2

E

"

1 N

X

a2

1

t Ta;N 1

#

k k

21

1

N E 1; S

tN

:

Alternatively, using the second expression, if

a;Nt

has the form

a;N

t

=

Z

t 0

1

s2Ia;N

X

sa;N

; S

sN

ds we get

E M

t2; ;N 2

= 1 N

2

X

a2

E Z

t

0

X

sa;N 2

d

a;Ns

= 1 N

2

X

a2

E Z

t

0

X

sa;N 2

1

s2Ia;N

X

sa;N

; S

Ns

ds

= 1 N

2

X

a2

E Z

t

0

X

sa;N 2

1

s2Ia;N

X

sa;N

; S

sN

ds

= 1 N E

Z

t 0

Z

j (x)j

2

x; S

sN

S

sN

(dx) ds

which here gives rise to a similar estimate as above.

(11)

Similarly,

E M

t2;N

(x)

2

= 1 N

2

X

a2

E

" Z

t 0

N

x X

sa;N

d N

sa;N a;Ns

2

#

= 1 N

2

X

a2

E Z

t

0

N

x X

sa;N 2

d

a;Ns

= 1 N

2

X

a2

E

"

N

x X

a;N

T1a;N 2

1

t Ta;N 1

# :

To control the last term we need to integrate in dx. The previous term is more suitable:

1 N

2

X

a2

E Z

t

0

N

x X

sa;N 2

d

a;Ns

= 1 N

2

X

a2

E Z

t

0

N

x X

sa;N 2

1

s2Ia;N

X

sa;N

; S

sN

ds

= 1 N E

Z

t 0

Z

j

N

(x y)j

2

y; S

sN

S

sN

(dy) ds : If we assume that

N

(x) =

Nd N1

x , we have

Z

j

N

(x y)j

2

y; S

sN

S

sN

(dy) =

Nd

Z

d N

1

N

(x y)

2

y; S

sN

S

sN

(dy) : (2)

6 Estimates on h

Nt

Recall that

h

Nt

(x) = h

N0

(x) + 1 2

Z

t 0

h

Ns

(x) ds + Z

t

0

N

; S

sN

S

sN

(x) ds + M

t1;N

(x) + M

t2;N

(x) : We want an identity for h

Nt

(x)

2

. We need Itô formula for processes with jumps. Recall the following result, also known as generalized Itô formula.

Lemma 13 Let X be a one-dimensional semimartingale such that X

t

; X

t

take values in an open set U R and f : U ! R twice continuously di¤erentiable. Then f(X) is a semimartingale and

f (X

t

) =f (X

0

) + Z

t

0

f

0

(X

s

)dX

s

+ 1 2

Z

t 0

f

00

(X

s

)d [X]

cs

+ X

s t

Jf (X

s

) f

0

(X

s

)JX

s

(12)

Lemma 14

h

Nt

(x)

2

= h

N0

(x)

2

+ Z

t

0

h

Ns

(x) h

Ns

(x) ds + Z

t

0

2h

Ns

(x)

N

; S

sN

S

sN

(x) ds +

Z

t 0

2h

Ns

(x) dM

s1;N

(x) + Z

t

0

2h

Ns

(x) dM

s2;N

(x) + 1

N Z

t

0

D

jr

N

(x )j

2

; S

sN

E

ds + 1

N

2

X

a2 N

2N

(x X

a;N

T1a;N

)1

t Ta;N 1

:

Notice also that 1 N

2

X

a2 N 2

N

(x X

a;N

T1a;N

)1

t Ta;N

1

= 1

N

2

X

a2 N

Z

t 0

2

N

(x X

sa;N

)dN

sa;N

:

Proof. We apply generalized Itô formula to the function f (x) = x

2

and the process X

t

= h

Nt

(x) (N and x given). We …rst get

h

Nt

(x)

2

= h

N0

(x)

2

+ Z

t

0

2h

Ns

(x) dh

Ns

(x) + [X]

ct

+ X

s t

J h

Ns

(x)

2

2h

Ns

(x) Jh

Ns

(x)

where, after substitution of dh

Ns

(x), the term R

t

0

2h

Ns

(x) dh

Ns

(x) give rise to the sum of the terms (we analyze each one of them on a separate line)

Z

t 0

2h

Ns

(x) 1

2 h

Ns

(x) ds = Z

t

0

h

Ns

(x) h

Ns

(x) ds

(the number of jumps of h

Ns

(x) is …nite on [0; t], hence we may change the value of the Riemann integral at a …nite numebr of points)

Z

t 0

2h

Ns

(x)

N

; S

sN

S

sN

(x) ds = Z

t

0

2h

Ns

(x)

N

; S

sN

S

sN

(x) ds Z

t

0

2h

Ns

(x) dM

s1;N

(x) = Z

t

0

2h

Ns

(x) dM

s1;N

(x)

(the argument about the …nite number of jumps of h

Ns

(x) in [0; t] applies also to Itô integrals w.r.t. Brownian motion)

Z

t 0

2h

Ns

(x) dM

s2;N

(x) :

(13)

The quadratic variation [X]

t

is equal to

[X]

t

= M

1;N

(x)

t

+ M

2;N

(x)

t

+ 2 M

1;N

(x) ; M

2;N

(x)

t

:

The quadratic variation M

2;N

(x)

t

has only jumps; the covariation M

1;N

(x) ; M

2;N

(x)

t

is equal to zero since, at the jumps of M

2;N

(x), M

1;N

(x) is continuous. Hence term [X]

ct

is equal to

[X]

ct

= M

1;N

(x)

t

= 1 N

2

X

a2

Z

t 0

1

s2Ia;N

r

N

x X

sa;N

dB

sa

= 1 N

2

X

a2

Z

t 0

1

s2Ia;N

r

N

x X

sa;N 2

ds

= 1 N

Z

t 0

D

jr

N

(x )j

2

; S

sN

E

ds:

It remains to understand the term P

s t

J h

Ns

(x)

2

2h

Ns

(x) Jh

Ns

(x) . At every jump time r, we have

J h

Nr

(x)

2

2h

Nr

(x)Jh

Nr

(x)

= h

Nr

(x)

2

h

Nr

(x)

2

2h

Nr

(x) h

Nr

(x) h

Nr

(x)

= h

Nr

(x)

2

+ h

Nr

(x)

2

2h

Nr

(x) h

Nr

(x)

= h

Nr

(x) h

Nr

(x)

2

= Jh

Nr

(x)

2

: Moreover,

Jh

N

T1a;N

(x) = 1

N

N

(x X

a;N

T1a;N

) hence

X

r t

Jh

Nr

(x)

2

= X

a2 N

Jh

N

T1a;N

(x)

2

1

t Ta;N 1

= 1 N

2

X

a2 N

2N

(x X

a;N

T1a;N

)1

t Ta;N 1

:

Lemma 15 One has E

" Z

t 0

2h

Ns

(x) dM

s1;N

(x)

2

#

4

Nd 2

N E

Z

t 0

h

Ns

(x)

2

Z

d

N

r

N1

(x y)

2

S

sN

(dy) ds :

(14)

Proof. Since Z

t

0

2h

Ns

(x) dM

s1;N

(x) = 1 N

X

a2

Z

t 0

2h

Ns

(x) 1

s2Ia;N

r

N

x X

sa;N

dB

as

We have, as above,

E

" Z

t 0

2h

Ns

(x) dM

s1;N

(x)

2

#

= 1 N

2

X

a2

E

" Z

t 0

2h

Ns

(x) 1

s2Ia;N

r

N

x X

sa;N

dB

sa

2

#

= 1 N

2

X

a2

E Z

t

0

4 h

Ns

(x)

2

1

s2Ia;N

r

N

x X

sa;N 2

ds

= 4 N E

"Z

t 0

h

Ns

(x)

2

1 N

X

a2

1

s2Ia;N

r

N

x X

sa;N 2

ds

#

= 4 N E

Z

t 0

h

Ns

(x)

2

D

jr

N

(x )j

2

; S

sN

E ds : Using (1), we get

E

" Z

t 0

2h

Ns

(x) dM

s1;N

(x)

2

#

4

Nd 2

N E

Z

t 0

h

Ns

(x)

2

Z

d

N

r

N1

(x y)

2

S

sN

(dy) ds :

Lemma 16 One has E

" Z

t 0

2h

Ns

(x) dM

s2;N

(x)

2

#

4

Nd

N E

Z

t 0

h

Ns

(x)

2

Z

d N

2 1

N

(x y) y; S

sN

S

sN

(dy) ds : Proof. Since

Z

t 0

2h

Ns

(x) dM

s2;N

(x) = 1 N

X

a2

Z

t 0

2h

Ns

(x)

N

x X

sa;N

d N

sa;N a;Ns

as above we have E

" Z

t 0

2h

Ns

(x) dM

s2;N

(x)

2

#

= 1 N

2

X

a2

E

" Z

t 0

2h

Ns

(x)

N

x X

sa;N

d N

sa;N a;Ns

2

#

= 1 N

2

X

a2

E Z

t

0

4 h

Ns

(x)

2 2N

x X

sa;N

X

sa;N

; S

sN

ds

= 4 N E

Z

t 0

h

Ns

(x)

2

Z

2N

(x y) y; S

sN

S

sN

(dy) ds :

Riferimenti

Documenti correlati

(tequila, vodka, rum bianco, triple sec, gin, succo di limone, sciroppo di zucchero,

[r]

[r]

La tariffa TARI è determinata sulla base del Metodo Tariffario per il servizio integrato di gestione dei Rifiuti (MTR) approvato dall’Autorità ARERA con Delibera 31 ottobre

L’ISREC Lucca, insieme alla rete toscana degli Istituti storici della Resistenza e dell’età Contemporanea e con il patrocinio della Regione Toscana ha preparato dieci

➢ per le attività di realizzazione e gestione di impianti di trattamento di rifiuti, pericolosi e non pericolosi, con procedura semplificata; per tali attività l’ammontare

Grazie a investimenti importanti che ne migliorano sempre più il profilo ambientale e alla gestione efficiente delle risorse : trattamento delle acque, riduzione dei rifiuti e

Il contributo di INTAC è stato supportare il pastificio Garofalo nell'aggiunta di un nuovo ingrediente: Smart Maintenance, il sistema software intelligente per la